
A New Path from Splay to Dynamic Optimality by Caleb
Levy and Bob Tarjan (SODA 2019)

Reading Group Talk by Kurt Mehlhorn

Oct. 24, 2018

1 Introduction and Statement of Main Results
The paper revisits the dynamic optimality conjecture for splay trees. Splay trees were introduced by Sleator
and Tarjan in ’84. Splay trees support searches, insertions, deletions, joins, splits, In this talk, we
are concerned with sequences of searches. Splay rebuilds the tree after every search as illustrated in the
following figure taken from [CGK+15].

The search path to the accessed element s is rebuilt as follows. Number the nodes on the search path
to s bottom up, starting at zero. Make s the root and attach to the root the two paths of smaller and larger
nodes respectively. Then on both paths perform the following rotations. If the nodes numbered 2k + 1
and 2k+ 2 end up in the same path, perform a rotation on the edge connecting them. In the example, we
perform rotations on the edges (5,6), (7,8), and (3,4). This description of splay is a global view of splay
introduced in [CGK+15]. The standard description is a bottom-up rebuild of the search path.

The cost of a search (the cost of serving a request) is the length of the search path and the cost of a
sequence of searches is the sum of the costs of the individual searches. We use Cost(T,X) to denote the
cost of serving X with initial tree T by splay.

Conjecture 1 (Dynamic Optimality) There is a constant c such that

Cost(T,X)≤ c ·Opt(T,X)

for every initial tree T and request sequence X.

We still need to define Opt(T,X). A search tree algorithm serves requests by subtree replacements. Let
T ′ be the search tree before serving the request to an item x. The algorithm selects a subtree Q containing
the root of T ′ and x and replaces Q by a tree Q′ on the same set of nodes and rooted at x. The dangling
subtrees are attached in the unique way so at to maintain the search tree property. The cost is the size of Q.
For a sequence, we again sum up the costs of the individual operations. Opt(T,X) is the minimum cost of
serving X starting with T .

1

In [CGK+15] it was shown that subtrees in which no node is every accessed can be ignored, i.e., deleted.
Then, at least initially, every node lies on a path to an accessed element and hence Opt(T,X)≥ |T |. Also,
the cost of each access is at least one and hence Opt(T,X)≥ |X |.

Note that Opt is an offline algorithm and splay is an online algorithm.
A subsequence Y of a sequence X of requests is obtained by deleting requests from X .

Conjecture 2 (Subsequence Property) There is a constant c such that for any sequence X of requests,
initial tree T , and any subsequence Y of X,

Cost(T,Y)≤ c ·Cost(T,X).

Theorem 1 Splay satisfies dynamic optimality iff splay has the subsequence property.

Some researchers suggested that one should weaken the dynamic optimality conjecture by adding an
additive term that depends only on the size of the initial tree. After all, Opt starting in any tree can first
convert this tree into its most favorite tree. However, splay may have to pay a warm-up cost.

Conjecture 3 (Dynamic Optimality with Warm-Up Cost) There is a constant c and a function g such
that

Cost(T,X)≤ c ·Opt(T,X)+g(|T |)
for every initial tree T and request sequence X.

Theorem 2 Splay satisfies dynamic optimality iff splay satisfies dynamic optimality with a warm-up cost.

We now come to the key technical insight of the paper. In a certain sense, splay can simulate any other
search tree algorithm.

Theorem 3 (Splay has the Simulation Property) For any search tree algorithm B there is a constant c
such that for every initial tree T and every sequence X of requests there is a sequence XB of requests such
that
(a) X is a subsequence of XB,
(b) Cost(T,XB)≤ c ·CostB(T,X), where CostB is the cost of processing X by B starting with T .

Theorem 4 Subsequence Property + Simulation Property⇒ Dynamic Optimality.

Theorem 5 Dynamic Optimality⇒ Subsequence Property

2 Proofs
Proof: Dynamic Optimality ⇒ Subsequence Property: Let T be a tree, X be a sequence of requests,
and Y a subsequence of X . Then

Cost(T,Y)≤ c ·Opt(T,Y)≤ c ·Opt(T,X)≤ c ·Cost(T,X),

where the first inequality follows from the dynamic optimality of splay, the second inequality holds since
Opt has the subsequence property (with constant equal to 1), and the last inequality holds since the cost of
Opt is no larger than the cost of splay on the same sequence.

Intuitively, Opt has the subsequence property because the sequence of actions serving X also serves Y .
Technically, it requires to collapse sequences of subtree replacements into a single subtree replacement.

Proof: Subsequence Property + Simulation Property⇒ Dynamic Optimality: Let T be any tree and
let X be any sequence of requests. By the simulation property of splay, there is a supersequence Z of X
such that Cost(T,Z) ≤ c ·Opt(T,X). By the subsequence property of splay, Cost(T,X) ≤ d ·Cost(T,Z).
Thus Cost(T,X)≤ c ·d ·Opt(T,X).

We come to the simulation property. A restricted rotation is a rotation at an edge incident to the root
or incident to the left child of the root. So there are 4 different restricted rotations. They come in pairs that
are inverses of each other.

2

Note that restricted rotations affect only tiny subtrees (two or three nodes) rooted at the root. The
following Lemma was well-known.

Lemma 1 (Lucas, and others) Any tree T1 on n nodes can be transformed into any other tree T2 on the
same set of nodes by 4n restricted rotations.

Proof: The idea is to transform T1 into a left-leaning path (the root is node n and the leftmost leaf is node
1) and then the left-leaning path into T2. The second transformation is the inverse of transforming T2 into
the left-leaning path. I prove a weaker bound of 8n, 4n for each of the two parts.

In order to transform T1 into a path, let v be the deepest node on the left spine which has a right child.
There are four cases: v does not exist, v exists and is the root, v exists and is the left child of the root, v
exists and has depth 2 or more. If v does not exist, we are done. If v exists and is the root, we rotate on the
right edge incident to the root. This will turn the right child of the root into the root with the former root its
left child. If v exists and is the left child of the root, we rotate on the right edge incident to v. This moves
the right child of v onto the spine and makes v a grandchild of the root. If v exists and is not the left child
of the root, we rotate on the left edge incident to the root. This will move v closer to the root.

How does one measure progress and prove linear time? We first observe that the rotations at edges
incident to the root do not change the number of nodes lying on the two spines and the rotation on the right
edge incident to the left child of the root increases it by one. Thus there are at most n rotations of this kind;
call it a type 1 rotation.

At the beginning we make at most n rotations at the left edge (type 2 rotation) incident to the root to
make the deepest node on the left spine a child of the root. Lateron, we only make a type 2 rotation if after
a type 1 rotation the node v is a grandchild of the root. Thus there are at most n+n type 2 rotations.

A rotation at the right edge incident to the root (type 3 rotation) is only performed if the root is the only
node on the left spine with a right child. Thus a type 3 rotation is preceded by a type 1 rotation. Thus there
are most n type 3 rotations.

Next comes the crucial insight. We consider the binary search trees on four nodes1. There are 14 such
trees. We draw an edge from a tree T to a tree T ′ if there is a node x of T such that splay will transform T
into T ′ after a search for x.

Lemma 2 The transition graph on binary search trees of size 4 is strongly connected. It diameter is 5.

Proof: The picture below (taken from Levy-Tarjan) shows that the graph has a Hamiltonian cycle.

1It is tempting to consider trees on three nodes as restricted rotations affect only three nodes. However, the transition graphs for
trees of size three under splay it not strongly connected.

3

I skip the proof that the diameter is five. It is shown by an inspection of the transition graph.

Example: Let us assume for concreteness that our trees of size 4 are on keys 1, 2, 3, and 4. In order to
transform the tree A into the tree B in the figure above, we use the access sequence 1, 3, 2, 1, 3.

So a sequence of at most 5 accesses will induce splay to transform any tree on four nodes into any other
tree on four nodes. Since the maximum length of a search path in a tree of four nodes is four, the total cost
of these 5 accesses is at most 20. We are now ready for the simulation theorem.

Proof: Simulation Property of Splay Assume the algorithm B replaces T by T ′ after a search for x.
Recall that T is a subtree containing the root of the before tree and the accessed element x and that T ′ has
x as the root. We can transform T into T ′ by 4|T | restricted rotations. For each restricted rotation, there is
an access sequence of length 5 which makes splay simulate the restricted rotation. Therefore, there is an
access sequence A of length 20|T | which will make splay transform T into T ′. The cost of processing this
sequence by splay it at most 80|T |. After a splay the accessed element becomes the root. Since x is the root
of T ′, the last access in the sequence A is an access to x.

We make this replacement for every access. We obtain a supersequence Z of X of length at most
20CostB(T,X) with Cost(T,Z)≤ 4|Z| ≤ 80CostB(T,X).

4

Proof: dynamic optimality after warm-up implies dynamic optimality Consider any sequence X of
requests and let T be the initial tree. Processing X by splay results in a tree T ′. There is an access sequence
Y of length at most 20|T | that makes splay transform T ′ back to T . Let U be X followed by Y . Then
Cost(T,X) ≤ Cost(T,U) since X is a prefix of U . Let k ?U , be the access sequence U repeated k times.
Then Cost(T,k ?U) = k ·Cost(U) since the tree after processing U is again T . Together, we have

k ·Cost(T,X)≤ k ·Cost(T,U) = Cost(T,k ?U)≤ c ·Opt(T,k ?U)+g(|T |)≤ (c+1) ·Opt(T,k ?U),

where the next to last inequality follows from dynamic optimality after warm-up and the last inequality
holds only for sufficiently large k, namely when g(|T |)≤ |k ?U |. Then g(|T |)≤ Opt(T,k ?U).

Let us next estimate the cost of Opt on k?U . Every way of serving this sequence gives an upper bound
on the cost of Opt. We first serve X in the optimal way for a cost of Opt(T,X). Let T ′′ be the tree obtained.
We then use 4|T ′′| restricted rotations (total cost at most 16|T ′′|) to transform T ′′ into T ′. Then we behave
as splay and transform T ′ into T ′′ for a cost of most 80|T |. We repeat k times. Thus

Opt(T,k ?U)≤ k · (Opt(T,X)+96|T |)≤ 97k ·Opt(T,X),

where the last inequality uses |T | ≤ Opt(T,X).
Stringing our inequalities together, we obtain

k ·Cost(T,X)≤ (c+1) ·Opt(T,k ?U)≤ (c+1) ·97 · k ·Opt(T,X)

for all sufficiently large k. Dividing by k establishes dynamic optimality.

3 Further Results
They show that the deque and the transversal conjecture follow from dynamic optimality.

They show that the Wilber2 lower bound satisfies the subsequence property. Wilber2 is a lower bound
for the cost of any binary search tree serving a sequence of accesses X . The authors prove that Wilber2
has the subsequence property. The proof is involved. The paper only contains a sketch; already the sketch
spreads over three pages. In the geometric view of binary search trees, the claim has a simple proof.

In the geometric view, the definition of Wilber2 is as follows. I quote from Demaine et al. “Consider
each point p of X in increasing order by y coordinate. Consider the orthogonal envelope of all points in
the quadrant (x, y) | x < p.x, y < p.y, and the orthogonal envelope of all points in the quadrant (x, y) | x
> p.x, y < p.y. (The orthogonal envelope is the set of points that are not orthogonally dominated by any
other point, when looking from p.) Merge the two envelopes and sort them by y coordinate. Now draw a
rectangle between any pair of consecutive points switching between the left and right quadrants. It is easy
to see that these rectangle are independent.”

Lemma 3 Let X be a point set and let q be a point not in X. Points have pairwise distinct x- and y-
coordinates. Then Wilber(S)≤Wilber(S∪q).

Proof: Let p, `, r be three points in S such that the alternation (`,r) is counted by Wilber2 for p. Also
assume `.x < p.x < r.x.

We first show that the rectangle R = (`.x,r,x)× (min(`.y,r.y), p.y) contains no point in S. Since ` and
r are not dominated by any point in S when looking from p, the rectangle with corners p and ` and the
rectangle with corners p and r does not contain any point in S. Furthermore, ` and r are consecutive points
in y-order in the two envelopes. Therefore the rectangle (`.x,r,x)×(min(`.y,r.y),max(`.y,r.y)) contains no
point in S.

Consider now the point q. If q does not lie in R, then the alternation (`,r) is still counted for p. So
assume that q ∈ R. If q.y > max(`.y,r.y), the alternation (`,r) is counted for q. If min(`.y,r.y) < q.y <
max(`.y,r.y)) (recall that coordinates are distinct), and q.x < p.x, then (q,r) is counted for p. If q.x > p.x,
(`,q) is counted for p.

In the sequence part of the paper, they sketch an (so far unsuccessful) approach to dynamic optimality.

5

References
[CGK+15] Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol

Saranurak. Self-Adjusting Binary Search Trees: What Makes Them Tick?. In Algorithms
– ESA 2015, volume 9294 of Lecture Notes in Computer Science, pages 300–312. Springer
Berlin Heidelberg, 2015.

6

http://arxiv.org/abs/1503.03105

	Introduction and Statement of Main Results
	Proofs
	Further Results

