Exercise Sheet 4: Dynamic Programming and PTAS's

To be handed in by November 13th, 2018 via e-mail to André Nusser (CC to Antonios Antoniadis and Marvin Künnemann)

Exercise 1 (12 Points) In the weighted interval scheduling problem we are given a set J of n jobs, where each job j comes with a starttime s_{i}, a finishing time f_{i} and some value v_{i} (you may assume that all these values are integers). A feasible solution to the problem is a subset $S \subseteq J$ of the jobs, so that no two jobs in S overlap, in other words, for any $i, j \in S,\left[s_{i}, f_{i}\right] \cap\left[s_{j}, f_{j}\right]=\emptyset$. Goal is to find such a feasible set S of jobs of maximum total value $\sum_{j \in S} v_{j}$.
(i) Show that the following two greedy algorithms can produce solutions that are arbitrarily worse than the optimal one.

- starttime-based greedy: Go through the jobs in order of ascending starttimes, while adding them to S if and only if they do not overlap with any other job already in S.
- weight-based-greedy: Go through the jobs in order of decreasing values, while adding them to S if and only if they do not overlap with any other job already in S.
(5 Points)
(ii) Give an optimal, polynomial-time algorithm for the problem using dynamic programming. (7 Points) (In case you have difficulties solving this exercise, a pseudopolynomial-time dynamic programming algorithm gives part of the points.)

Exercise 2 (8 Points) Consider the following greedy algorithm for the knapsack problem. Assume that the items are indexed in order of non-increasing ratio of value to size, i.e., $v_{1} / s_{1} \geq$ $v_{2} / s_{2} \geq \cdots \geq v_{n} / s_{n}$, and let i^{*} be the index of an item of maximum value, i.e., $v_{i^{*}}=\max _{i \in I} v_{i}$. The algorithm identifies the largest k so that $\sum_{i=1}^{k} s_{i} \leq B$. It then outputs either $\{1,2, \ldots, k\}$ or $\left\{i^{*}\right\}$, whatever has greater value. Prove that this algorithm is a 2 -approximation algorithm for the knapsack problem.

Exercise 3 (10 Points) Suppose we are given a directed acyclic graph with a specified source vertex s and a sink vertex t, and each edge e has an associated cost c_{e} and length ℓ_{e}. You
may assume that c_{e} and ℓ_{e} are positive integers. Give a fully polynomial-time approximation scheme for the problem of finding a minimum-cost path from s to t of total length at most L.

Exercise 4 (10 Points) Consider some minimization problem Π such that:

- any feasible solution has a non-negative, integer objective function value, and
- there is some polynomial p, such that if it takes n bits to encode the input instance I in unary, $O P T(I)<p(n)$.

Prove that if there is a fully polynomial-time approximation scheme for Π, then there is a pseudopolynomial algorithm for Π.

Note: Since there is no pseudopolynomial-time algorithm for a strongly NP-hard problem unless $P=N P$, you proved that unless $P=N P$ there cannot be any such problem Π that is strongly $N P$ hard.

