Problem 8.1 (12 Points) Decide for each of the following statements whether it is true, false or unknown. Each correct answer gives 2 points, no answer gives 1 point and a wrong answer gives 0 points.

a) FPT = W[1] implies P = NP.

b) The problem VERTEXCOVER is contained in W[1].

c) The problem FEEDBACKVERTEXSET is W[1]-hard.

d) The problem k-Path can be solved in time $2^{o(n)}$.

e) There exists an infinite sequence G_0, G_1, G_2, \ldots of graphs such that for every pair $i < j$ the graph G_i is not a minor of G_j.

f) The problem VERTEXCOVER can be solved in time $1.5^k n^{O(1)}$.

Problem 8.2 (12 Points) A d-uniform hypergraph is a pair of a finite set of vertices U and a set S of subsets of U of size d. The d-SETPACKING problem asks, given a d-uniform hypergraph (U, S) and a positive integer k, to decide whether there are k elements of S that are pairwise disjoint. The problem is parameterized by k.

Prove that, for every positive integer d, the problem d-SETPACKING has a kernel with $O(k^d)$ vertices.

Hint: Use the Sunflower Lemma

Problem 8.3 (6+6 Points) For a positive integer d, the problem $\#d$-DEGREESUBGRAPH asks, given a graph $G = (V, E)$, to compute the number of sets $S \subseteq E$ such that (V, S) is a subgraph of G in which every vertex has degree exactly d.

a) Prove that $\#d$-DEGREESUBGRAPH can be solved in time $(d + 1)^{2\omega(G)} |V|^{O(1)}$.

b) Prove that $\#d$-DEGREESUBGRAPH can be solved in time $(d + 1)^{\omega(G)} |V|^{O(1)}$.

Problem 8.4 (6+6 Points) The problem LONGESTCYCLE asks, given a graph $G = (V, E)$ and a positive integer k, to decide whether there exists a cycle in G of length at least k.

The problem EXACTCYCLE expects the same input and asks to decide whether there exists a cycle in G of length exactly k.

a) Prove that EXACTCYCLE can be solved in time $e^k |V|^{O(1)}$ for some constant $c > 1$.

b) Prove that LONGESTCYCLE can be solved in time $d^k |V|^{O(1)}$ for some constant $d > 1$.

Problem 8.5 (12 Points) The problem MULTICOLOREDBICLIQUE asks, given a positive integer t and a graph G whose vertices are colored with $2t$ different colors, to decide whether there exists a colorful subgraph of G that is isomorphic to the biclique $K_{t,t}$. Here $K_{t,t}$ is the graph with vertices v_1, \ldots, v_t and u_1, \ldots, u_t and edges $\{v_i, u_j\}$ for every pair $1 \leq i, j \leq t$.

Show that MULTICOLOREDBICLIQUE is W[1]-hard when parameterized by t.