Exercises for Randomized and Approximation Algorithms

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter18/rand-apx-algo/

Exercise Sheet 5: Concentration I

To be handed in by November 20th, 2018 via e-mail to André Nusser (CC to Antonios Antoniadis and Marvin Künnemann)

Exercise 1 (5 Points) Consider a fair die showing the numbers $\{1, \ldots, D\}$. Let X be the sum of the numbers obtained after rolling it N times. Use Chebychev's inequality to give an upper bound on

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq \alpha \mathbf{E}[X]]
$$

for any $\alpha>0$.

Exercise 2 (10 Points) Let x, y be length- n strings. We define their Hamming distance as $\operatorname{Ham}(x, y):=\#\{1 \leq i \leq n \mid x[i] \neq y[i]\}$, i.e., the number of positions where x and y disagree.

Consider the following algorithm approximating $\operatorname{Ham}(x, y)$ by means of "alphabet reduction": (here, for any function $h: \Sigma \rightarrow \mathbb{N}$ and string $x=x[1] \ldots x[n]$, we write $h(x)=h(x[1]) \ldots h(x[n])$.)

```
function \(\operatorname{ApproxHAm}(x, y, \varepsilon)\)
    for \(i=1, \ldots,\lceil c \log n\rceil\) do
        pick \(h\) u.a.r. from the set of all functions \(\Sigma \rightarrow\{1, \ldots,\lceil 2 / \varepsilon\rceil\}\)
        \(d_{i} \leftarrow \operatorname{Ham}(h(x), h(y))\)
    return \(\max _{1 \leq i \leq\lceil c \log n\rceil} d_{i}\)
```

Show that this algorithm computes an estimate \tilde{d} satisfying $(1-\varepsilon) \operatorname{Ham}(x, y) \leq \tilde{d} \leq \operatorname{Ham}(x, y)$ with probability at least $1-n^{-c}$.
(Hint: Use Markov!)
Exercise 3 (12 Points) We say that a hash family \mathcal{H} from X to Y is k-universal (in the strong sense) if for all pairwise distinct $x_{1}, \ldots, x_{k} \in X$ and all $y_{1}, \ldots, y_{k} \in Y$, we have

$$
\operatorname{Pr}_{h \leftarrow \mathcal{H}}\left[h\left(x_{1}\right)=y_{1} \text { and } \cdots \text { and } h\left(x_{k}\right)=y_{k}\right]=\frac{1}{|Y|^{k}} .
$$

Let p be a prime number and recall that computation modulo p yields a field (which we write as $\left.\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}\right)$. Define the hash family $\mathcal{H}_{\text {simple }}$ from \mathbb{F}_{p} to \mathbb{F}_{p} as the set of functions $h_{a, b}$ with $h_{a, b}(x)=a x+b(\bmod p)$ for $a, b \in \mathbb{F}_{p}$.
a) (7 Points) Prove that $\mathcal{H}_{\text {simple }}$ is 2 -universal and that any $h_{a, b} \in \mathcal{H}_{\text {simple }}$ can be stored using $O(\log p)$ bits.
b) (2 Points) Show that $\mathcal{H}_{\text {simple }}$ is in general not 3-universal.
c) (3 Points) The construction of $\mathcal{H}_{\text {simple }}$ does not (immediately) yield a 2-universal hash family from $[n]$ to $[n]$ for arbitrary (non-prime) n. Why can we still make the algorithm for estimating the number of distinct elements in a stream (given in the lecture) work?

Exercise 4 (13 Points) Let X be a (discrete) random variable and recall that $\sigma[X]=\sqrt{\operatorname{Var}[x]}$ denotes its standard deviation.
a) (10 Points) Prove the following inequality: For any $t>0$ we have

$$
\operatorname{Pr}[X-\mu \geq t \sigma[X]] \leq \frac{1}{1+t^{2}}
$$

(Hint: Note that $X-\mu \geq \alpha$ if and only if $X-\mu+u \geq \alpha+u$. Optimize over u !)
b) (3 Points) Prove the following two-sided variant of the above inequality: For any $t>0$, we have

$$
\operatorname{Pr}[|X-\mu| \geq t \sigma[X]] \leq \frac{2}{1+t^{2}}
$$

In which situations does this provide a better bound than Chebychev's inequality?
(Note: You may make use of a) even if you did not prove it.)

