Using Computers to Design Distributed Algorithms

Jukka Suomela
Aalto University, Finland
Computer science: “what can be automated?”
Next level: “can we automate our own work?”
Key players in algorithmics

- Model of computing
- Computational problem
- Algorithm

“what are feasible solutions for any given input?”

“how to find a feasible solution for any given input?”
Key players in algorithmics

- **Model of computing**: e.g. RAM machines
- **Computational problem**: e.g. sorting
- **Algorithm**: e.g. merge sort
Key players in algorithmics

- Model of computing
 - e.g. distributed graph algorithms

- Computational problem
 - e.g. list 3-coloring

- Algorithm
 - e.g. Cole–Vishkin

recall Lecture 1...
How to design algorithms?

Model of computing

Computational problem

Algorithm?
How to design algorithms?

- Some systematic principles:
 - algorithm design paradigms
 - reductions …

- But largely just “think hard”, years of experience, clever insights, good luck?
How to design algorithms?

• Some systematic principles:
 • algorithm design paradigms
 • reductions …

• But largely just “think hard”, years of experience, clever insights, good luck?

• Could we automate it?
Ultimate meta-algorithm??

My laptop

“algorithm synthesis”
Ultimate meta-algorithm??

- Model 2
- Problem 2
- Algorithm 2

Model of computing
Computational problem
Algorithm

my laptop
“algorithm synthesis”
Too good to be true?
Does this make any sense?

• Is “algorithm synthesis” a well-defined computational problem?

• What are the right representations?
 • how to represent computational problems or models of computing as input data?
 • how to represent algorithms as output?
Computability?

• Recall the classical meta-computational question: the *halting problem*
 • input: “algorithm” (encoded as a Turing machine)
 • output: does it ever halt?

• **Undecidable problem** — there is no “meta-algorithm” that solves it
Computability?

• We are already in trouble if we would like to **verify** a given algorithm

• Isn’t it much harder to **synthesize** an algorithm than to verify a given algorithm?
Computational complexity?

• Even if we could synthesize algorithms in principle, does it work in practice?

• Does anyone have enough computational resources to do it?
Overcoming some challenges: specialization and semi-automation
Fix the model of computing

Model of computing × Model of computing

Problem 1

Computational problem

Algorithm 1

Algorithm

my laptop

“algorithm synthesis”
Fix the model of computing

- Model of computing
- Problem 2
- Algorithm 2

- Model of computing
- Computational problem
- Algorithm

my laptop
“algorithm synthesis”
Good news

• For some models of distributed computing, algorithm synthesis is possible!
 • both *in theory* and *in practice*!
 • there are computer-designed distributed algorithms that outperform the best human-designed algorithms!
More good news

• Human beings are not yet obsolete!
 • many success stories of computer–human collaboration
 • “computer-aided” algorithm design instead of “fully automatic” algorithm design
Case study 1: robust counters
Case study: robust counters

- Multiple devices connected to each other
- Common clock pulse coming to all devices
- Devices have to count pulses
 - *in agreement*: if one device thinks this is pulse number \(x \), then all devices agree
 - *in a fault-tolerant manner* (more about this soon)
Case study: robust counters

- Running example:
 - *4 devices*
 - all devices can directly communicate with each other
 - task: count pulses *modulo 2*

<table>
<thead>
<tr>
<th></th>
<th>device 1</th>
<th>device 2</th>
<th>device 3</th>
<th>device 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Case study: robust counters

• Nodes labeled with 1, 2, 3, 4

• At each clock pulse, each node can also receive a *message* from every other node

```
device 1:  0 1 0 1 0 1 1 ...  
device 2:  0 1 0 1 0 1 1 ...  
device 3:  0 1 0 1 0 1 1 ...  
device 4:  0 1 0 1 0 1 1 ...  
```
Case study: robust counters

• Very easy to solve if there are no failures and all nodes start in the same state

• How would you do it?

device 1: 0 1 0 1 0 1 1 ...
device 2: 0 1 0 1 0 1 1 ...
device 3: 0 1 0 1 0 1 1 ...
device 4: 0 1 0 1 0 1 1
Case study: robust counters

• What if we wanted to tolerate Byzantine failures?

• Still easy to solve — how?

| | 1 | 0 | 1 | 0 | 1 | 0 | 1 | ...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>device 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>device 2:</td>
<td>???</td>
<td>???</td>
<td>???</td>
<td>???</td>
<td>???</td>
<td>???</td>
<td>???</td>
<td></td>
</tr>
<tr>
<td>device 3:</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>device 4:</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Case study: robust counters

• What if we wanted to design a self-stabilizing algorithm?

• Still easy to solve — how?

<table>
<thead>
<tr>
<th>device 1:</th>
<th>garbage</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>device 2:</td>
<td>garbage</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>device 3:</td>
<td>garbage</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>device 4:</td>
<td>garbage</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

recall Lecture 9...
Case study: robust counters

• Can we get both self-stabilization and Byzantine fault tolerance simultaneously?

• Very difficult to solve — try it!

<table>
<thead>
<tr>
<th>device 1:</th>
<th>garbage</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>device 2:</td>
<td>garbage</td>
<td>???</td>
<td>???</td>
<td>???</td>
<td>???</td>
<td>???</td>
<td>...</td>
</tr>
<tr>
<td>device 3:</td>
<td>garbage</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>device 4:</td>
<td>garbage</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>
Case study: robust counters

• Goal: reach correct behavior
 • **self-stabilization**: starting from any configuration
 • **Byzantine fault tolerance**: even if one node is misbehaving

• We want to *ask computers to find a good algorithm* for this problem!
How to represent algorithms?

• Human-readable pseudocode?
 • can computers understand it at all?

• Machine-readable programming language, e.g. Python, Java, C++, x86 assembly?
 • very easy to write a short program that nobody can analyze, not human beings, not computers
How to represent algorithms?

• Let’s try to keep things very simple

• **Computer** = *finite state machine*

• **Communication** = each node simply tells everyone else its *current state*

• **Algorithm** = *lookup table*
How to represent algorithms?

- Example: 4 nodes, 3 states per node

- Algorithm = lookup table that tells what is the new state for each combination of states
 - \(3^4 = 81\) rows
 - easy to represent with computers

<table>
<thead>
<tr>
<th>old state</th>
<th>new state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 0, 0</td>
<td>1, 1, 1, 1</td>
</tr>
<tr>
<td>0, 0, 0, 1</td>
<td>1, 1, 1, 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0, 1, 1, 1</td>
<td>2, 0, 0, 0</td>
</tr>
<tr>
<td>0, 1, 1, 2</td>
<td>0, 0, 0, 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2, 2, 2, 2</td>
<td>1, 1, 1, 1</td>
</tr>
</tbody>
</table>
How to represent executions?

- **Algorithm** = lookup table

- Possible state transitions:
 - example: node 4 misbehaves
 - possible: 0,0,1,* → 1,1,1,*
 - possible: 0,0,1,* → 0,2,0,*
 - possible: 0,0,1,* → 1,2,0,* (!!)

<table>
<thead>
<tr>
<th>old state</th>
<th>new state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 0, 0</td>
<td>1, 1, 1, 1</td>
</tr>
<tr>
<td>0, 0, 0, 1</td>
<td>1, 1, 1, 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0, 0, 1, 0</td>
<td>1, 1, 1, 1</td>
</tr>
<tr>
<td>0, 0, 1, 1</td>
<td>0, 2, 0, 1</td>
</tr>
<tr>
<td>0, 0, 1, 2</td>
<td>1, 1, 1, 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2, 2, 2, 2</td>
<td>1, 1, 1, 1</td>
</tr>
</tbody>
</table>
Given an algorithm, we can construct a directed graph that represents all possible state transitions.

Directed path = possible execution
Graph representations

- Seemingly hard, open-ended questions:
 - is this algorithm correct?
 - does it recover quickly from all failures?

- Simple, well-defined questions:
 - do all paths in this graph lead to nodes “*000” and “*111”?
 - are all such paths short?
Graph representations

- **Algorithm verification** was replaced with a simple *graph problem*

- Candidate algorithm
 - → lookup table
 - → graph of all executions
 - → reachability problem
 - → is this algorithm good
Graph representations

• We now know how to test with computers if an algorithm candidate is good

• How to use computers to find a good algorithm?

• In principle easy: we could check all candidates
Graph representations

- Algorithm = lookup table with 81 entries
- Each entry has 81 possible values
- Just test $81^{81} \approx 10^{154}$ candidates?
Logical representations

• Again just a matter of representations
 • lookup table ≈ Boolean variables x_1, x_2, \ldots
 • this lookup table is good ≈ formula $f(x_1, x_2, \ldots)$ is true

• Apply modern **SAT solvers**
 to find values x_1, x_2, \ldots such that $f(x_1, x_2, \ldots)$ is true
Graph representations

• **Algorithm verification** was replaced with a simple *graph problem*

• **Algorithm synthesis** was replaced with a *Boolean satisfiability problem*

 • NP-hard, but often (?) solvable in practice
High-throughput algorithmics

We can ask computers:

“Is there an algorithm for *n* nodes that uses only *s* states per node and always stabilizes in at most *t* steps?”

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>t = 3</th>
<th>t = 4</th>
<th>t = 5</th>
<th>t = 6</th>
<th>t = 7</th>
<th>t = 8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 4</td>
<td></td>
<td>—</td>
<td>—</td>
<td>s ≥ 4</td>
<td>s ≥ 4</td>
<td>s ≥ 3</td>
<td>s ≥ 3</td>
<td></td>
</tr>
<tr>
<td>n = 5</td>
<td></td>
<td>—</td>
<td>s ≥ 3</td>
<td></td>
</tr>
<tr>
<td>n = 6</td>
<td>s ≥ 3</td>
<td>s ≥ 3</td>
<td>s ≥ 3</td>
<td>s ≥ 2</td>
<td>s ≥ 2</td>
<td>s ≥ 2</td>
<td>s ≥ 2</td>
<td></td>
</tr>
<tr>
<td>n = 7</td>
<td>s ≥ 3</td>
<td>s ≥ 3</td>
<td>s ≥ 3</td>
<td>s ≥ 2</td>
<td>s ≥ 2</td>
<td>s ≥ 2</td>
<td>s ≥ 2</td>
<td></td>
</tr>
<tr>
<td>n = 8</td>
<td>s ≥ 3</td>
<td>s ≥ 2</td>
<td></td>
</tr>
<tr>
<td>n = 9</td>
<td>s ≥ 3</td>
<td>s ≥ 2</td>
<td></td>
</tr>
</tbody>
</table>
Example:

4 nodes
1 faulty node
3 states per node
always stabilizes in at most 7 steps
Efficient computer-designed solution for the **base case**

+ human-designed **recursive step**

= efficient solution for the **general case**
Case study 2: large cuts
Large cuts

• **Goal:** find a large cut

• **Setting:**
 • *1-round randomized algorithms*
 • 1 bit of randomness per node
 • *d*-regular graphs, no short cycles
Large cuts

• Again we can represent algorithms as *lookup tables*:
 • **input**: random bits of myself and my neighbors
 • **output**: black or white

• For each lookup table we can calculate *probability that a given edge is a cut edge*
Large cuts

• **Computer:**
 • find optimal algorithm for $d = 2, 3, 4, \ldots$

• **Human:**
 • look at the structure of optimal algorithms
 • generalize the idea
Large cuts

• Algorithm:
 • Pick a random cut
 • Change sides if at least $\left\lceil \frac{d+\sqrt{d}}{2} \right\rceil$ neighbours on the same side

• How well does this work for $d = 2$?
Case study 3: local problems on cycles
LCLs on cycles

• Computer network = directed n-cycle
 • nodes labelled with $O(\log n)$-bit identifiers
 • each round: each node exchanges (arbitrarily large) messages with its neighbors and updates its state
 • each node has to output its own part of the solution
 • time = number of rounds until all nodes stop
LCLs on cycles

• LCL problems:
 • solution is globally good if it looks good in all local neighborhoods
 • examples: vertex coloring, edge coloring, maximal independent set, maximal matching…
 • cf. class NP: solution easy to verify, not necessarily easy to find
LCLs on cycles

- **2-colouring**: inherently global
 - $\Theta(n)$ rounds
 - solution does not always exist

- **3-colouring**: local
 - $\Theta(\log^* n)$ rounds
 - solution always exists

recall Lecture 1…
LCLs on cycles

• Given an algorithm, it may be very difficult to verify
 • easy to encode e.g. halting problem
 • running time can be any function of n

• However, given an LCL problem, it is very easy to synthesize optimal algorithms!
LCLs on cycles

• LCL problem ≈ set of feasible local neighborhoods in the solution

• Can be encoded as a graph:
 • node = neighborhood
 • edge = “compatible” neighborhoods
 • walk ≈ sliding window
LCLs on cycles

independent set

maximal independent set

3-coloring

2-coloring
LCLs on cycles

Neighborhood v is “flexible” if for all sufficiently large k there is a walk $v \rightarrow v$ of length k

- equivalent: there are walks of coprime lengths
- “12” is flexible here, $k \geq 2$
LCLs on cycles

- **Independent set**
 - Self-loops: $O(1)$

- **Maximal independent set**
 - Flexible states: $\Theta(\log^* n)$

- **3-coloring**
 - Otherwise: $\Theta(n)$

- **2-coloring**
 - (Diagram shows two nodes connected by an arrow, labeled 12 and 21)
LCLs on cycles

• Given any LCL problem on cycles, we can mechanically:
 • represent it as a graph
 • analyze the structure of the graph
 • construct an optimal algorithm for the problem!

• Algorithm synthesis easy with the right representation of the problem!

Diagram:

- Vertices: 12, 21, 23, 31, 32, 13

3-coloring
Conclusions
Recap of techniques

• Case study 1: robust counters
 • computer solves the base case, use as a black box

• Case study 2: large cuts
 • computers solves small cases, generalize the idea

• Case study 3: LCL problems on cycles
 • algorithm synthesis can be fully automated!
Take-home messages

• *You are allowed to use computers* to do theoretical computer science!

• Sometimes algorithm design can be turned into mechanical work that is well-suited for computers
Take-home messages

- We need the right representations for:
 - computational problems (inputs)
 - algorithms (outputs)

- Computers are very good at solving combinatorial puzzles
 - graph problems, satisfiability of logical formulas…
Something to think about...

• Do you see possible applications of computational algorithm design outside distributed computing?

• Would it be possible to use computers to automatically prove lower bounds?