Exercise 3: Impossible!

Task 1: Stop Failing, You Cowards!

The goal of this exercise is to show that under the synchronous message passing model, for any consensus algorithm there are executions with \(f \) crashes in which solving consensus requires at least \(f + 1 \) rounds.

Note that maximal fault-free extensions are unique. Given a pair of partial executions, call a node \(v \) to be pivotal if only this node’s state makes a difference between outputs 0 and 1 in case there are no further faults in each execution.

a) Show that there are inputs differing at a single node \(v_0 \) that result in different outputs in the respective maximal fault-free extension. Conclude that \(v_0 \) is therefore pivotal in round 0.

Hint: Use the same argument as for the asynchronous case.

b) Prove that, given a pair of \(r \)-round executions (with \(r \leq n - 3 \)) with a pivotal node \(v_r \), crashing the node “in the right way”\(^1\) yields a pair of \((r + 1)\)-round executions with a new pivotal node \(v_{r+1} \).

Hint: The reasoning is similar as for a), but the “inputs” are replaced by the messages of \(v_r \) in round \(r \) of each of the executions—or their absence due to the node crashing.

c) Conclude that for any \(f \leq n - 2 \), there are executions with \(f \) faults in which some node neither crashes nor terminates earlier than round \(f + 1 \).

d)* For a small but fixed \(f = n - 1 \), find a fault-tolerant algorithm that solves consensus in \(f \) rounds. This is to show that not only is \(f = n \) a special case, but \(f = n - 1 \) is a different special case, too!

\(^1\)this includes not crashing the node at all
Task 2: Impossible? We’ll Do it in \(f + 2 \) Rounds!

The topology: complete.
The model: synchronous message passing.
The task: consensus.
The challenge: crash faults.

a) Suppose each node maintains a bit \(p_i \). In each round, each node sends its bit to all other nodes and sets it to 0 if it received a 0. Show that if a node receives messages from the same set of senders either all with opinion 0 or all with opinion 1 in two consecutive rounds, all nodes have the same bit \(p_i \).

b) Use this observation to construct a synchronous consensus algorithm tolerating an arbitrary number of faults.

c) Prove that the algorithm is correct and terminates in at most \(f + 3 \) rounds in executions with at most \(f \) faults (if necessary, modify your algorithm to achieve this property).

d)* Modify the algorithm to terminate in \(f + 2 \) rounds under the assumption that \(n \) is known!

Remark: Note that the algorithm can deal with an arbitrary number of faults, yet the running time is bounded in terms of the actual faults happening. This property is called *early-stopping*. Given that faults are supposed to be uncommon events, that’s pretty neat!

**Task 3*: Intense Sharing

a) Find out what the term “consensus number” refers to!

b) Ponder the consensus number of shared memory that, besides atomic reads, permits to write to up to \(k > 1 \) shared registers in a single atomic step!

c) Share your insights in the exercise session!