Exercise 2: Flirting with Synchrony and Asynchrony

Task 1: Growing Balls

In this exercise, we will see how a crucial step of the \(\gamma \)-synchronizer works; specifically, that a desirable partition of the nodes exists.

Denote by \(B(v, r) \) the ball of radius \(r \) around \(v \), i.e., \(B(v, r) = \{ u \in V : \text{dist}(u, v) \leq r \} \). Consider the following partitioning algorithm. Note the difference between intercluster edges and intrachuster edges.

Algorithm 1 Cluster construction. \(\rho \geq 2 \) is a given parameter.

1: \textbf{while} there are unprocessed nodes \textbf{do}
2: \hspace{1em} select an arbitrary unprocessed node \(v \);
3: \hspace{1em} \(r := 0 \);
4: \hspace{1em} \textbf{while} \(|B(v, r + 1)| > \rho |B(v, r)| \) \textbf{do}
5: \hspace{2em} \(r := r + 1 \)
6: \hspace{1em} \textbf{end while}
7: \hspace{1em} \text{makeCluster}(B(v, r)) \quad /\!/ \text{all nodes in } B(v, r) \text{ are now processed}
8: \hspace{1em} \text{remove all cluster nodes from the current graph}
9: \hspace{1em} \textbf{end while}
10: \select intercluster edges

a) Show that Algorithm ?? constructs clusters of radius at most \(\log_\rho n \).

b) Show that Algorithm ?? produces at most \(\rho m \) intercluster edges.

c) For given cluster radius \(k \in \{1, \ldots, \lfloor \log n \rfloor \} \), determine an appropriate choice \(\rho(k) \geq 2 \), proving the precondition of Corollary 2.14!

\textbf{Hint:} As a short-hand, we often don’t write out common terms like \(n \) that are assumed to be globally known. Specifically, \(\rho(k) \) may also depend on \(n \), as if we had written \(\rho(k, n) \). If in doubt, then we weren’t clear enough, so tell us!

Task 2: Showing Dijkstra, and Bellman & Ford the Ropes

a) Show that if the asynchronous Bellman-Ford algorithm from the lecture is executed synchronously, it sends only \(O(|E|) \) messages.

b) Use this to construct an asynchronous BFS tree construction algorithm of time complexity \(O(D) \) that uses \(O(|E|D) \) messages and terminates. You may assume that \(D \) is known here.

c) Can you give an asynchronous Bellman-Ford-based algorithm that sends \(O(|E| + nD) \) messages and runs for \(O(D^2) \) rounds?

\textbf{Hint}: Either answer is feasible, provided it is backed up by appropriate reasoning!
Task 3*: Liaison with Leslie Lamport

a) Look up what the happened-before relation, Lamport clocks, and vector clocks are.

b) Contemplate their relation to synchronizers and what you’ve learned in the lecture.

c) Discuss your findings in the exercise session!