
Lecture 12

The Port Numbering Model

Today we’re looking at a particularly weak model of computation: deterministic
algorithms in the message passing model without node identifiers. This means
that we have to specify whether (and how) nodes can tell each other apart:
while nodes are anonymous, there is the question whether they can recognize if
two messages originate from the same neighbor or not. We assume that they
can, and model this by port numbers. A node of degree δv has a bijection p
from 1, . . . , δv to its edges. Whenever it receives a message, it “sees” the port
on which it arrives, and thus knows it was sent by the node incident to the
respective edge. Likewise, whenever it sends a message, it specifies the port on
which it sends the message, and the other endpoint of the respective edge is the
receiver of the message.

We care neither about message size nor the number of messages sent. Hence
we can run an α-synchronizer, which in turn means that it’s fine to assume
that the system is synchronous to begin with. Altogether, this is called the port
numbering model. Let’s wrap up how it works:

• The network is described by a simple connected graph G = (V,E).

• For each node v ∈ V , there is a bijection pv : {w ∈ V | {v, w} ∈ E} →
1, . . . , δv.

• The system operates in synchronous rounds. In each round, each node v

a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 12.1: A port numbering network consisting of nodes a, b, c, d.

159



160 LECTURE 12. THE PORT NUMBERING MODEL

1
2
2

1
2
1 13

(a) (b)

Figure 12.2: The same network represented as a labeled graph (a) and without
indicating port numbers (b).

1. performs arbitrary (finite) local computations,

2. sends a message to each port 1, . . . , δv (sending none is ok, too), and

3. receives, for each neighbor w, on port pv(w) the message w sent to
its own port pw(v).

• As usual, nodes may be given additional inputs, and should eventually ter-
minate and return a value so that all outputs together describe a solution
of the problem at hand.

Remarks:

• Randomization is out of the question this time, simply because it permits
to generate unique identifiers with high probability.

• We study this model primarily for understanding the relative power of the
models.

• Lower bounds in the port numbering model can also be a good starting
point for ones in stronger models. They are usually easier to show, and
in some cases it’s possible to “lift” the result to a more powerful one by
using simulation (i.e., showing that at least for the considered problem
the “stronger” model is not actually stronger).

12.1 What we can’t do

Having no identifiers is quite the bummer. We cannot break symmetry, so we
can basically do nothing at all.1

Theorem 12.1. In general, it is impossible to break symmetry in the port num-
bering model. In particular, one cannot always

• solve leader election,

• find proper vertex or edge colorings,

• determine a non-empty independent set,

• determine a dominating set that does not contain all nodes,

1Or do we?



12.1. WHAT WE CAN’T DO 161

Figure 12.3: A symmetric port numbering network with 8 nodes of degree 7.

• find a non-empty matching, or

• compute a minimum vertex cover.

This holds also when restricting to graphs of uniform degree ∆, for any 1 < ∆ ∈
N and n > ∆.

Proof. Assume that initially, all nodes are in the same state and all nodes have
the same degree ∆. Then each node will send the same message to a given
port i ∈ {1, . . . ,∆}. Thus, if each port i connects to the other endpoint of the
corresponding edge with the same port number j(i) ∈ {1, . . . ,∆}, each node
receives the same message on port j(i), implying that all nodes are in the same
state at the end of the first round. By induction, this shows that symmetry
cannot be broken and all the above statements readily follow.

Hence, all we need to do is to show that, for any fixed ∆ > 1 and any
n > ∆, connected, simple port-numbered graphs with the following property
exist: there is a bijection b : {1, . . . ,∆} → {1, . . . ,∆} so that for each edge
{v, w} ∈ E, it holds that pv(w) = b(pw(v)).

Consider the following graphs and port numberings:

• For even ∆, connect for each h ∈ {1, . . . ,∆/2} node i ∈ {1, . . . , n} to node
(i+ h) mod n with port number 2h− 1 at node i and port number 2h at
node (i+ h) mod n.



162 LECTURE 12. THE PORT NUMBERING MODEL

• For odd ∆, observe that n must be even (as the sum of degrees must be
even). Do the same as for even ∆ for h ∈ {1, . . . , b∆/2c}. Then add
the perfect matching {1, dn/2e}, {2, dn/2e + 1}, . . . , {bn/2c, n} with port
number ∆ for both endpoints of each edge.

The bijection b is then given as follows

• If ∆ is even:

b(i) =

{
i+ 1 if i is odd, and

i− 1 if i is even.

• And for odd ∆:

b(i) =


i+ 1 if i < ∆ and i is odd,

i− 1 if i is even, and

i if i = ∆.

Remarks:

• Of course, the list of things one cannot do in this model given in the
theorem could go on forever.

• For ∆ ≤ n/2, one can also construct bipartite graphs with b(i) = i in
a similar fashion. So nothing solvable in this case either? Can we do
anything at all?!?

12.2 Bipartite Matching

Let’s make our life a little bit easier. We consider 2-colored graphs now, where
each node has its color as input. This is still fairly natural: Think of relations
such as client/server, VIP/fan, or hypergraphs,2 where we represent each hyper-
edge by a node (on one side of the bipartite graph) connected to its constituent
nodes (on the other side).

Now finding a maximal matching is straightforward.

Theorem 12.2. On 2-colored graphs of maximum degree ∆, Algorithm 27 com-
putes a maximal matching in 2∆ rounds.

Proof. Each white node is incident to at most one matching edge, because in
each iteration it proposes only a single edge and terminates if it is selected. Each
black node is incident to at most one matching edge, because it accepts only a
single proposal. Any edge will be proposed, unless its white endpoint is matched
before it gets to proposing it. Any proposed edge will be accepted, unless its
black endpoint is already matched. Hence, any edge that is not in the matching
is adjacent to a matching edge, implying that the matching is maximal.

The time complexity is 2∆, as there are ∆ iterations, each consisting of one
round for proposals and one for accepts.

2A hypergraphs is a structure H = (V,E) in which each hyperedge e ∈ E is an arbitrary
subset of the nodes.



12.2. BIPARTITE MATCHING 163

Algorithm 27 Matching in 2-colored graphs of maximum degree ∆ using port
numberings, code at node v. Nodes return their matched port or ⊥ if none of
their incident edges is in the matching.

1: for i = 1, . . . ,∆ do
2: if v is white then
3: send propose to port number i
4: else if v receives propose then
5: send accept to minimal port j at which propose was received
6: return j
7: end if
8: if v receives accept on port i then
9: return i

10: end if
11: end for
12: return ⊥

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

rounds 1–2 rounds 3–4 rounds 5–6

Figure 12.4: An execution of the matching algorithm. Red edges are proposed
in this round, grey edges have not yet been proposed, and grey dotted lines did
not make it; thick edges are matched.



164 LECTURE 12. THE PORT NUMBERING MODEL

• Not very fast if ∆ is large. However, if ∆ is a constant, so is the running
time of the algorithm.

• The assumption that we have a 2-coloring does some initial symmetry
breaking for us. For instance, we already have the best coloring one could
get, and each color is a maximal independent set (as the graph is con-
nected).

• However, we still cannot solve leader election, regardless of how much time
we spend. Based on identifiers, this is possible, so the model is still weaker
than the standard message passing model!

• This feels like cheating. Let’s do something without requiring a 2-coloring!

12.3 3-Approximating Minimum Vertex Cover

We know that we cannot solve minimum vertex cover precisely, but that’s ok –
it’s an NP-complete problem anyway. It’s even NP-hard to approximate within
a constant and, assuming the unique games conjecture, NP-hard to approximate
better than factor 2− o(1). On the other hand, obtaining a 2-approximation is
easy: just output a maximal matching!

. . . except that we can’t do that. We cannot compute any non-trivial match-
ing. We first need to transform the graph into something we can handle: a
2-colored graph. Once this goal is set, it is actually not too hard to achieve.

• Replace each node by 2 copies, a white copy and a black copy.

• For an edge {v, w}, connect the white copy of v to the black copy of w
and the black copy of v to the white copy of w.

• The new edges inherit their port numbers from the originals.

Lemma 12.3. For a port-numbered graph G = (V,E, {pv}v∈V ), denote the
(port-numbered) graph constructed above by G′. Then the constructed port num-
bering on G′ is feasible. Moreover, G′ is 2-colored (by nodes being white and
black), has the same maximum degree as G, and the port-numbering model on
G′ can be simulated on G without overhead in round complexity.

Proof. All properties are straightforward. Neighbors in G′ have different colors
by construction, the new nodes have the same degree as the originals, inheriting
port numbers results in port numbers 1, . . . , δv for a node of degree δv, and
each node can simulate both of its copies, where communication on new edges
is performed via the original edges.

Theorem 12.4. A 4-approximation to vertex cover can be computed in O(∆)
rounds of the port numbering model.

Proof. We construct G′ and simulate Algorithm 27. The algorithm can be
made to terminate without knowledge of ∆ by non-matched white nodes termi-
nating once they proposed on all their ports, letting their neighbors know, and
non-matched black nodes terminating once all their neighbors terminated. By



12.3. 3-APPROXIMATING MINIMUM VERTEX COVER 165

1

2
1

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

N N’

G G’

=

v

v1

v2

v

Figure 12.5: The construction of G′ from G.

Theorem 12.2, Lemma 12.3, and this modification, the algorithm terminates in
O(∆) rounds.

If a black or white copy of a node is incident to a matching edge in G′,
the node is in the vertex cover, otherwise it is not. Recall that the endpoints
of a maximal matching form a 2-approximate vertex cover (as shown in Corol-
lary 5.17). Because any vertex cover of G induces a vertex cover of G′ of at
most twice the size, the returned set has at most 4 times the size of a minimum
vertex cover. As all edges in G′ have at least one incident node in the vertex
cover of G′, the same is true in the computed node set of G, i.e., we did indeed
find a vertex cover of G.

If we look a bit closer, there’s another surprise. The result is, in fact, a
3-approximation!

Corollary 12.5. The algorithm from Theorem 12.4 returns a vertex cover that
is at most factor 3 larger than the optimum.



166 LECTURE 12. THE PORT NUMBERING MODEL

1

2
1

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

N N’

G G’

=

Figure 12.6: The computed matching in G′ and the corresponding edges in G.

Proof. Consider the originals of the matching edges in the maximal matching
of G′. These induce a subgraph of G of maximum degree 2, which is a disjoint
union of paths and cycles of k ≥ 2 nodes. To cover all edges of G, one needs to
cover in particular these edges, and they can only be covered by the nodes on
the respective paths and cycles. To cover a cycle of k nodes, at least k/2 of its
nodes must be selected. To cover a path of k nodes, at least bk/2c of its nodes
must be selected. As we choose all these nodes (and no others), the size of the
computed vertex cover is at most factor 3 = max2≤k∈N{k/bk/2c} larger than
the optimum.

What to take Home

• Even in very restricted models, some things can be done efficiently.



12.3. 3-APPROXIMATING MINIMUM VERTEX COVER 167

(b)(a)

Figure 12.7: Examples for minimum vertex covers of cycles (a) and paths (b).

• Frequently, the resulting algorithms are very clean and simple, making
them easy to implement.

• Such models tend to highlight what makes stronger models stronger. This
can be useful in finding lower bounds or better algorithms, or just in
pointing out that, e.g., one very important use of having node identifiers
is the ability to execute Cole-Vishkin.

• Basic concepts such as simulation and indistinguishability are the name
of the game also here.

Bibliographic Notes

The presented vertex cover algorithm is due to Polishchuk and Suomela [PS09].
Using Cole-Vishkin on edge weights, it is possible to obtain a 2-approximation
of the weighted version of the problem [ÅS10]. On the negative side, one cannot
hope for anything better than a 2-approximation in the port-numbering model:
in an even cycle an optimum solution chooses half of the nodes, but a sym-
metric port numbering causes all nodes to be selected. Even if identifiers and
randomization are available, a classic construction shows that any distributed
algorithm finding a reasonable approximation requires Ω(

√
log n) and Ω(log ∆)

rounds.3 Recently, it has been shown that there is some constant δ > 0 so that
finding a (1 + δ)-approximation cannot be done in o(log n) rounds [GS12], even
if the graph is 2-colored and has degree 3! Note that this is an unconditional

3This is the same construction. Choosing the maximum feasible value of ∆ for a given
value of n yields the Ω(

√
logn) bound.



168 LECTURE 12. THE PORT NUMBERING MODEL

lower bound. It does not depend on P 6=NP or similar assumptions, but arises
from locality issues.

All figures but Figure 12.1 are courtesy of Jukka Suomela and under a cre-
ative commons license.4 Large parts of today’s lecture are my own narrative of
a part of Jukka’s course on deterministic distributed algorithms. A reference
to his survey of local algorithms [Suo13] is also in order; a local algorithm is a
distributed algorithm whose running time is bounded by a constant.

Bibliography

[ÅS10] Matti Åstrand and Jukka Suomela. Fast Distributed Approximation
Algorithms for Vertex Cover and Set Cover in Anonymous Networks. In
Proc. 22nd Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 294–302, 2010.

[GS12] Mika Göös and Jukka Suomela. No Sublogarithmic-time Approxima-
tion Scheme for Bipartite Vertex Cover. In Proc. 26th Conference on
Distributed Computing (DISC), pages 181–194, 2012.

[PS09] Valentin Polishchuk and Jukka Suomela. A Simple Local 3-
approximation Algorithm for Vertex Cover. Information Processing
Letters, 109(12):642–645, 2009.

[Suo13] Jukka Suomela. Survey of Local Algorithms. ACM Computing Surveys,
45(2):24:1–24:40, March 2013.

4CC BY-SA 3.0, see https://creativecommons.org/licenses/by-sa/3.0/.


