

Antonios Antoniadis and Marvin Künnemann

Winter 2018/19

Exercises for Randomized and Approximation Algorithms

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter18/rand-apx-algo/

Exercise Sheet 9: The Primal-Dual Method I

To be handed in by **December 18th, 2018** via e-mail to André Nusser (CC to Antonios Antoniadis and Marvin Künnemann)

Exercise 1 (8 Points) Consider the following linear program:

minimize	$-5x_1 + 8x_2 + 4x_3$
subject to	$x_1 + x_2 = 2$
	$x_2 - x_3 \le 3$
	$2x_1 - x_3 \ge -1$
	$x_1 \ge 0$
	$x_3 \leq 0$

- (i) Formulate the dual of the linear program. (3 Points)
- (ii) Rewrite the (primal) linear programm, so that the constraints are in standard form ($Ax \ge b$). (3 Points)

Exercise 2 (11 Points) Consider the following maximization problem:

maximize	$c^T x$
subject to	$Ax \leq b,$
	$x \ge 0$
	$x \in \mathbb{R}^n$

and its corresponding dual:

minimize	$b^T y$
subject to	$A^T y \ge c,$
	$y \ge 0,$
	$y \in \mathbb{R}^m$

and consider some feasible solutions x^* and y^* for the respective problems. Assume that there exist $\lambda, \mu > 0$ so that the following approximate complementary slackness conditions hold:

$$x_i^* > 0 \Rightarrow \sum_{j=1}^m a_{ij} y_j^* \le \mu c_i$$

and

$$y_i^* > 0 \Rightarrow \sum_{i=1}^n a_{ij} x_i^* \ge \lambda b_j$$

Prove that x^* is a $\frac{\lambda}{\mu}$ -approximation for the primal.

Exercise 3 (21 Points) The local ratio technique is closely related to the primal dual method; however, it only uses duality in an implicit way. Consider the following local ratio algorithm for the set cover problem. We compute a collection I of indices of a set cover, where I is initially empty. In each iteration, we find some element e_i not covered by the current collection I. Let ϵ be the minimum weight of any set containing e_i . We subtract ϵ from the weight of each set containing e_i ; some such set has now weight zero and we add its index to I.

Let ϵ_j be the value of ϵ in the j'th iteration of the algorithm.

- (i) Show that the cost of the solution returned is at most $f \sum_{j} \epsilon_{j}$. (3 Points)
- (ii) Show that the cost of the optimal solution must be at least $\sum_{i} \epsilon_{j}$. (3 Points)
- (iii) Conclude that the algorithm is an f-approximation algorithm. (3 Points)

The local ratio technique depends upon the *local ratio theorem*. For a minimization problem Π with weights w, we say that a feasible solution F is α -approximate with respect to w if the weight of F is at most α times the weight of an optimal solution given weights w.

Theorem 1 (Local Ratio Theorem). If there are nonnegative weights w such that $w = w^1 + w^2$, where w^1 and w^2 are also nonnegative weights, and we have a feasible solution F such that Fis α -approximate with respect to both w^1 and w^2 , then F is α -approximate with respect to w.

- (iv) Prove the local ratio theorem. (5 Points)
- (v) Explain how the set cover algorithm above can be analyzed in terms of the local ratio theorem to prove that it is an f-approximation algorithm. (7 Points)