
Exercise 8: Don’t get Lost

Task 1: . . . everything is (probably) going to be fine (2+ 3+ 2+ 2)

An event occurs with high probability (w.h.p.), if its probability is, for any choice of
c ∈ R≥1, at least 1 − n−c. Here n is the input size (in our case, n = |V |), and c is a
(user-provided) parameter, very much like the ε in a (1 + ε)-approximation algorithm.

This exercise shows nice properties of “w.h.p.”, especially why it works so easily
under composition.

Algorithm 1 Code for generating a random ID at node v.

1: idv ← dc log ne random bits from independent, fair sources

a) Suppose that some algorithm A is called ten times, and each call succeeds w.h.p.
Pick c such that for n ≥ 10, all ten calls of A all succeed with a probability of at
least 0.999.

Hint: Union bound.

b) Let E1, . . . , Ek be polynomially many events, i.e., k ∈ nO(1), each of them occurring
w.h.p. Show that E := E1 ∩ · · · ∩ Ek, the event that all Ei happen, occurs w.h.p.

c) Consider Algorithm 1, which generates random node IDs. Fix two distinct nodes
v, w ∈ V and show that w.h.p., they have different IDs.

d) Show that w.h.p., Algorithm 1 generates pairwise distinct node IDs.

Task 2: . . . in the Steiner Forest! (3 + 3 + 3 + 3 + 2)

In this exercise, we’re going to find a 2-approximation for the Steiner Tree problem
on a weighted graph G = (V,E,W), as defined in an earlier exercise; we use the
Congest model. Denote by T the set of nodes that need to be connected, and by
GT = (T,

(
T
2

)
,WT) the terminal graph.

a) For each node v, denote by t(v) the closest node in T . Show that all v ∈ V can
determine t(v) along with the weighted distance dist(v, t(v)) in

max
v∈V
{hop(v, t(v))}+O(D)

rounds,1 where hop(v, t(v)) denotes the hop length of the minimum-weight distance
path from v to t(v).

Hint: This essentially is a single-source Moore-Bellman-Ford with a virtual source
connected to all nodes in T .

b) Consider a terminal graph edge {t(v), t(w)} “witnessed” by G-neighbors v and w
with t(v) 6= t(w), i.e., v and w know that dist(t(v), t(w)) ≤ dist(t(v), v) +W (v, w) +
dist(w, t(w)). Show that if there are no such v and w with dist(t(v), t(w)) = dist(v, t(v))+
W (v, w) + dist(w, t(w)), then {t(v), t(w)} is not in the MST of GT !

Hint: Observe that G is partitioned into Voronoi cells Vt = {v ∈ V | t(v) = t},
and that in the above case any shortest t(v)-t(w) path must contain a node u with
t(u) /∈ {t(v), t(w)}, i.e., cross a third Voronoi cell. Conclude that {t(v), t(w)} is the
heaviest edge in the cycle (t(v), t(u), t(w), t(v)).

1These are partial shortest-path trees rooted in each t ∈ T .

c) Show that an MST of GT can be determined and made globally known in O(|T |+D)
additional rounds.

Hint: Use the distributed variant of Kruskal’s algorithm from the lecture.

d) Show how to construct a Steiner Tree of G of at most the same weight as the MST
of the terminal graph in additional maxv∈V {hop(v, t(v))} rounds.

Hint: Modify the previous step so that the “detecting” pair v, w with dist(t(v), t(w)) =
dist(v, t(v))+W (v, w)+dist(w, t(w)) is remembered. Then mark the respective edges
{v, w} and the leaf-root-paths from v to t(v) and w to t(w) for inclusion in the Steiner
Tree.

e) Conclude that the result is a 2-approximate Steiner Tree. What is the running time
of the algorithm?

Hint: Recall Task 2 from Exercise 6.

Task 3*: Be more Constructive! (1 + 1 + 2 + 1 + 2 + 1)

a) Check up on the prime number theorem!

b) Show that for any k ∈ N and any constant C ∈ N, the number of primes in the range
[2k, 2k+C] is in 2Θ(k+C)/k.

c) Prove that for an N -bit number, the number of different Θ(logN)-bit primes that
divides it is bounded by Θ(N/ logN). Use this to find suitable choices of k and C
such that the number of primes in the range [2k, 2k+C] is polynomial in N and the
probability that, for a fixed N -bit number, a uniformly random prime from this range
divides it is at most N−Θ(1).

d) Check up on the AKS primality test!

e) Infer that there is a protocol solving equality with error probability N−Θ(1) that
uses private randomness, communicates O(logN) bits, and requires only polynomial
computations, both for construction and execution!

f) Check up on your ability to explain this to others in the exercise session!

