Exercise 8: Don't get Lost

Task 1: ...everything is (probably) going to be fine $(2+3+2+2)$

An event occurs with high probability (w.h.p.), if its probability is, for any choice of $c \in \mathbb{R}_{\geq 1}$, at least $1-n^{-c}$. Here n is the input size (in our case, $n=|V|$), and c is a (user-provided) parameter, very much like the ϵ in a ($1+\epsilon$)-approximation algorithm.

This exercise shows nice properties of "w.h.p.", especially why it works so easily under composition.

```
Algorithm 1 Code for generating a random ID at node v.
    1: }\mp@subsup{\textrm{id}}{v}{}\leftarrow\lceilc\operatorname{log}n\rceil\mathrm{ random bits from independent, fair sources
```

a) Suppose that some algorithm \mathcal{A} is called ten times, and each call succeeds w.h.p. Pick c such that for $n \geq 10$, all ten calls of \mathcal{A} all succeed with a probability of at least 0.999.

Hint: Union bound.
b) Let $\mathcal{E}_{1}, \ldots, \mathcal{E}_{k}$ be polynomially many events, i.e., $k \in n^{\mathcal{O}(1)}$, each of them occurring w.h.p. Show that $\mathcal{E}:=\mathcal{E}_{1} \cap \cdots \cap \mathcal{E}_{k}$, the event that all \mathcal{E}_{i} happen, occurs w.h.p.
c) Consider Algorithm 1, which generates random node IDs. Fix two distinct nodes $v, w \in V$ and show that w.h.p., they have different IDs.
d) Show that w.h.p., Algorithm 1 generates pairwise distinct node IDs.

Task 2: . . . in the Steiner Forest! $(3+3+3+3+2)$

In this exercise, we're going to find a 2-approximation for the Steiner Tree problem on a weighted graph $G=(V, E, W)$, as defined in an earlier exercise; we use the Congest model. Denote by T the set of nodes that need to be connected, and by $G_{T}=\left(T,\binom{T}{2}, W_{T}\right)$ the terminal graph
a) For each node v, denote by $t(v)$ the closest node in T. Show that all $v \in V$ can determine $t(v)$ along with the weighted $\operatorname{distance} \operatorname{dist}(v, t(v))$ in

$$
\max _{v \in V}\{\operatorname{hop}(v, t(v))\}+\mathcal{O}(D)
$$

rounds, ${ }^{1}$ where $\operatorname{hop}(v, t(v))$ denotes the hop length of the minimum-weight distance path from v to $t(v)$.
Hint: This essentially is a single-source Moore-Bellman-Ford with a virtual source connected to all nodes in T.
b) Consider a terminal graph edge $\{t(v), t(w)\}$ "witnessed" by G-neighbors v and w with $t(v) \neq t(w)$, i.e., v and w know that $\operatorname{dist}(t(v), t(w)) \leq \operatorname{dist}(t(v), v)+W(v, w)+$ $\operatorname{dist}(w, t(w))$. Show that if there are no such v and w with $\operatorname{dist}(t(v), t(w))=\operatorname{dist}(v, t(v))+$ $W(v, w)+\operatorname{dist}(w, t(w))$, then $\{t(v), t(w)\}$ is not in the MST of G_{T} !

Hint: Observe that G is partitioned into Voronoi cells $V_{t}=\{v \in V \mid t(v)=t\}$, and that in the above case any shortest $t(v)-t(w)$ path must contain a node u with $t(u) \notin\{t(v), t(w)\}$, i.e., cross a third Voronoi cell. Conclude that $\{t(v), t(w)\}$ is the heaviest edge in the cycle $(t(v), t(u), t(w), t(v))$.

[^0]c) Show that an MST of G_{T} can be determined and made globally known in $\mathcal{O}(|T|+D)$ additional rounds.

Hint: Use the distributed variant of Kruskal's algorithm from the lecture.
d) Show how to construct a Steiner Tree of G of at most the same weight as the MST of the terminal graph in additional $\max _{v \in V}\{\operatorname{hop}(v, t(v))\}$ rounds.

Hint: Modify the previous step so that the "detecting" pair v, w with $\operatorname{dist}(t(v), t(w))=$ $\operatorname{dist}(v, t(v))+W(v, w)+\operatorname{dist}(w, t(w))$ is remembered. Then mark the respective edges $\{v, w\}$ and the leaf-root-paths from v to $t(v)$ and w to $t(w)$ for inclusion in the Steiner Tree.
e) Conclude that the result is a 2 -approximate Steiner Tree. What is the running time of the algorithm?

Hint: Recall Task 2 from Exercise 6.
Task 3*: Be more Constructive! $(1+1+2+1+2+1)$
a) Check up on the prime number theorem!
b) Show that for any $k \in \mathbb{N}$ and any constant $C \in \mathbb{N}$, the number of primes in the range $\left[2^{k}, 2^{k+C}\right]$ is in $2^{\Theta(k+C)} / k$.
c) Prove that for an N-bit number, the number of different $\Theta(\log N)$-bit primes that divides it is bounded by $\Theta(N / \log N)$. Use this to find suitable choices of k and C such that the number of primes in the range $\left[2^{k}, 2^{k+C}\right.$] is polynomial in N and the probability that, for a fixed N-bit number, a uniformly random prime from this range divides it is at most $N^{-\Theta(1)}$.
d) Check up on the AKS primality test!
e) Infer that there is a protocol solving equality with error probability $N^{-\Theta(1)}$ that uses private randomness, communicates $\mathcal{O}(\log N)$ bits, and requires only polynomial computations, both for construction and execution!
f) Check up on your ability to explain this to others in the exercise session!

[^0]: ${ }^{1}$ These are partial shortest-path trees rooted in each $t \in T$.

