
Lecture 10

Mutual Exclusion and Store
& Collect

In the previous lectures, we’ve learned a lot about message passing systems.
We’ve also seen that neither in shared memory nor message passing systems
consensus can be solved deterministically. But what makes them different?
Obviously, the key difference to message passing is the shared memory: Different
processors can access the same register to store some crucial information, and
anyone interested just needs to access this register. In particular, we don’t
suffer from locality issues, as nodes are just one shared register away. Think
for instance about pointer jumping, which is not possible in a message passing
system, or about MST construction, where the diameter of components matters.

Alas, great power comes with its own problems. One of them is to avoid
that newly posted information is overwritten by other nodes before it’s noticed.

Definition 10.1 (Mutual Exclusion). We are given a number of nodes, each
executing the following code sections:
<Entry> → <Critical Section> → <Exit> → <Remaining Code>,
where <Remaining Code> means that the node can access the critical section
multiple times. A mutual exclusion algorithm consists of code for entry and exit
sections, such that the following holds1

Mutual Exclusion At all times at most one node is in the critical section.

No Deadlock If some node manages to get to the entry section, later some
(possibly different) node will get to the critical section (in a fair execution).

Sometimes we in addition ask for

No Lockout If some node manages to get to the entry section, later the same
node will get to the critical section.

Unobstructed Exit No node can get stuck in the exit section.

1Assuming that nodes finish the <Critical Section> in finite time.

127



128 LECTURE 10. MUTUAL EXCLUSION AND STORE & COLLECT

Remarks:

• We’re operating in the asynchronous model today, as is standard for shared
memory. The reason is that the assumption of strong memory primitives
and organization of modern computing systems (multiple threads, inter-
rupts, accesses to the hard drive, etc.) tend to result in unpredictable
response times that can vary dramatically.

10.1 Strong RMW Primitives

Various shared memory systems exist. A main difference is how they allow
nodes to access the shared memory. All systems can atomically read or write a
shared register R. Most systems do allow for advanced atomic read-modify-write
(RMW) operations, for example:

test-and-set(R): t := R; R := 1; return t

fetch-and-add(R, x): t := R; R := R+ x; return t

compare-and-swap(R, x, y): if R = x then R := y; return true; else return
false; endif;

load-link(R)/store-conditional(R, x): Load-link returns the current value of
the specified register R. A subsequent store-conditional to the same regis-
ter will store a new value x (and return true) only if the register’s content
hasn’t been modified in the meantime. Otherwise, the store-conditional
is guaranteed to fail (and return false), even if the value read by the
load-link has since been restored.

An operation being atomic means that it is only a single step in the execution.
For instance, no other node gets to execute the “fetch” part of the fetch-and-add
primitive while another already completed it, but hasn’t executed the addition
yet.

Using RMW primitives one can build mutual exclusion algorithms quite
easily. Algorithm 20 shows an example with the test-and-set primitive.

Algorithm 20 Mutual exclusion using test-and-set, code at node v.

Given: some shared register R, initialized to 0.
<Entry>

1: repeat
2: r := test-and-set(R)
3: until r = 0
<Critical Section>

4: . . .
<Exit>

5: R := 0
<Remainder Code>

6: . . .

Theorem 10.2. Algorithm 20 solves mutual exclusion and guarantees unobstruc-
ted exit.



10.2. MUTUAL EXCLUSION USING ONLY RW REGISTERS 129

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let pi be the ith node to execute the test-and-set “successfully,”
i.e., such that the result is 0. Denote by ti the time when this happens and by
t′i the time when pi resets the shared register R to 0. Between ti and t′i no other
node can successfully test-and-set, hence no other node can enter the critical
section during [ti, t

′
i].

Proving no deadlock works similar: One of the nodes loitering in the entry
section will successfully test-and-set as soon as the node in the critical section
exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops), we have unobstructed exit.

Remarks:

• No lockout, on the other hand, is not ensured by this algorithm. Even
with only two nodes there are asynchronous executions in which always
the same node wins the test-and-set.

• Algorithm 20 can be adapted to guarantee this, essentially by ordering
the nodes in the entry section in a queue.

• The power of RMW operations can be measured with the consensus num-
ber. The consensus number k of an RMW operation is defined as the
number of nodes for which one can solve consensus with k (crashing)
nodes using basic read and write registers alongside the respective RMW
operations. For example, test-and-set has consensus number 2, whereas
the consensus number of compare-and-swap is infinite.

• It can be shown that the power of a shared memory system is determined
by the consensus number (“universality of consensus”). This insight has
a remarkable theoretical and practical impact. In practice, for instance,
after this was known, hardware designers stopped developing shared mem-
ory systems that support only weak RMW operations.

10.2 Mutual Exclusion using only RW Registers

Do we actually need advanced registers to solve mutual exclusion? Or to solve
it efficiently? It’s not as simple as before,2 but can still be done in a fairly
straightforward way.

We’ll look at mutual exclusion exclusion for two nodes p0 and p1 only. We
discuss how it can be extended to more nodes in the remarks. The general
idea is that node pi has to mark its desire to enter the critical section in a
“want” register Wi by setting Wi := 1. Only if the other node is not interested
(W1−i = 0) access is granted. To avoid deadlocks, we add a priority variable Π
enabling one node to enter the critical section even when the “want” registers
are saying that none shall pass.

Theorem 10.3. Algorithm 21 solves mutual exclusion and guarantees both no
lockout and unobstructed exit.

2Who would have guessed, we’re talking about a non-trivial problem here.



130 LECTURE 10. MUTUAL EXCLUSION AND STORE & COLLECT

Algorithm 21 Mutual exclusion: Peterson’s algorithm.

Given: shared registers W0,W1,Π, all initialized to 0.
Code for node pi, i ∈ {0, 1}:
<Entry>

1: Wi := 1
2: Π := 1− i
3: repeat nothing until Π = i or W1−i = 0 // “busy-wait”
<Critical Section>

4: . . .
<Exit>

5: Wi := 0
<Remainder Code>

6: . . .

Proof. The shared variable Π makes sure that one of the nodes can enter the
critical section. Suppose p0 enters the critical section first. If at this point it
holds that W1 = 0, p1 has not yet executed Line 1 and therefore will execute
Line 2 before trying to enter the critical section, which means that Π will be 0
and p1 has to wait until p0 leaves the critical section and resets W0 := 0. On the
other hand, if W1 = 1 when p0 enters the critical section, we already must have
that Π = 0 at this time, i.e., the same reasoning applies. Arguing analogously
for p1 entering the critical section first, we see that mutual exclusion is solved.

To see that there are no lockouts, observe that once, e.g., p0 is executing the
spin-lock (i.e., is “stuck” in Line 3), the priority variable is not going to be set
to 1 again until it succeeds in entering and passing the critical section. If p1 is
also interested in entering and “wins” (we already know that one of them will),
afterwards it either will stop trying to enter or again set Π to 0. In any event,
p0 enters the section next.

Since the exit section only consists of a single instruction (no potential infi-
nite loops), we have unobstructed exit.

Remarks:

• Line 3 in Algorithm 21 is a spinlock or busy-wait, like Lines 1-3 in Algo-
rithm 20. Here we have the extreme case that the node doesn’t even try
to do anything, it simply needs to wait for someone else to finish the job.

• Extending Peterson’s Algorithm to more than 2 nodes can be done by a
tournament tree, like in tennis. With n nodes every node needs to win
dlog ne matches before it can enter the critical section. More precisely,
each node starts at the bottom level of a binary tree, and proceeds to the
parent level if winning. Once winning the root of the tree it can enter the
critical section.

• This solution inherits the additional nice properties: no lockouts, unob-
structed exit.

• On the downside, more work is done than with the test-and-set opera-
tion, as the binary tree has depth dlog ne. One captures this by counting



10.3. STORE & COLLECT 131

asynchronous rounds or the number of actual changes of variables,3 as
only signal transitions are “expensive” (i.e., costly in terms of energy) in
circuits.

10.3 Store & Collect

Informally, the store & collect problem can be stated as follows. There are
n nodes p1, . . . , pn. Every node pi has a read/write register Ri in the shared
memory, where it can store some information that is destined for the other
nodes. Further, there is an operation by which a node can collect (i.e., read)
the values of all the nodes that stored some value in their register.

We say that an operation op1 precedes an operation op2 iff op1 terminates
before op2 starts. An operation op2 follows an operation op1 iff op1 precedes
op2.

Definition 10.4 (Store and Collect). There are two operations: A store(val)
by node pi sets val to be the latest value of its register Ri. A collect operation
returns a view, i.e., a function f : V → VAL ∪ {⊥} from the set of nodes V
to a set of values VAL or the symbol ⊥, which means “nothing written yet.”
Here, f(pi) is intended to be the latest value stored by pi, for each node pi. For
a collect operation cop, the following validity properties must hold for every
node pi:

• If f(pi) = ⊥, then no store operation by pi precedes cop.

• If f(pi) = val 6= ⊥, then val is the value of a store operation sop of pi
that does not follow cop satisfying that there is no store operation by pi
that follows sop and precedes cop.

Put simply, a collect operation cop should not read from the future or
miss a preceding store operation sop.

Attention: A collect operation is not atomic, i.e., consists of multiple
(atomic) operations! This means that there can be reads that neither precede
nor follow a collect. Such overlapping operations are considered concurrent.
In general, also a write operation can be more involved, to simplify reads or
achieve other properties, so the same may apply to them.

We assume that the read/write register Ri of every node pi is initialized
to ⊥. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem shown in Algorithm 22.

3There may be an unbounded number of read operations due to the busy-wait, and it is
trivial to see that this cannot be avoided in a (completely) asynchronous system.

Algorithm 22 Trivial collect.

Operation store(val) (by node pi) :
1: Ri := val

Operation collect:
2: for i := 1 to n do
3: f(pi) := Ri // read register Ri
4: end for



132 LECTURE 10. MUTUAL EXCLUSION AND STORE & COLLECT

Remarks:

• Obviously,4 Algorithm 22 works. The step complexity of every store
operation is 1, the step complexity of a collect operation is n.

• The step complexities of Algorithm 22 is optimal: There are cases in
which a collect operation needs to read all n registers. However, there
are also scenarios in which the step complexity of the collect operation
is unnecessarily large. Assume that there are only two nodes pi and pj
that have stored a value in their registers Ri and Rj . Then, in principle,
collect needs to read the registers Ri and Rj only.

10.3.1 Splitters

Assume that up to a certain time t, k ≤ n nodes have started at least one
operation. We call an operation completing at time t adaptive to contention, if
its step complexity depends on k only.

To obtain adaptive collect algorithms, we will use a symmetry breaking
primitive called a splitter.

Definition 10.5 (Splitter). A splitter is a synchronization primitive with the
following characteristics. A node entering a splitter exits with either stop, left,
or right. If k nodes enter a splitter, at most one node exits with stop and at
most k − 1 nodes exit with left and right, respectively.

This definition guarantees that if a single node enters the splitter, then it
obtains stop, and if two or more nodes enter the splitter, then there is at most
one node obtaining stop and there are two nodes that obtain different values

4Be extra careful whenever such a word pops up. If it’s not indeed immediately obvious, it
may translate to “I believe it works, but didn’t have the patience to check the details,” which
is an excellent source of (occasionally serious) blunders. One of my lecturers once said: “If it’s
trivial, then why don’t we write it down? It should not take more than a line. If it doesn’t,
then it’s not trivial!”

Algorithm 23 Splitter Code

Shared Registers: X : {⊥} ∪ {1, . . . , n}; Y : boolean
Initialization: X := ⊥; Y := false

Splitter access by node pi:
1: X := i;
2: if Y then
3: return right
4: else
5: Y := true
6: if X = i then
7: return stop
8: else
9: return left

10: end if
11: end if



10.3. STORE & COLLECT 133

k processors

at most 1

left
at most k−1

right
at most k−1

stop

Figure 10.1: A Splitter

(i.e., either there is exactly one stop or there is at least one left and at least
one right). For an illustration, see Figure 10.1. Algorithm 23 implements a
splitter.

Lemma 10.6. Algorithm 23 implements a splitter.

Proof. Assume that k nodes enter the splitter. Because the first node that
checks whether Y = true in line 2 will find that Y = false, not all nodes return
right. Next, assume that i is the last node that sets X := i. If i does not return
right, it will find X = i in Line 6 and therefore return stop. Hence, there is
always a node that does not return left.

It remains to show that at most 1 node returns stop. Suppose pi decides to
do this at time t, i.e., pi reads that X = i in Line 6 at time t. Then any pj that
sets X := j after time t will (re)turn right, as already Y = true. As any other
node pj will not read X = j after time t (there is no other way to change X to
j), this shows that at most one node will return stop. Finally, observe that if
k = 1, then the result for the single entering node will be stop.

10.3.2 Binary Splitter Tree

Assume that we are given 2n − 1 splitters and that for every splitter S, there
is an additional shared variable ZS : {⊥} ∪ {1, . . . , n} that is initialized to ⊥
and an additional shared variable MS : boolean that is initialized to false. We
call a splitter S marked if MS = true. The 2n − 1 splitters are arranged in a
complete binary tree of height n − 1. Let S(v) be the splitter associated with
a node v of the binary tree. The store and collect operations are given by
Algorithm 24.

Theorem 10.7. Algorithm 24 implements store and collect. Let k be the
number of participating nodes. The step complexity of the first store of a node
pi is O(k), the step complexity of every additional store of pi is O(1), and the
step complexity of collect is O(k).

Proof. Because at most one node can stop at a splitter, it is sufficient to show
that every node stops at some splitter at depth at most k − 1 ≤ n − 1 when
invoking the first store operation to prove correctness. We prove that at most
k− i nodes enter a subtree at depth i (i.e., a subtree where the root has distance
i to the root of the whole tree). This follows by induction from the definition
of splitters, as not all nodes entering a splitter can proceed to the same subtree



134 LECTURE 10. MUTUAL EXCLUSION AND STORE & COLLECT

Algorithm 24 Adaptive collect: binary tree algorithm

Operation store(val) (by node pi) :
1: Ri := val
2: if first store operation by pi then
3: v := root node of binary tree
4: α := result of entering splitter S(v);
5: MS(v) := true
6: while α 6= stop do
7: if α = left then
8: v := left child of v
9: else

10: v := right child of v
11: end if
12: α := result of entering splitter S(v);
13: MS(v) := true
14: end while
15: ZS(v) := i
16: end if

Operation collect:
Traverse marked part of binary tree:
17: for all marked splitters S do
18: if ZS 6= ⊥ then
19: i := ZS ; f(pi) := Ri // read value of node pi
20: end if
21: end for // f(pi) = ⊥ for all other nodes

rooted at a child of the splitter. Hence, at the latest when reaching depth k−1,
a node is the only node entering a splitter and thus obtains stop.

Note that the step complexity of executing a splitter is O(1). The bound of
k− 1 on the depth of the accessed subtree of the binary splitter tree thus shows
that the step complexity of the initial store is O(k) for each node, and each
subsequent store requires only O(1) steps.

To show that the step complexity of collect is O(k), we first observe
that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables MS associated to them and their
neighbors. Hence, showing that at most 2k − 1 nodes of the binary tree are
marked is sufficient. Let xk be the maximum number of marked nodes in a
tree when k ∈ N0 nodes access the root. We claim that xk ≤ max{2k − 1, 0},
which is trivial for k = 0. Now assume the inequality holds for 0, . . . , k − 1.
Splitters guarantee that neither all nodes turn left nor all nodes turn right,
i.e., kl ≤ k − 1 nodes will turn left and kr ≤ min{k − kl, k − 1} turn right.
The left and right children of the root are the roots of their subtrees, hence the
induction hypothesis yields

xk ≤ xkl + xkr + 1 ≤ max{2kl − 1, 0}+ max{2kr − 1, 0}+ 1 ≤ 2k − 1,

concluding induction and proof.



10.3. STORE & COLLECT 135

left

right

Figure 10.2: 5× 5 Splitter Matrix

Remarks:

• The step complexities of Algorithm 24 are very good. Clearly, the step
complexity of the collect operation is asymptotically optimal.5 In order
for the algorithm to work, we however need to allocate the memory for the
complete binary tree of depth n−1. The space complexity of Algorithm 24
therefore is exponential in n. We will next see how to obtain a polynomial
space complexity at the cost of a worse collect step complexity.

10.3.3 Splitter Matrix

In order to obtain quadratic memory consumption (instead of the exponential
memory consumption of the splitter tree), we arrange n2 splitters in an n × n
matrix as shown in Figure 10.2. The algorithm is analogous to Algorithm 24.
The matrix is entered at the top left. If a node receives left, it next visits
the splitter in the next row of the same column. If a node receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n2). The following theorem gives bounds on
the step complexities of store and collect.

Theorem 10.8. Let k be the number of participating nodes. The step complexity
of the first store of a node pi is O(k), the step complexity of every additional
store of pi is O(1), and the step complexity of collect is O(k2).

Proof. Let the top row be row 0 and the left-most column be column 0. Let xi
be the number of nodes entering a splitter in row i. By induction on i, we show

5Here’s another clearly to watch carefully. While the statement is correct, it’s not obvious
that we chose the performance measure wisely. We could refine our notion again and ask for
the step complexity in terms of the number of writes that did not precede the most recent
collect operation of the collecting process. But let’s not go there today.



136 LECTURE 10. MUTUAL EXCLUSION AND STORE & COLLECT

that xi ≤ k− i. Clearly, x0 ≤ k. Let us therefore consider the case i > 0. Let j
be the largest column such that at least one node visits the splitter in row i− 1
and column j. By the properties of splitters, not all nodes entering the splitter
in row i−1 and column j obtain left. Therefore, not all nodes entering a splitter
in row i − 1 move on to row i. Because at least one node stays in every row,
we get that xi ≤ k − i. Similarly, the number of nodes entering column j is at
most k− j. Hence, every node stops at the latest in row k− 1 and column k− 1
and the number of marked splitters is at most k2. Thus, the step complexity of
collect is at most O(k2). Because the longest path in the splitter matrix is
2k, the step complexity of store is O(k).

Remarks:

• With a slightly more complicated argument, it is possible to show that
the number of nodes entering the splitter in row i and column j is at most
k − i− j. Hence, it suffices to only allocate the upper left half (including
the diagonal) of the n× n matrix of splitters.

• Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity and
O(n2) space complexity.

What to take Home

• Obviously, more powerful RMW primitives are extremely useful. However,
their implementation might be more costly than an implementation using
read/write registers only. At the end of the day, RMW primitives solve
mutual exclusion at some level of the system hierarchy.

• Naturally, atomic read/write registers do not fall out of the sky either.
They are implemented from non-atomic registers using similar techniques.

Bibliographic Notes

Already in 1965 Edsger Dijkstra gave a deadlock-free solution for mutual ex-
clusion [Dij65]. Later, Maurice Herlihy suggested consensus numbers [Her91],
where he proved the “universality of consensus,” i.e., the power of a shared
memory system is determined by the consensus number. Peterson’s Algorithm
is due to [PF77, Pet81], and adaptive collect was studied in the sequence of
papers [MA95, AFG02, AL05, AKP+06].

Again, a big thanks goes to Roger Wattenhofer, whose lecture material to-
day’s topic is based on!

Bibliography

[AFG02] Hagit Attiya, Arie Fouren, and Eli Gafni. An adaptive collect algo-
rithm with applications. Distributed Computing, 15(2):87–96, 2002.



BIBLIOGRAPHY 137

[AKP+06] Hagit Attiya, Fabian Kuhn, C. Greg Plaxton, Mirjam Wattenhofer,
and Roger Wattenhofer. Efficient adaptive collect using randomiza-
tion. Distributed Computing, 18(3):179–188, 2006.

[AL05] Yehuda Afek and Yaron De Levie. Space and Step Complexity Effi-
cient Adaptive Collect. In DISC, pages 384–398, 2005.

[Dij65] Edsger W. Dijkstra. Solution of a problem in concurrent program-
ming control. Commun. ACM, 8(9):569, 1965.

[Her91] Maurice Herlihy. Wait-Free Synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, 1991.

[MA95] Mark Moir and James H. Anderson. Wait-Free Algorithms for Fast,
Long-Lived Renaming. Sci. Comput. Program., 25(1):1–39, 1995.

[Pet81] J.L. Peterson. Myths About the Mutual Exclusion Problem. Infor-
mation Processing Letters, 12(3):115–116, 1981.

[PF77] G.L. Peterson and M.J. Fischer. Economical solutions for the crit-
ical section problem in a distributed system. In Proceedings of the
ninth annual ACM symposium on Theory of computing, pages 91–97.
ACM, 1977.



138 LECTURE 10. MUTUAL EXCLUSION AND STORE & COLLECT


