Exercise 3: Impossible!

Task 1: Stop Failing, You Cowards!

The goal of this exercise is to show that under the synchronous message passing model, for any consensus algorithm there are executions with \(f \) crashes in which solving consensus requires at least \(f + 1 \) rounds. As we want to prove a lower bound, we assume a fully connected communication graph.

Here are some helpful definitions, as the tools “\(b \)-valent, bivalent, fair” are not defined for the synchronous case: We will assume that a crashing node still attempts to send messages, and the adversary chooses the subset of delivered messages.

Let \(\mathcal{E}_0, \mathcal{E}_1 \) be a pair of partial executions which are indistinguishable for all nodes except \(v \), and whose maximal fault-free extensions have different outputs. Then we call this node \(v \) to be \emph{pivotal}, as only this node’s state makes a difference.

Note that maximal fault-free extensions are unique.

a) Show that there is a pair of inputs (round 0) with a pivotal node, which we will denote \(v_0 \).

\[\text{Hint: Use the same argument as for the asynchronous case.} \]

b) Prove that, given a pair of \(r \)-round executions (with \(r \leq n - 3 \)) with a pivotal node \(v_r \), crashing the node “in the right way”\(^1\) yields a pair of \((r + 1)\)-round executions with a new pivotal node \(v_{r+1} \).

\[\text{Hint: The reasoning is similar as for a), but the “inputs” are replaced by the messages of } v_r \text{ in round } r \text{ of each of the executions — or their absence due to the node crashing.} \]

c) Conclude that for any \(f \leq n - 2 \), there are executions with at most \(f \) faults in which some node neither crashes nor terminates earlier than round \(f + 1 \).

d)* For a small but fixed \(n > 1 \) (e.g. 2 or 3), find a fault-tolerant algorithm that solves consensus for an arbitrary number of faults, and for \(f = n - 1 \) takes only \(f \) rounds. Conclude that the result of c) is tight. This is to show that not only is \(f = n \) a special case, but \(f = n - 1 \) is a \emph{different} special case, too!

\(^1\)this includes not crashing the node at all
Task 2: Impossible? We’ll Do it in \(f + 2 \) Rounds!

The goal: matching the lower bound with an upper bound.
The connectivity: complete.
The model: synchronous message passing.
The task: consensus.
The challenge: crash faults.

a) Suppose each node maintains a bit \(p_i \). In each round, each node sends its bit to all other nodes and sets it to 0 if it received a 0.\(^2\) Show that if a node receives messages from the same set of senders in two consecutive rounds and either all are opinion 0 or all are opinion 1, all nodes have the same bit \(p_i \).

b) Use this observation to construct a synchronous consensus algorithm tolerating an arbitrary number of faults.

c) Prove that the algorithm is correct and terminates in at most \(f + 3 \) rounds in executions with at most \(f \) faults (if necessary, modify your algorithm to achieve this property).

d)* Modify the algorithm to terminate in \(f + 2 \) rounds!

Hint: In contrast to the \(f + 3 \), nodes will need to use their knowledge of \(n \). This subtask is not as easy as it seems!

Remark: Note that the algorithm can deal with an arbitrary number of faults, yet the running time is bounded in terms of the actual faults happening. This property is called *early-stopping*. As faults are supposed to be uncommon events, that’s pretty neat!

Task 3*: Intense Sharing

a) Find out what the term “consensus number” refers to!

b) Ponder the consensus number of shared memory that, besides atomic reads, permits to write to up to \(k > 1 \) shared registers in a single atomic step!

c) Share your insights in the exercise session!

\(^2\)Not vice versa. This is one-sided. A node never changes its opinion to 1.