Exercise 1 (12 Points) In the weighted interval scheduling problem we are given a set J of n jobs, where each job j comes with a start time s_j, a finishing time f_j, and some value v_j (you may assume that all these values are integers). A feasible solution to the problem is a subset $S \subseteq J$ of the jobs, so that no two jobs in S overlap, in other words, for any $i, j \in S$, $[s_i, f_i] \cap [s_j, f_j] = \emptyset$. Goal is to find such a feasible set S of jobs of maximum total value $\sum_{j \in S} v_j$.

(i) Show that the following two greedy algorithms can produce solutions that are arbitrarily worse than the optimal one.

- **starttime-based greedy**: Go through the jobs in order of ascending start times, while adding them to S if and only if they do not overlap with any other job already in S.
- **weight-based-greedy**: Go through the jobs in order of decreasing values, while adding them to S if and only if they do not overlap with any other job already in S.

(5 Points)

(ii) Give an optimal, polynomial-time algorithm for the problem using dynamic programming.

(7 Points) *(In case you have difficulties solving this exercise, a pseudopolynomial-time dynamic programming algorithm gives part of the points.)*

Exercise 2 (8 Points) Consider the following greedy algorithm for the knapsack problem. Assume that the items are indexed in order of non-increasing ratio of value to size, i.e., $v_1/s_1 \geq v_2/s_2 \geq \cdots \geq v_n/s_n$, and let i^* be the index of an item of maximum value, i.e., $v_{i^*} = \max_{i \in I} v_i$. The algorithm identifies the largest k so that $\sum_{i=1}^k s_i \leq B$. It then outputs either $\{1, 2, \ldots, k\}$ or $\{i^*\}$, whatever has greater value. Prove that this algorithm is a 2-approximation algorithm for the knapsack problem.

Exercise 3 (10 Points) Suppose we are given a directed acyclic graph with a specified source vertex s and a sink vertex t, and each edge e has an associated cost c_e and length l_e. You
may assume that c_e and ℓ_e are positive integers. Give a fully polynomial-time approximation scheme for the problem of finding a minimum-cost path from s to t of total length at most L.

Exercise 4 (10 Points) Consider some minimization problem Π such that:

- any feasible solution has a non-negative, integer objective function value, and
- there is some polynomial p, such that if it takes n bits to encode the input instance I in unary, $OPT(I) < p(n)$.

Prove that if there is a fully polynomial-time approximation scheme for Π, then there is a pseudopolynomial algorithm for Π.

Note: Since there is no pseudopolynomial-time algorithm for a strongly NP-hard problem unless P=NP, you proved that unless P=NP there cannot be any such problem Π that is strongly NP-hard.