Multivariate Algorithmics: Problem set 8 Trial Exam

Dr. Karl Bringmann, Dr. Holger Dell, Cornelius Brand, Marc Roth http://bit.ly/MulAlg18

Due: Before the lecture on February 05, 2019 Tutorial: February 07, 2019

Problem 8.1 (12 Points) Decide for each of the following statements whether it is *true*, *false* or *unknown*. Each correct answer gives 2 points, no answer gives 1 point and a wrong answer gives 0 points.

- a) FPT = W[1] implies P = NP.
- b) The problem VERTEXCOVER is contained in W[1].
- c) The problem FeedbackVertexSet is W[1]-hard.
- d) The problem k-PATH can be solved in time $2^{o(k)}n^{O(1)}$.
- e) There exists an infinite sequence G_0, G_1, G_2, \ldots of graphs such that for every pair i < j the graph G_i is not a minor of G_j .
- f) The problem VERTEXCOVER can be solved in time $1.5^k n^{O(1)}$.

Problem 8.2 (12 Points) A *d*-uniform hypergraph is a pair of a finite set of vertices \mathcal{U} and a set \mathcal{S} of subsets of \mathcal{U} of size *d*. The *d*-SETPACKING problem asks, given a *d*-uniform hypergraph (\mathcal{U}, \mathcal{S}) and a positive integer *k*, to decide whether there are *k* elements of \mathcal{S} that are pairwise disjoint. The problem is parameterized by *k*.

Prove that, for every positive integer d, the problem d-SetPacking has a kernel with $O(k^d)$ vertices. **Hint:** Use the Sunflower Lemma

Problem 8.3 (6+6 Points) For a positive integer d, the problem #d-DEGREESUBGRAPH asks, given a graph G = (V, E), to compute *the number* of sets $S \subseteq E$ such that (V, S) is a subgraph of G in which every vertex has degree exactly d.

- a) Prove that #d-DegreeSubgraph can be solved in time $(d+1)^{2\mathsf{tw}(G)}|V|^{O(1)}$.
- b) Prove that #d-DegreeSubgraph can be solved in time $(d+1)^{\mathsf{tw}(G)}|V|^{O(1)}$.

Problem 8.4 (6+6 Points) The problem LONGESTCYCLE asks, given a graph G = (V, E) and a positive integer k, to decide whether there exists a cycle in G of length at least k.

The problem EXACTCYCLE expects the same input and asks to decide whether there exists a cycle in G of length *exactly* k.

- a) Prove that EXACTCYCLE can be solved in time $c^k |V|^{O(1)}$ for some constant c > 1.
- b) Prove that LONGESTCYCLE can be solved in time $d^k |V|^{O(1)}$ for some constant d > 1.

Problem 8.5 (12 Points) The problem MULTICOLOREDBICLIQUE asks, given a positive integer t and a graph G whose vertices are colored with 2t different colors, to decide whether there exists a colorful subgraph of G that is isomorphic to the biclique $K_{t,t}$. Here $K_{t,t}$ is the graph with vertices v_1, \ldots, v_t and u_1, \ldots, u_t and edges $\{v_i, u_j\}$ for every pair $1 \le i, j \le t$.

Show that MULTICOLOREDBICLIQUE is W[1]-hard when parameterized by t.