Homework 10: Separators and Cuts Part I

Algorithms on Directed Graphs, Winter 2018/9

Due: 19.01.2019 by 16:00

Materials of this lecture are from chapter 8 of the parametrized algorithm book. For definitions please take a look at the book.

Before going into exercises I have to fix one of my mistakes in the lecture: In the proof of Lemma 8.10 I said \(d(R_{\text{max}} \cup R) > d(R) \) and we arrive at a contradiction, but as one of you complained during the lecture this is wrong. The correct argument is that: if \(d(R_{\text{max}} \cup R) \leq d(R) \) with the fact that \(R_{\text{max}} \not\subseteq R \) we have that \(R \) is a proper subset of \(R_{\text{max}} \cup R \). Given that \(d(R_{\text{max}} \cup R) \) is small we get a contradiction with the assumption that \(R \) is an important cut.

Exercise 1 (submodular functions). Prove the followings.

1. Prove the function \(d_G \) is submodular for every undirected graph \(G \).

2. Let define \(\Delta_G(R) \) for digraph \(G \) to be the set of edges so that their tail is in \(R \) and their head is in \(G \setminus R \). Define \(d_G(R) = |\Delta_G(R)| \). Is \(d_G \) a submodular function?

3. Solve the exercise 8.2 of the book.

Exercise 2 \((R_{\text{min}}, R_{\text{max}}) \). Solve the exercises 8.6 and 8.7.

Exercise 3 (Enumerating important cuts). Complete missing proofs from the lecture.

1. We explained half of the proof of theorem 8.11. Provide a full proof of it. Of course you can read it first, however you have to write your own understanding.

2. The proof of 8.11 was a constructive proof. Turn it to an algorithm with running time \(O(4^k P(n)) \) for some polynomial function \(P \).