
Antonios Antoniadis and Marvin Künnemann Winter 2018/19

Exercises for Randomized and Approximation Algorithms
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter18/rand-apx-algo/

Exercise Sheet 4: Dynamic Programming and PTAS’s

To be handed in by November 13th, 2018 via e-mail to André Nusser (CC to Antonios
Antoniadis and Marvin Künnemann)

Exercise 1 (12 Points) In the weighted interval scheduling problem we are given a set J of n
jobs, where each job j comes with a starttime si, a finishing time fi and some value vi (you may
assume that all these values are integers). A feasible solution to the problem is a subset S ⊆ J
of the jobs, so that no two jobs in S overlap, in other words, for any i, j ∈ S, [si, fi]∩ [sj, fj] = ∅.
Goal is to find such a feasible set S of jobs of maximum total value

∑
j∈S vj.

(i) Show that the following two greedy algorithms can produce solutions that are arbitrarily
worse than the optimal one.

• starttime-based greedy: Go through the jobs in order of ascending starttimes, while
adding them to S if and only if they do not overlap with any other job already in S.

• weight-based-greedy: Go through the jobs in order of decreasing values, while adding
them to S if and only if they do not overlap with any other job already in S.

(5 Points)

(ii) Give an optimal, polynomial-time algorithm for the problem using dynamic programming.
(7 Points) (In case you have difficulties solving this exercise, a pseudopolynomial-time
dynamic programming algorithm gives part of the points.)

Exercise 2 (8 Points) Consider the following greedy algorithm for the knapsack problem.
Assume that the items are indexed in order of non-increasing ratio of value to size, i.e., v1/s1 ≥
v2/s2 ≥ · · · ≥ vn/sn, and let i∗ be the index of an item of maximum value, i.e., vi∗ = maxi∈I vi.
The algorithm identifies the largest k so that

∑k
i=1 si ≤ B. It then outputs either {1, 2, . . . , k}

or {i∗}, whatever has greater value. Prove that this algorithm is a 2-approximation algorithm
for the knapsack problem.

Exercise 3 (10 Points) Suppose we are given a directed acyclic graph with a specified source
vertex s and a sink vertex t, and each edge e has an associated cost ce and length `e. You

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter18/rand-apx-algo/


may assume that ce and `e are positive integers. Give a fully polynomial-time approximation
scheme for the problem of finding a minimum-cost path from s to t of total length at most L.

Exercise 4 (10 Points) Consider some minimization problem Π such that:

• any feasible solution has a non-negative, integer objective function value, and

• there is some polynomial p, such that if it takes n bits to encode the input instance I in
unary, OPT (I) < p(n).

Prove that if there is a fully polynomial-time approximation scheme for Π, then there is a
pseudopolynomial algorithm for Π.

Note: Since there is no pseudopolynomial-time algorithm for a strongly NP-hard problem unless
P=NP, you proved that unless P=NP there cannot be any such problem Π that is strongly NP-
hard.


