
Exercise 3: Impossible!

Task 1: Stop Failing, You Cowards!

The goal of this exercise is to show that under the synchronous message passing model,
for any consensus algorithm there are executions with f crashes in which solving con-
sensus requires at least f + 1 rounds. As we want to prove a lower bound, we assume a
fully connected communication graph.

Here are some helpful definitions, as the tools “b-valent, bivalent, fair” are not defined
for the synchronous case: We will assume that a crashing node still attempts to send
messages, and the adversary chooses the subset of delivered messages.

Let E0, E1 be a pair of partial executions which are indistinguishable for all nodes
except v, and whose maximal fault-free extensions have different outputs. Then we call
this node v to be pivotal, as only this node’s state makes a difference.

Note that maximal fault-free extensions are unique.

a) Show that there is a pair of inputs (round 0) with a pivotal node, which we will
denote v0.

Hint: Use the same argument as for the asynchronous case.

b) Prove that, given a pair of r-round executions (with r ≤ n− 3) with a pivotal node
vr, crashing the node “in the right way”1 yields a pair of (r + 1)-round executions
with a new pivotal node vr+1.

Hint: The reasoning is similar as for a), but the “inputs” are replaced by the mes-
sages of vr in round r of each of the executions — or their absence due to the node
crashing.

c) Conclude that for any f ≤ n− 2, there are executions with at most f faults in which
some node neither crashes nor terminates earlier than round f + 1.

d)* For a small but fixed n > 1 (e.g. 2 or 3), find a fault-tolerant algorithm that solves
consensus for an arbitrary number of faults, and for f = n− 1 takes only f rounds.
Conclude that the result of c) is tight. This is to show that not only is f = n a
special case, but f = n− 1 is a different special case, too!

1this includes not crashing the node at all



Task 2: Impossible? We’ll Do it in f + 2 Rounds!

The goal: matching the lower bound with an upper bound.
The connectivity: complete.
The model: synchronous message passing.
The task: consensus.
The challenge: crash faults.

a) Suppose each node maintains a bit pi. In each round, each node sends its bit to all
other nodes and sets it to 0 if it received a 0.2 Show that if a node receives messages
from the same set of senders in two consecutive rounds and either all are opinion 0
or all are opinion 1, all nodes have the same bit pi.

b) Use this observation to construct a synchronous consensus algorithm tolerating an
arbitrary number of faults.

c) Prove that the algorithm is correct and terminates in at most f + 3 rounds in ex-
ecutions with at most f faults (if necessary, modify your algorithm to achieve this
property).

d)* Modify the algorithm to terminate in f + 2 rounds!

Hint: In contrast to the f + 3, nodes will need to use their knowledge of n. This
subtask is not as easy as it seems!

Remark: Note that the algorithm can deal with an arbitrary number of faults, yet the
running time is bounded in terms of the actual faults happening. This property is called
early-stopping. As faults are supposed to be uncommon events, that’s pretty neat!

Task 3*: Intense Sharing

a) Find out what the term “consensus number” refers to!

b) Ponder the consensus number of shared memory that, besides atomic reads, permits
to write to up to k > 1 shared registers in a single atomic step!

c) Share your insights in the exercise session!

2Not vice versa. This is one-sided. A node never changes its opinion to 1.


