
Exercise 8: Don’t get Lost

Task 1: . . . everything is (probably) going to be fine

An event occurs with high probability (w.h.p.), if its probability is, for any choice of
c ∈ R≥1, at least 1 − n−c. Here n is the input size (in our case, n = |V |), and c is a
(user-provided) parameter, very much like the ε in a (1 + ε)-approximation algorithm.

This exercise shows nice properties of “w.h.p.”, especially why it works so easily
under composition.

Algorithm 1 Code for generating a random ID at node v.

1: idv ← dc log ne random bits from independent, fair sources

a) Suppose that some algorithm A is called ten times, and each call succeeds w.h.p.
Pick c such that for n ≥ 10, all ten calls of A all succeed with a probability of at
least 0.999.

Hint: Union bound.

b) Let E1, . . . , Ek be polynomially many events, i.e., k ∈ nO(1), each of them occurring
w.h.p. Show that E := E1 ∩ · · · ∩ Ek, the event that all Ei happen, occurs w.h.p.

c) Consider Algorithm 1, which generates random node IDs. Fix two distinct nodes
v, w ∈ V and show that w.h.p., they have different IDs.

d) Show that w.h.p., Algorithm 1 generates pairwise distinct node IDs.

Task 2: . . . in the Steiner Forest!

In this exercise, we’re going to find a 2-approximation for the Steiner Tree problem
on a weighted graph G = (V,E,W), as defined in an earlier exercise; we use the
Congest model. Denote by T the set of nodes that need to be connected, and by
GT = (T,

(
T
2

)
,WT) the terminal graph.

a) For each node v, denote by t(v) the closest node in T . Show that all v ∈ V can
determine t(v) along with the weighted distance dist(v, t(v)) in

max
v∈V
{hop(v, t(v))}+O(D)

rounds,1 where hop(v, t(v)) denotes the hop length of the minimum-weight distance
path from v to t(v).

Hint: This essentially is a single-source Moore-Bellman-Ford with a virtual source
connected to all nodes in T .

b) Consider a terminal graph edge {t(v), t(w)} “witnessed” by G-neighbors v and w
with t(v) 6= t(w), i.e., v and w know that dist(t(v), t(w)) ≤ dist(t(v), v) +W (v, w) +
dist(w, t(w)). Show that if there are no such v and w with dist(t(v), t(w)) = dist(v, t(v))+
W (v, w) + dist(w, t(w)), then {t(v), t(w)} is not in the MST of GT !

Hint: Observe that G is partitioned into Voronoi cells Vt = {v ∈ V | t(v) = t},
and that in the above case any shortest t(v)-t(w) path must contain a node u with
t(u) /∈ {t(v), t(w)}, i.e., cross a third Voronoi cell. Conclude that {t(v), t(w)} is the
heaviest edge in the cycle (t(v), t(u), t(w), t(v)).

1These are partial shortest-path trees rooted in each t ∈ T .

c) Show that an MST of GT can be determined and made globally known in O(|T |+D)
additional rounds.

Hint: Use the distributed variant of Kruskal’s algorithm from the lecture.

d) Show how to construct a Steiner Tree of G of at most the same weight as the MST
of the terminal graph in additional maxv∈V {hop(v, t(v))} rounds.

Hint: Modify the previous step so that the “detecting” pair v, w with dist(t(v), t(w)) =
dist(v, t(v))+W (v, w)+dist(w, t(w)) is remembered. Then mark the respective edges
{v, w} and the leaf-root-paths from v to t(v) and w to t(w) for inclusion in the Steiner
Tree.

e) Conclude that the result is a 2-approximate Steiner Tree. What is the running time
of the algorithm?

Hint: Recall Task 2 from Exercise 6.

Task 3*: . . . under a Heap of Presents

weight RGB
1 (255, 255, 0)
2 (34, 139, 34)
3 (165, 42, 42)
5 (255, 0, 0)
20 (193, 255, 244)

a) Determine an MST of the graph given in Figure 1!

b) Color each MST edge. The edge colors are given in the table above, i.e., an edge of
weight 1 has color (255, 255, 0).

c) Look for other Christmas trees in the computer science literature!

Hint: xkcd.

d) Have a Merry Christmas and a Happy New Year!

Figure 1: Poorly disguised Christmas tree.

