Pieter Kleer
Max Planck Institute for Informatics (D1)
Saarland Informatics Campus
January 27, 2020

Lecture 10
Matroid Secretary Problems
Matroids (recap)
Matroids

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n.

Let $E = \{v_1, \ldots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

Assume that $k > n$ and $\text{span}(E) = \mathbb{R}^n$.

Subset of vectors $X \subseteq E$ is called linearly independent if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \Rightarrow \gamma_i = 0 \quad \forall i.$$

No $v_i \in X$ can be written as linear combination of other vectors.

Example $E = \{(3, 2), (2, 7), (17, 34), (-4, -2)\}$

Is $X = \{v_1, v_2, v_3\}$ independent?

NO, because $v_3 = 3v_1 + 4v_2$.

Maximal independent sets are bases (of \mathbb{R}^n).
Matroids

Generalization of linear independence of vectors in, e.g., \(\mathbb{R}^n \).

Let \(E = \{ v_1, \ldots, v_k \} \) be collection of vectors \(v_i \in \mathbb{R}^n \) for all \(i \).
Matroids

Generalization of linear independence of vectors in, e.g., \(\mathbb{R}^n \).

Let \(E = \{ v_1, \ldots, v_k \} \) be collection of vectors \(v_i \in \mathbb{R}^n \) for all \(i \).

- Assume that \(k > n \) and \(\text{span}(E) = \mathbb{R}^n \).
Matroids

Generalization of linear independence of vectors in, e.g., \(\mathbb{R}^n \).

Let \(E = \{ v_1, \ldots, v_k \} \) be collection of vectors \(v_i \in \mathbb{R}^n \) for all \(i \).

- Assume that \(k > n \) and \(\text{span}(E) = \mathbb{R}^n \).

Subset of vectors \(X \subseteq E \) is called **linearly independent** if, for \(\gamma_i \in \mathbb{R} \),

\[
\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \quad \Rightarrow \quad \gamma_i = 0 \ \forall i.
\]
Matroids

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n.

Let $E = \{v_1, \ldots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

- Assume that $k > n$ and $\text{span}(E) = \mathbb{R}^n$.

Subset of vectors $X \subseteq E$ is called linearly independent if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \implies \gamma_i = 0 \ \forall i.$$

- No $v_i \in X$ can be written as linear combination of other vectors.
Matroids

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n.

Let $E = \{v_1, \ldots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.
- Assume that $k > n$ and $\text{span}(E) = \mathbb{R}^n$.

Subset of vectors $X \subseteq E$ is called **linearly independent** if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \implies \gamma_i = 0 \ \forall \ i.$$

- No $v_i \in X$ can be written as linear combination of other vectors.

Example

\[
E = \{v_1, v_2, v_3, v_2\} = \left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 17 \\ 34 \end{pmatrix}, \begin{pmatrix} -4 \\ -2 \end{pmatrix} \right\}
\]

Is $X = \{v_1, v_2, v_3\}$ independent?
Matroids

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n.

Let $E = \{v_1, \ldots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.

- Assume that $k > n$ and $\text{span}(E) = \mathbb{R}^n$.

Subset of vectors $X \subseteq E$ is called linearly independent if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \Rightarrow \gamma_i = 0 \ \forall i.$$

- No $v_i \in X$ can be written as linear combination of other vectors.

Example

$E = \{v_1, v_2, v_3, v_2\} = \left\{ \begin{pmatrix} 3 \\ 2 \\ 17 \\ -4 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \\ 34 \\ -2 \end{pmatrix} \right\}$

Is $X = \{v_1, v_2, v_3\}$ independent? NO, because $v_3 = 3v_1 + 4v_2$.
Matroids

Generalization of linear independence of vectors in, e.g., \mathbb{R}^n.

Let $E = \{v_1, \ldots, v_k\}$ be collection of vectors $v_i \in \mathbb{R}^n$ for all i.
- Assume that $k > n$ and $\text{span}(E) = \mathbb{R}^n$.

Subset of vectors $X \subseteq E$ is called **linearly independent** if, for $\gamma_i \in \mathbb{R}$,

$$\sum_{v_i \in X} \gamma_i \cdot v_i = 0 \Rightarrow \gamma_i = 0 \ \forall \ i.$$

- No $v_i \in X$ can be written as linear combination of other vectors.

Example

$$E = \{v_1, v_2, v_3, v_2\} = \left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 17 \\ 34 \end{pmatrix}, \begin{pmatrix} -4 \\ -2 \end{pmatrix} \right\}$$

Is $X = \{v_1, v_2, v_3\}$ independent? NO, because $v_3 = 3v_1 + 4v_2$.

- Maximal independent sets are **bases** (of \mathbb{R}^n).
Matroid

Definition (Matroid)

Set system \(\mathcal{M} = (E, \mathcal{I}) \) with non-empty \(\mathcal{I} \subseteq 2^E = \{ X : X \subseteq E \} \) is **matroid** if it satisfies the following:

1. **Downward-closed:** If \(A \in \mathcal{I} \) and \(B \subseteq A \), then \(B \in \mathcal{I} \).
2. **Augmentation property:** If \(A, C \in \mathcal{I} \) and \(|C| > |A| \), then there exists an element \(e \in C \setminus A \) such that \(A \cup \{ e \} \in \mathcal{I} \).

Sets in \(\mathcal{I} \) are called independent sets.

Example (Linear matroid)

Let \(E = \{ v_i : i = 1, \ldots, k \} \subseteq \mathbb{R}^n \) and take \(W \in \mathcal{I} \iff \) vectors in \(W \) are linearly independent.

Augmentation property: Note that if \(|C| \geq |A| + 1 \) and every \(v_i \in C \) is a linear combination of vectors in \(A \), then \(\text{span}(C) \subseteq \text{span}(A) \), and hence \(|C| = \dim(\text{span}(C)) \leq \dim(\text{span}(A)) = |A| \), which gives a contradiction.
Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- **Downward-closed**: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
Matroid

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is a matroid if it satisfies the following:

- **Downward-closed**: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,

- **Augmentation property**: $A, C \in \mathcal{I}$ and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.
Matroid

Definition (Matroid)

Set system \(\mathcal{M} = (E, \mathcal{I}) \) with non-empty \(\mathcal{I} \subseteq 2^E = \{ X : X \subseteq E \} \) is matroid if it satisfies the following:

- **Downward-closed:** \(A \in \mathcal{I} \) and \(B \subseteq A \Rightarrow B \in \mathcal{I} \),
- **Augmentation property:**
 \[A, C \in \mathcal{I} \text{ and } |C| > |A| \Rightarrow \exists e \in C \setminus A \text{ such that } A \cup \{e\} \in \mathcal{I}. \]
Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is a matroid if it satisfies the following:

- **Downward-closed**: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- **Augmentation property**: $A, C \in \mathcal{I}$ and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called independent sets.
Matroid

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is **matroid** if it satisfies the following:

- **Downward-closed**: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- **Augmentation property**: $A, C \in \mathcal{I}$ and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called **independent sets**.

Example (Linear matroid)

Let $E = \{v_i : i = 1, \ldots, k\} \subseteq \mathbb{R}^n$ and take $W \in \mathcal{I} \iff$ vectors in W are linearly independent.
Matroid

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is **matroid** if it satisfies the following:

- **Downward-closed**: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- **Augmentation property**:

 $A, C \in \mathcal{I}$ and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called **independent sets**.

Example (Linear matroid)

Let $E = \{v_i : i = 1, \ldots, k\} \subseteq \mathbb{R}^n$ and take

$W \in \mathcal{I} \iff$ vectors in W are linearly independent.

- **Augmentation property**: Note that if $|C| \geq |A| + 1$ and every $v_i \in C$ is a linear combination of vectors in A,

4 / 31
Matroid

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is a matroid if it satisfies the following:

- **Downward-closed**: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- **Augmentation property**: $A, C \in \mathcal{I}$ and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called independent sets.

Example (Linear matroid)

Let $E = \{v_i : i = 1, \ldots, k\} \subseteq \mathbb{R}^n$ and take

$W \in \mathcal{I} \iff$ vectors in W are linearly independent.

- **Augmentation property**: Note that if $|C| \geq |A| + 1$ and every $v_i \in C$ is a linear combination of vectors in A, then $\text{span}(C) \subseteq \text{span}(A)$,
Matroid

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{ X : X \subseteq E \}$ is matroid if it satisfies the following:

- **Downward-closed**: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- **Augmentation property**: $A, C \in \mathcal{I}$ and $|C| > |A| \Rightarrow \exists e \in C \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

Sets in \mathcal{I} are called independent sets.

Example (Linear matroid)

Let $E = \{ v_i : i = 1, \ldots, k \} \subseteq \mathbb{R}^n$ and take $W \in \mathcal{I} \iff$ vectors in W are linearly independent.

- **Augmentation property**: Note that if $|C| \geq |A| + 1$ and every $v_i \in C$ is a linear combination of vectors in A, then $\text{span}(C) \subseteq \text{span}(A)$, and hence $|C| = \text{dim}(\text{span}(C)) \leq \text{dim}(\text{span}(A)) = |A|$,
Matroid

Definition (Matroid)

Set system $\mathcal{M} = (E, \mathcal{I})$ with non-empty $\mathcal{I} \subseteq 2^E = \{X : X \subseteq E\}$ is matroid if it satisfies the following:

- **Downward-closed**: $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$,
- **Augmentation property**:
 \[A, C \in \mathcal{I} \text{ and } |C| > |A| \Rightarrow \exists e \in C \setminus A \text{ such that } A \cup \{e\} \in \mathcal{I}. \]

Sets in \mathcal{I} are called independent sets.

Example (Linear matroid)

Let $E = \{v_i : i = 1, \ldots, k\} \subseteq \mathbb{R}^n$ and take $W \in \mathcal{I} \iff$ vectors in W are linearly independent.

- **Augmentation property**: Note that if $|C| \geq |A| + 1$ and every $v_i \in C$ is a linear combination of vectors in A, then $\text{span}(C) \subseteq \text{span}(A)$, and hence $|C| = \dim(\text{span}(C)) \leq \dim(\text{span}(A)) = |A|$, which gives a contradiction.
Example (Graphic matroid)

Let $G = (V, E)$ be an undirected graph and consider matroid $M = (E, I)$, with ground the edges E of G, given by

$$W \in I \iff \text{subgraph with edges of } W \text{ has no cycle}.$$
Example (Graphic matroid)

Let $G = (V, E)$ be undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

$W \in \mathcal{I} \iff$ subgraph with edges of W has no cycle.
Example (Graphic matroid)

Let $G = (V, E)$ be undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

$$W \in \mathcal{I} \iff \text{subgraph with edges of } W \text{ has no cycle}.$$
Let $G = (V, E)$ be undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

$$W \in \mathcal{I} \iff \text{subgraph with edges of } W \text{ has no cycle.}$$
Example (Graphic matroid)

Let $G = (V, E)$ be an undirected graph and consider matroid $\mathcal{M} = (E, \mathcal{I})$, with ground the edges E of G, given by

$W \in \mathcal{I} \iff$ subgraph with edges of W has no cycle.
Let $G = (V, E)$ be an undirected graph and consider matroid $M = (E, \mathcal{I})$, with ground the edges E of G, given by

$$W \in \mathcal{I} \iff \text{subgraph with edges of } W \text{ has no cycle}.$$
Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.
Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$.
Bases of a matroid

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.
Bases of a matroid

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma

All bases of a given matroid \mathcal{M} have the same cardinality.
Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma

All bases of a given matroid \mathcal{M} have the same cardinality. This common cardinality r is called the rank of the matroid.
Bases of a matroid

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)
An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma
All bases of a given matroid \mathcal{M} have the same cardinality. This common cardinality r is called the rank of the matroid.

Example
- Bases of graphic matroid on $G = (V, E)$, with $|V| = n$, are spanning trees (when G is connected).
Bases of a matroid

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma

All bases of a given matroid \mathcal{M} have the same cardinality. This common cardinality r is called the rank of the matroid.

Example

- Bases of graphic matroid on $G = (V, E)$, with $|V| = n$, are spanning trees (when G is connected). Rank is $n - 1$.
Bases of a matroid

Maximal independents set of a matroid $\mathcal{M} = (E, \mathcal{I})$ are called bases.

Definition (Base)

An independent set $X \in \mathcal{I}$ is a base if for every $e \in E \setminus X$ it holds that $X + e \notin \mathcal{I}$, i.e., no element can be added to X while preserving independence.

Lemma

All bases of a given matroid \mathcal{M} have the same cardinality. This common cardinality r is called the **rank** of the matroid.

Example

- Bases of graphic matroid on $G = (V, E)$, with $|V| = n$, are spanning trees (when G is connected). Rank is $n - 1$.

![Diagram](6/31)
Consider matroid \(M = (E, I) \) with \(E = \{ e_1, \ldots, e_m \} \).

Rename elements such that \(w_1 \geq w_2 \geq \cdots \geq w_m \geq 0 \).

Greedy algorithm

Set \(X = \emptyset \).

For \(i = 1, \ldots, m \):

If \(X + e_i \in I \), then set \(X \leftarrow X + e_i \).

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)
Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$. rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm:

Set $X = \emptyset$.

For $i = 1, \ldots, m$:

- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.

Example (Graphic matroid):

```
a b c d e f  
1 3 2 4 5 6  
7 8 9      
```
Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.

- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$.

For $i = 1, \ldots, m$:

- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

```
  a   b   c   d   e   f
  1   3   2   4   5   6
  7   8   9
```
Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.

- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$.

For $i = 1, \ldots, m$:

- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.
Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.

- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$.

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.

- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \ldots, m$:

- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.
(Offline) maximum weight independent set

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.

- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \ldots, m$:

- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.
Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.
- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \ldots, m$:
- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)
(Offline) maximum weight independent set

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.

- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \ldots, m$:

- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

![Diagram](attachment:image.png)
Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.
- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \ldots, m$:
- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

![Diagram of a graphic matroid with weights on edges]
(Offline) maximum weight independent set

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.

- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \ldots, m$:

- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

![Graphic matroid diagram]
(Offline) maximum weight independent set

Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.
- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \ldots, m$:
- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

![Graphic matroid diagram]
Consider matroid $\mathcal{M} = (E, \mathcal{I})$ with $E = \{e_1, \ldots, e_m\}$.

- Rename elements such that $w_1 \geq w_2 \geq \cdots \geq w_m \geq 0$.

Greedy algorithm

Set $X = \emptyset$. For $i = 1, \ldots, m$:

- If $X + e_i \in \mathcal{I}$, then set $X \leftarrow X + e_i$.

In other words, greedily add elements while preserving independence.

Example (Graphic matroid)

![Graphic matroid diagram](image-url)
Matroid secretary problem
Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroid $M = (E, I)$. Set $X = \emptyset$.

Elements in E arrive in unknown uniform random arrival order σ.

Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.

Decide irrevocably whether to accept or reject it.

Acceptance is only allowed if $X + e$ is independent, i.e., $X + e \in I$.

Matroid secretary problem: Select (online) independent set $X \in I$ of maximum weight.

In the offline setting, X is maximum weight base of the matroid.

Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.

In k-uniform matroid, $X \in I$ if and only if $|X| \leq k$.
Matroid secretary problem

Selecting maximum weight independent set online.
Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

In the offline setting, X is maximum weight base of the matroid.

Generalization of the secretary problem.

Corresponds to the so-called 1-uniform matroid.

In k-uniform matroid, $X \in \mathcal{I}$ if and only if $|X| \leq k$.
Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ.
Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is independent, i.e., $X + e \in \mathcal{I}$.
Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is independent, i.e., $X + e \in \mathcal{I}$.

Matroid secretary problem: Select (online) independent set $X \in \mathcal{I}$ of maximum weight.

- In the offline setting, X is maximum weight base of the matroid.
Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is independent, i.e., $X + e \in \mathcal{I}$.

Matroid secretary problem: Select (online) independent set $X \in \mathcal{I}$ of maximum weight.

- In the offline setting, X is maximum weight base of the matroid.
- Generalization of the secretary problem.
Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is independent, i.e., $X + e \in \mathcal{I}$.

Matroid secretary problem: Select (online) independent set $X \in \mathcal{I}$ of maximum weight.

- In the offline setting, X is maximum weight base of the matroid.
- Generalization of the secretary problem.
 - Corresponds to the so-called 1-uniform matroid.
Matroid secretary problem

Selecting maximum weight independent set online.

Given is matroid $\mathcal{M} = (E, \mathcal{I})$. Set $X = \emptyset$.

- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is independent, i.e., $X + e \in \mathcal{I}$.

Matroid secretary problem: Select (online) independent set $X \in \mathcal{I}$ of maximum weight.

- In the offline setting, X is maximum weight base of the matroid.
- Generalization of the secretary problem.
 - Corresponds to the so-called 1-uniform matroid.
 - In k-uniform matroid, $X \in \mathcal{I}$ if and only if $|X| \leq k$.
Some literature

They gave $\Omega \left(\frac{1}{\log r} \right)$-approximation.
Remember that r is rank of the matroid.

State of the art: $\Omega \left(\frac{1}{\log \log r} \right)$-approximation.
First by Lachish (2014).
Constant factor approximations known for various special cases
Graphic matroids, k-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation?
Stronger question: Does there exist a $\frac{1}{e}$-approximation?
Would yield (another) generalization of secretary problem.
Some literature

About the matroid secretary problem:

Problem introduced by Babaioff, Immorlica and Kleinberg (2007). They gave $\Omega\left(1 \log r\right)$-approximation. Remember that r is rank of the matroid.

State of the art: $\Omega\left(1 \log \log r\right)$-approximation. First by Lachish (2014). Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases: graphic matroids, k-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation? Stronger question: Does there exist a $1/e$-approximation? Would yield (another) generalization of secretary problem.
Some literature

About the matroid secretary problem:
 • Problem introduced by Babaioff, Immorlica and Kleinberg (2007).
Some literature

About the matroid secretary problem:

 - They gave $\Omega \left(\frac{1}{\log(r)} \right)$-approximation.

State of the art:

$\Omega \left(\frac{1}{\log \log(r)} \right)$-approximation.

First by Lachish (2014).

Constant factor approximations known for various special cases: graphic matroids, k-uniform matroids, laminar matroids, transversal matroids, and more.

Open question:

Does there exist, for an arbitrary matroid, a constant factor approximation?

Stronger question: Does there exist a $\frac{1}{e}$-approximation?

Would yield (another) generalization of secretary problem.
Some literature

About the matroid secretary problem:
 - They gave $\Omega \left(\frac{1}{\log(r)} \right)$-approximation.
 - Remember that r is rank of the matroid.

State of the art: $\Omega \left(\frac{1}{\log \log(r)} \right)$-approximation. First by Lachish (2014). Simpler algorithm by Feldman, Svensson and Zenklusen (2015).

Constant factor approximations known for various special cases: Graphic matroids, k-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation? Stronger question: Does there exist a $\frac{1}{e}$-approximation? Would yield (another) generalization of secretary problem.
About the matroid secretary problem:

 - They gave $\Omega \left(\frac{1}{\log(r)} \right)$-approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega \left(\frac{1}{\log \log(r)} \right)$-approximation.
About the matroid secretary problem:

 - They gave $\Omega \left(\frac{1}{\log(r)} \right)$-approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega \left(\frac{1}{\log \log(r)} \right)$-approximation.
 - First by Lachish (2014).
Some literature

About the matroid secretary problem:

 - They gave $\Omega \left(\frac{1}{\log(r)} \right)$-approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega \left(\frac{1}{\log \log(r)} \right)$-approximation.
 - First by Lachish (2014).

Constant factor approximations known for various special cases: Graphic matroids, k-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation? Stronger question: Does there exist a $\frac{1}{e}$-approximation? Would yield (another) generalization of secretary problem.
Some literature

About the matroid secretary problem:

 - They gave $\Omega \left(\frac{1}{\log(r)} \right)$-approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega \left(\frac{1}{\log \log(r)} \right)$-approximation.
 - First by Lachish (2014).
- Constant factor approximations known for various special cases
About the matroid secretary problem:
 - They gave $\Omega \left(\frac{1}{\log(r)} \right)$-approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega \left(\frac{1}{\log \log(r)} \right)$-approximation.
 - First by Lachish (2014).
- Constant factor approximations known for various special cases
 - Graphic matroids, k-uniform matroids, laminar matroids, transversal matroids, and more.
About the matroid secretary problem:

 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$-approximation.
 - Remember that r is rank of the matroid.

- State of the art: $\Omega\left(\frac{1}{\log \log(r)}\right)$-approximation.
 - First by Lachish (2014).

- Constant factor approximations known for various special cases
 - Graphic matroids, k-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation?
Some literature

About the matroid secretary problem:
 - They gave $\Omega \left(\frac{1}{\log(r)} \right)$-approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega \left(\frac{1}{\log \log(r)} \right)$-approximation.
 - First by Lachish (2014).
- Constant factor approximations known for various special cases
 - Graphic matroids, k-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation?

- Stronger question: Does there exist a $\frac{1}{e}$-approximation?
Some literature

About the matroid secretary problem:
 - They gave $\Omega\left(\frac{1}{\log(r)}\right)$-approximation.
 - Remember that r is rank of the matroid.
- State of the art: $\Omega\left(\frac{1}{\log \log(r)}\right)$-approximation.
 - First by Lachish (2014).
- Constant factor approximations known for various special cases
 - Graphic matroids, k-uniform matroids, laminar matroids, transversal matroids, and more.

Open question: Does there exist, for an arbitrary matroid, a constant factor approximation?

- Stronger question: Does there exist a $\frac{1}{e}$-approximation?
- Would yield (another) generalization of secretary problem.
Matroid secretary problem
\[\Omega \left(\frac{1}{\log(r)} \right) \)-approximation
Random threshold algorithm

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with $|E| = m$.

Phase I (Observation).

For $i = 1, \ldots, m/2$:

- Reject $\sigma(i)$.

Phase II (Selection).

Let $w = \max_{i = 1, \ldots, m/2} w_\sigma(i)$, and choose $j \in \{0, 1, \ldots, \lceil \log(r) \rceil \}$ uniformly at random.

Set threshold $t = w_2^j$.

For $i = m/2 + 1, \ldots, m$:

- Select $\sigma(i)$ if $w_\sigma(i) \geq t$ and $X + \sigma(i) \in \mathcal{I}$.

Random threshold algorithm

Consider (given) matroid $\mathcal{M} = (E, I)$ of rank r with $|E| = m$.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

For $i = 1, \ldots, m/2$:
- Reject $\sigma(i)$.

Phase II (Selection).

Let $w = \max_{i = 1, \ldots, m/2} w(\sigma(i))$,
and choose $j \in \{0, 1, \ldots, \lceil \log(r) \rceil \}$ uniformly at random.
- Set threshold $t = w(j)$.

For $i = m/2 + 1, \ldots, m$:
- Select $\sigma(i)$ if $w(\sigma(i)) \geq t$ and $X + \sigma(i) \in I$.

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with $|E| = m$.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

- For $i = 1, \ldots, \frac{m}{2}$:
Random threshold algorithm

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with $|E| = m$.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

- For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.
Random threshold algorithm

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with $|E| = m$.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

- For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).
Random threshold algorithm

Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with $|E| = m$.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).
- For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).
- Let $w = \max_{i=1,\ldots,m/2} w_{\sigma}(i)$,
Consider (given) matroid $\mathcal{M} = (E, I)$ of rank r with $|E| = m$.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).
- For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).
- Let $w = \max_{i=1,\ldots,m/2} w_{\sigma(i)}$, and choose $j \in \{0, 1, \ldots, \lceil \log(r) \rceil \}$ uniformly at random.
Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with $|E| = m$.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).

- For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).

- Let $w = \max_{i = 1, \ldots, m/2} w_{\sigma(i)}$, and choose $j \in \{0, 1 \ldots, \lceil \log(r) \rceil \}$ uniformly at random.
- Set threshold

$$t = \frac{w}{2^j}.$$
Consider (given) matroid $\mathcal{M} = (E, \mathcal{I})$ of rank r with $|E| = m$.

Random threshold algorithm for arrival order σ

Set $X = \emptyset$.

Phase I (Observation).
- For $i = 1, \ldots, \frac{m}{2}$: Reject $\sigma(i)$.

Phase II (Selection).
- Let $w = \max_{i=1,\ldots,m/2} w_{\sigma(i)}$, and choose $j \in \{0, 1 \ldots, \lceil \log(r) \rceil \}$ uniformly at random.
- Set threshold
 $$t = \frac{w}{2^j}.$$

- For $i = \frac{m}{2} + 1, \ldots, m$: Select $\sigma(i)$ if $w_{\sigma(i)} \geq t$ and $X + \sigma(i) \in \mathcal{I}$.

Consider graphic matroid as example:
Consider graphic matroid as example:
Weight

Consider graphic matroid as example:
Theorem

The random threshold algorithm is a $1/32$ $(\lceil \log(r) \rceil + 1)$-approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \ldots, x_r\}$.

Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$.

Let $1 \leq q \leq r$ be the largest number for which $w(x_q) \geq w(x_1) / r$.

Let $w = (35, 14, 8, 6, 3, 2, 1)$, so that $r = 7$. Then $w(x_1) r = 5$ and $q = 4$.

Then it holds that $\sum_{i=1}^{q} w(x_i) \geq \frac{1}{2} \cdot w(B^*)$.

Why?

$r \sum_{i=1}^{q} w(x_i) \leq r \sum_{i=1}^{q+1} w(x_i) \leq w(x_1)$.
Theorem

The random threshold algorithm is a $\frac{1}{32(\lfloor \log(r) \rfloor + 1)}$-approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \ldots, x_r\}$. Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$. Let $1 \leq q \leq r$ be the largest number for which $w(x_q) \geq w(x_1)/r$. Let $w = (35, 14, 8, 6, 3, 2, 1)$, so that $r = 7$. Then $w(x_1)r = 5$ and $q = 4$. Then it holds that $q \sum_{i=1}^{q} w(x_i) \geq \frac{1}{2} \cdot w(B^*)$. Why?

$r \sum_{i=1}^{r} w(x_i) \leq r \sum_{i=q+1}^{r} w(x_i) \leq w(x_1)$.
Theorem

The random threshold algorithm is a $\frac{1}{32(\lceil \log (r) \rceil + 1)}$-approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \ldots, x_r\}$.
The random threshold algorithm is a $\frac{1}{32(\lceil \log(r) \rceil + 1)}$-approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \ldots, x_r\}$.

- Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$.
Analysis (sketch)

Theorem

The random threshold algorithm is a \(\frac{1}{32(\lceil \log(r) \rceil + 1)} \)-approximation, where \(r \) is the rank of the matroid.

Proof: Consider an optimal base \(B^* = \{x_1, \ldots, x_r\} \).

- Assume that \(w(x_1) > w(x_2) > \cdots > w(x_r) \).
- Let \(1 \leq q \leq r \) be the largest number for which \(w(x_q) \geq w(x_1)/r \).
Analysis (sketch)

Theorem

The random threshold algorithm is a \(\frac{1}{32(|\log(r)|+1)} \)-approximation, where \(r \) is the rank of the matroid.

Proof: Consider an optimal base \(B^* = \{x_1, \ldots, x_r\} \).
- Assume that \(w(x_1) > w(x_2) > \cdots > w(x_r) \).
- Let \(1 \leq q \leq r \) be the largest number for which \(w(x_q) \geq w(x_1)/r \).

Let \(w = (35, 14, 8, 6, 3, 2, 1) \), so that \(r = 7 \). Then \(\frac{w(x_1)}{r} = 5 \) and \(q = 4 \).
Analysis (sketch)

Theorem

The random threshold algorithm is a \(\frac{1}{32(\lceil \log(r) \rceil + 1)} \)-approximation, where \(r \) is the rank of the matroid.

Proof: Consider an optimal base \(B^* = \{x_1, \ldots, x_r\} \).

- Assume that \(w(x_1) > w(x_2) > \cdots > w(x_r) \).
- Let \(1 \leq q \leq r \) be the largest number for which \(w(x_q) \geq w(x_1)/r \).

Let \(w = (35, 14, 8, 6, 3, 2, 1) \), so that \(r = 7 \). Then \(\frac{w(x_1)}{r} = 5 \) and \(q = 4 \).

Then it holds that

\[
\sum_{i=1}^{q} w(x_i) \geq \frac{1}{2} \cdot w(B^*).
\]
Theorem

The random threshold algorithm is a $\frac{1}{32(|\log(r)|+1)}$-approximation, where r is the rank of the matroid.

Proof: Consider an optimal base $B^* = \{x_1, \ldots, x_r\}$.

- Assume that $w(x_1) > w(x_2) > \cdots > w(x_r)$.
- Let $1 \leq q \leq r$ be the largest number for which $w(x_q) \geq w(x_1)/r$.

Let $w = (35, 14, 8, 6, 3, 2, 1)$, so that $r = 7$. Then $\frac{w(x_1)}{r} = 5$ and $q = 4$.

- Then it holds that
 \[\sum_{i=1}^{q} w(x_i) \geq \frac{1}{2} \cdot w(B^*). \]
- Why?
Theorem

The random threshold algorithm is a \(\frac{1}{32(\lceil \log(r) \rceil + 1)} \)-approximation, where \(r \) is the rank of the matroid.*

Proof: Consider an optimal base \(B^* = \{x_1, \ldots, x_r\} \).

- Assume that \(w(x_1) > w(x_2) > \cdots > w(x_r) \).
- Let \(1 \leq q \leq r \) be the largest number for which \(w(x_q) \geq \frac{w(x_1)}{r} \).

Let \(w = (35, 14, 8, 6, 3, 2, 1) \), so that \(r = 7 \). Then \(\frac{w(x_1)}{r} = 5 \) and \(q = 4 \).

- Then it holds that
 \[
 \sum_{i=1}^{q} w(x_i) \geq \frac{1}{2} \cdot w(B^*).
 \]
- Why?
 \[
 \sum_{i=q+1}^{r} w(x_i) \leq \sum_{i=q+1}^{r} \frac{w(x_1)}{r} \leq w(x_1).
 \]
Remember we may focus on q largest elements in optimal base \(B^* = \{x_1, \ldots, x_r\} \) with \(w(x_1) \geq \cdots \geq w(x_q) \geq \cdots \geq w(x_r) \).
Remember we may focus on q largest elements in optimal base \(B^* = \{x_1, \ldots, x_r\} \) with \(w(x_1) \geq \cdots \geq w(x_q) \geq \cdots \geq w(x_r) \).

Some notation for (random) set \(T \):

Lemma

Let \(X \) be the set outputted by the random threshold algorithm. For \(i = 1, \ldots, q \), we have (remember \(n_i(B^*) = i \))

\[
E_{\sigma} [m_i(X)] \geq \frac{1}{8} (\lceil \log(r) \rceil + 1) \cdot i.
\]
Remember we may focus on q largest elements in optimal base $B^* = \{x_1, \ldots, x_r\}$ with $w(x_1) \geq \cdots \geq w(x_q) \geq \cdots \geq w(x_r)$.

Some notation for (random) set T:

- Let $n_i(T)$ be the number of elements whose weight is at least $w(x_i)$.

Lemma: Let X be the set outputted by the random threshold algorithm. For $i = 1, \ldots, q$, we have (remember $n_i(B^*) = i$) $E[\sigma \cdot m_i(X)] \geq 1/8 \left(\lceil \log(r) \rceil + 1 \right) \cdot i$.

We first show how lemma leads to desired approximation guarantee.
Remember we may focus on q largest elements in optimal base $B^* = \{x_1, \ldots, x_r\}$ with $w(x_1) \geq \cdots \geq w(x_q) \geq \cdots \geq w(x_r)$.

Some notation for (random) set T:

- Let $n_i(T)$ be the number of elements whose weight is at least $w(x_i)$.
 - Note that $n_i(B^*) = i$.

Remember we may focus on \(q \) largest elements in optimal base \(B^* = \{x_1, \ldots, x_r\} \) with \(w(x_1) \geq \cdots \geq w(x_q) \geq \cdots \geq w(x_r) \).

Some notation for (random) set \(T \):

- Let \(n_i(T) \) be the number of elements whose weight is at least \(w(x_i) \).
 - Note that \(n_i(B^*) = i \).
- Let \(m_i(T) \) be the number of elements whose weight is at least \(w(x_i)/2 \).
Remember we may focus on \(q \) largest elements in optimal base \(B^* = \{x_1, \ldots, x_r\} \) with \(w(x_1) \geq \cdots \geq w(x_q) \geq \cdots \geq w(x_r) \).

Some notation for (random) set \(T \):

- Let \(n_i(T) \) be the number of elements whose weight is at least \(w(x_i) \).
 - Note that \(n_i(B^*) = i \).
- Let \(m_i(T) \) be the number of elements whose weight is at least \(w(x_i)/2 \).

Lemma

Let \(X \) be the set outputted by the random threshold algorithm.
Remember we may focus on q largest elements in optimal base $B^* = \{x_1, \ldots, x_r\}$ with $w(x_1) \geq \cdots \geq w(x_q) \geq \cdots \geq w(x_r)$.

Some notation for (random) set T:

- Let $n_i(T)$ be the number of elements whose weight is at least $w(x_i)$.
 - Note that $n_i(B^*) = i$.
- Let $m_i(T)$ be the number of elements whose weight is at least $w(x_i)/2$.

Lemma

Let X be the set outputted by the random threshold algorithm. For $i = 1, \ldots, q$, we have (remember $n_i(B^*) = i$)
Remember we may focus on q largest elements in optimal base $B^* = \{x_1, \ldots, x_r\}$ with $w(x_1) \geq \cdots \geq w(x_q) \geq \cdots \geq w(x_r)$.

Some notation for (random) set T:

- Let $n_i(T)$ be the number of elements whose weight is at least $w(x_i)$.
 - Note that $n_i(B^*) = i$.
- Let $m_i(T)$ be the number of elements whose weight is at least $w(x_i)/2$.

Lemma

Let X be the set outputted by the random threshold algorithm. For $i = 1, \ldots, q$, we have (remember $n_i(B^*) = i$)

$$\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.$$
Remember we may focus on \(q \) largest elements in optimal base \(B^* = \{x_1, \ldots, x_r\} \) with \(w(x_1) \geq \cdots \geq w(x_q) \geq \cdots \geq w(x_r) \).

Some notation for (random) set \(T \):

- Let \(n_i(T) \) be the number of elements whose weight is at least \(w(x_i) \).
 - Note that \(n_i(B^*) = i \).
- Let \(m_i(T) \) be the number of elements whose weight is at least \(w(x_i)/2 \).

Lemma

Let \(X \) be the set outputted by the random threshold algorithm. For \(i = 1, \ldots, q \), we have (remember \(n_i(B^*) = i \))

\[
\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i.
\]

We first show how lemma leads to desired approximation guarantee.
\[\mathbb{E}_\sigma [m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i. \]
\[E_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i. \]

Remember \(m_i(X) \) is number of elements with weight at least \(w(x_i)/2 \) in \(X \).
\[\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8([\log(r)] + 1)} \cdot i. \]

Remember \(m_i(X) \) **is number of elements with weight at least** \(w(x_i)/2 \) **in** \(X \).

First note that (remember \(n_i(B^*) = i \))

\[
\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1}))n_i(B^*) \right] + w(x_q)n_q(B^*)
\]
\[\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i. \]

Remember \(m_i(X) \) is number of elements with weight at least \(w(x_i)/2 \) in \(X \).

First note that (remember \(n_i(B^*) = i \))

\[
\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1}))n_i(B^*) \right] + w(x_q)n_q(B^*)
\]

\[
w(X) \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1}))m_i(X) \right] + \frac{1}{2} w(x_q)m_q(X)
\]
\[\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i. \]

Remember \(m_i(X) \) is number of elements with weight at least \(w(x_i)/2 \) in \(X \).

First note that (remember \(n_i(B^*) = i \))

\[
\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) n_i(B^*) \right] + w(x_q) n_q(B^*)
\]

\[
w(X) \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) m_i(X) \right] + \frac{1}{2} w(x_q) m_q(X)
\]

The approximation guarantee then follows as

\[\mathbb{E}_\sigma[w(X)] \geq \]
\[\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i. \]

Remember \(m_i(X) \) is number of elements with weight at least \(w(x_i)/2 \) in \(X \).

First note that (remember \(n_i(B^*) = i \))

\[
\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) n_i(B^*) \right] + w(x_q) n_q(B^*)
\]

\[
w(X) \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) m_i(X) \right] + \frac{1}{2} w(x_q) m_q(X)
\]

The approximation guarantee then follows as

\[
\mathbb{E}_\sigma[w(X)] \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) \mathbb{E}_\sigma[m_i(X)] \right] + \frac{1}{2} w(x_q) \mathbb{E}_\sigma[m_q(X)]
\]
\[\mathbb{E}_\sigma [m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i. \]

Remember \(m_i(X) \) is number of elements with weight at least \(w(x_i)/2 \) in \(X \).

First note that (remember \(n_i(B^*) = i \))

\[
\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} \left(w(x_i) - w(x_{i+1}) \right) n_i(B^*) \right] + w(x_q) n_q(B^*) \]

\[
w(X) \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} \left(w(x_i) - w(x_{i+1}) \right) m_i(X) \right] + \frac{1}{2} w(x_q) m_q(X) \]

The approximation guarantee then follows as

\[
\mathbb{E}_\sigma [w(X)] \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} \left(w(x_i) - w(x_{i+1}) \right) \mathbb{E}_\sigma [m_i(X)] \right] + \frac{1}{2} w(x_q) \mathbb{E}_\sigma [m_q(X)] \]

\[
\geq \frac{1}{16(\lceil \log(r) \rceil + 1)} \left(\left[\sum_{i=1}^{q-1} \left(w(x_i) - w(x_{i+1}) \right) i \right] + w(x_q) q \right) \]
\[\mathbb{E}_\sigma [m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i. \]

Remember \(m_i(X) \) is number of elements with weight at least \(w(x_i)/2 \) in \(X \).

First note that (remember \(n_i(B^*) = i \))

\[
\sum_{i=1}^{q} w(x_i) = \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) n_i(B^*) \right] + w(x_q) n_q(B^*)
\]

\[w(X) \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) m_i(X) \right] + \frac{1}{2} w(x_q) m_q(X) \]

The approximation guarantee then follows as

\[
\mathbb{E}_\sigma [w(X)] \geq \frac{1}{2} \left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) \mathbb{E}_\sigma [m_i(X)] \right] + \frac{1}{2} w(x_q) \mathbb{E}_\sigma [m_q(X)]
\]

\[
\geq \frac{1}{16(\lceil \log(r) \rceil + 1)} \left(\left[\sum_{i=1}^{q-1} (w(x_i) - w(x_{i+1})) i \right] + w(x_q) q \right)
\]

\[= \frac{1}{16(\lceil \log(r) \rceil + 1)} \sum_{i=1}^{q} w(x_i) \geq \frac{1}{32(\lceil \log(r) \rceil + 1)} w(B^*). \]
Lemma

Let X be set outputted by algorithm. For $i = 1, \ldots, q$,

$$\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.
Lemma

Let \(X \) be set outputted by algorithm. For \(i = 1, \ldots, q \),

\[
\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i
\]

with \(m_i(X) \) number of elements selected with weight at least \(w(x_i)/2 \).

Proof: Fix \(i \) and let \(A \) be the event that (both)
Lemma

Let X be set outputted by algorithm. For $i = 1, \ldots, q$,

$$\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix i and let A be the event that (both)
- The max. weight element x_1 in B^* appears in Phase I, and
Lemma

Let X be set outputted by algorithm. For $i = 1, \ldots, q$,

$$\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix i and let A be the event that (both)
- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \ldots, \lceil \log(r) \rceil \}$ has the property that

$$w(x_i) \geq t := \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}. \quad (1)$$
Lemma

Let X be set outputted by algorithm. For $i = 1, \ldots, q,$

$$\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix i and let A be the event that (both)

- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \ldots, \lceil \log(r) \rceil\}$ has the property that

$$w(x_i) \geq t := \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$ \hspace{1cm} (1)
Lemma

Let X be set outputted by algorithm. For $i = 1, \ldots, q$,

$$\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix i and let A be the event that (both)
- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \ldots, \lceil \log(r) \rceil \}$ has the property that

$$w(x_i) \geq t := \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$ \hspace{1cm} (1)
Lemma

Let \(X \) be set outputted by algorithm. For \(i = 1, \ldots, q \),

\[
\mathbb{E}_\sigma[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i
\]

with \(m_i(X) \) number of elements selected with weight at least \(w(x_i)/2 \).

Proof: Fix \(i \) and let \(A \) be the event that (both)

- The max. weight element \(x_1 \) in \(B^* \) appears in Phase I, and
- The chosen \(j \in \{0, \ldots, \lceil \log(r) \rceil \} \) has the property that

\[
w(x_i) \geq t := \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.
\]

(1)

(\text{In the example, it could also be that } w(x_1)/r \geq w(x_i)/2.)
Lemma

Let X be set outputted by algorithm. For $i = 1, \ldots, q$,

$$
\mathbb{E}_\sigma [m_i(X)] \geq \frac{1}{8(\lceil \log (r) \rceil + 1)} \cdot i
$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix i and let A be the event that (both)

- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \ldots, \lceil \log (r) \rceil \}$ has the property that

$$w(x_i) \geq t := \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}. \tag{1}$$

- (In the example, it could also be that $w(x_1)/r \geq w(x_i)/2$.)

Choice of q guarantees $w(x_i) \geq w(x_1)/r$, so at least one j satisfies (1):
Lemma

Let X be set outputted by algorithm. For $i = 1, \ldots, q$,

$$\mathbb{E}_{\sigma}[m_i(X)] \geq \frac{1}{8(\lceil \log(r) \rceil + 1)} \cdot i$$

with $m_i(X)$ number of elements selected with weight at least $w(x_i)/2$.

Proof: Fix i and let A be the event that (both)

- The max. weight element x_1 in B^* appears in Phase I, and
- The chosen $j \in \{0, \ldots, \lceil \log(r) \rceil\}$ has the property that

$$w(x_i) \geq t := \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$ \hspace{1cm} (1)

- (In the example, it could also be that $w(x_1)/r \geq w(x_i)/2$.)

Choice of q guarantees $w(x_i) \geq w(x_1)/r$, so at least one j satisfies (1):

$$\mathbb{P}(A) \geq \frac{1}{2(\lceil \log(r) \rceil + 1)}.$$
With probability $\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1))$, chosen j is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$
With probability $\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1))$, chosen j is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

For any $1 \leq j < i$, it holds that $w(x_j) \geq w(x_i) \geq t$.
With probability $\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1))$, chosen j is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

For any $1 \leq j < i$, it holds that $w(x_j) \geq w(x_i) \geq t$.

- Every such x_j can potentially be chosen in Phase II as it exceeds the threshold.
With probability $\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1))$, chosen j is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2j} \geq \frac{w(x_i)}{2}. $$

For any $1 \leq j < i$, it holds that $w(x_j) \geq w(x_i) \geq t$.

- Every such x_j can potentially be chosen in Phase II as it exceeds the threshold.
 - It might be rejected still based on the independence criterium.
With probability $\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1))$, chosen j is such that

$$w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.$$

For any $1 \leq j < i$, it holds that $w(x_j) \geq w(x_i) \geq t$.
- Every such x_j can potentially be chosen in Phase II as it exceeds the threshold.
 - It might be rejected still based on the independence criterium.

For given ordering σ, let Y be cardinality of maximal size independent set of threshold-exceeding elements that appear in Phase II.
With probability \(\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1)) \), chosen \(j \) is such that

\[
w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.
\]

For any \(1 \leq j < i \), it holds that \(w(x_j) \geq w(x_i) \geq t \).

- Every such \(x_j \) can potentially be chosen in Phase II as it exceeds the threshold.
 - It might be rejected still based on the independence criterium.

For given ordering \(\sigma \), let \(Y \) be cardinality of maximal size independent set of threshold-exceeding elements that appear in Phase II.

- Because the set \(\{x_2, \ldots, x_i\} \) is independent, it follows that

\[
\mathbb{E}_\sigma[Y \mid A] \geq \frac{i - 1}{2} \geq \frac{i}{4}
\]

as every \(x_j \) appears in Phase II with prob. 1/2.
With probability \(\mathbb{P}(A) \geq 1/(2(\lceil \log(r) \rceil + 1)) \), chosen \(j \) is such that

\[
w(x_i) \geq t = \frac{w(x_1)}{2^j} \geq \frac{w(x_i)}{2}.
\]

For any \(1 \leq j < i \), it holds that \(w(x_j) \geq w(x_i) \geq t \).

- Every such \(x_j \) can potentially be chosen in Phase II as it exceeds the threshold.
 - It might be rejected still based on the independence criterium.

For given ordering \(\sigma \), let \(Y \) be cardinality of maximal size independent set of threshold-exceeding elements that appear in Phase II.

- Because the set \(\{x_2, \ldots, x_i\} \) is independent, it follows that

\[
\mathbb{E}_\sigma[Y | A] \geq \frac{i - 1}{2} \geq \frac{i}{4}
\]

as every \(x_j \) appears in Phase II with prob. \(1/2 \).

- Here we use the fact that we are considering a matroid!
One might interpret Phase II as just greedily selecting elements that exceed the threshold t. Greedy algorithm (with weights equal to 1 for every element) implies that the size of the set chosen is at least Y. (Might also argue directly through the augmentation property.)

To conclude, $E_{\sigma}[Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$.
One might interpret Phase II as just greedily selecting elements that exceed the threshold t.

$$\mathbb{E}_\sigma [Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$$
One might interpret Phase II as just greedily selecting elements that exceed the threshold t.

- Greedy algorithm (with weights equal to 1 for every element) implies that the size of the set chosen is at least Y.

\[\mathbb{E}_\sigma [Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4} \]
$$\mathbb{E}_\sigma [Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$$

One might interpret Phase II as just greedily selecting elements that exceed the threshold t.

- Greedy algorithm (with weights equal to 1 for every element) implies that the size of the set chosen is at least Y.
- (Might also argue directly through the augmentation property.)
One might interpret Phase II as just greedily selecting elements that exceed the threshold t.

- Greedy algorithm (with weights equal to 1 for every element) implies that the size of the set chosen is at least Y.
- (Might also argue directly through the augmentation property.)

To conclude,
One might interpret Phase II as just greedily selecting elements that exceed the threshold t.

- Greedy algorithm (with weights equal to 1 for every element) implies that the size of the set chosen is at least Y.
- (Might also argue directly through the augmentation property.)

To conclude,

$$\mathbb{E}_\sigma[Y \mid A] \geq \frac{i-1}{2} \geq \frac{i}{4}$$
The random threshold algorithm is $\frac{1}{32} \left(\lceil \log(r) \rceil + 1 \right)$-approximation, where r is the rank of the matroid $M = (E, I)$.

Algorithm can be adjusted to the setting where the rank of the matroid is unknown. This makes analysis more complicated.

"Single-threshold" algorithms can never give constant-factor approximation. As shown by Babaioff et al. (2018).

Problem can be turned into a randomized strategyproof mechanism. Elements are bidders that each can receive one "unit of stuff". Matroid constraint on which combination of bidders can be allocated a unit.
The random threshold algorithm is $\frac{1}{32(\lceil \log(r) \rceil + 1)}$-approximation, where r is the rank of the matroid $\mathcal{M} = (E, \mathcal{I})$.
The random threshold algorithm is $\frac{1}{32(\lceil \log(r) \rceil + 1)}$-approximation, where r is the rank of the matroid $\mathcal{M} = (E, \mathcal{I})$.

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
The random threshold algorithm is \(\frac{1}{32(\lceil \log(r) \rceil + 1)}\)-approximation, where \(r\) is the rank of the matroid \(M = (E, I)\).

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
The random threshold algorithm is \(\frac{1}{32(\lceil \log(r) \rceil + 1)} \)-approximation, where \(r \) is the rank of the matroid \(\mathcal{M} = (E, \mathcal{I}) \).

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- “Single-threshold” algorithms can never give constant-factor approximation.
Theorem

The random threshold algorithm is \(\frac{1}{32(\lceil \log(r) \rceil + 1)} \)-approximation, where \(r \) is the rank of the matroid \(M = (E, I) \).

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- “Single-threshold” algorithms can never give constant-factor approximation.
 - As shown by Babaioff et al. (2018).
Theorem

The random threshold algorithm is \(\frac{1}{32(\lceil \log(r) \rceil + 1)}\)-approximation, where \(r\) is the rank of the matroid \(\mathcal{M} = (E, I)\).

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- “Single-threshold” algorithms can never give constant-factor approximation.
 - As shown by Babaioff et al. (2018).
- Problem can be turned into a randomized strategyproof mechanism.
Theorem

The random threshold algorithm is \(\frac{1}{32(\lceil \log(r) \rceil + 1)} \)-approximation, where \(r \) is the rank of the matroid \(\mathcal{M} = (E, I) \).

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- "Single-threshold" algorithms can never give constant-factor approximation.
 - As shown by Babaioff et al. (2018).
- Problem can be turned into a randomized strategyproof mechanism.
 - Elements are bidders that each can receive one "unit of stuff".
The random threshold algorithm is \(\frac{1}{32(\lceil \log(r) \rceil + 1)} \)-approximation, where \(r \) is the rank of the matroid \(M = (E, I) \).

- Algorithm can be adjusted to the setting where the rank of the matroid is unknown.
 - This makes analysis more complicated.
- “Single-threshold” algorithms can never give constant-factor approximation.
 - As shown by Babaioff et al. (2018).
- Problem can be turned into a randomized strategyproof mechanism.
 - Elements are bidders that each can receive one "unit of stuff".
 - Matroid constraint on which combination of bidders can be allocated a unit.
Beyond matroids
Online selection problems

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}$.
- Weight function $w : E \rightarrow \mathbb{R}_{\geq 0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.
Online selection problems

Consider
- Finite set of elements $E = \{e_1, \ldots, e_m\}$.
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

Online selection:

Elements in E arrive in unknown uniform random arrival order σ.
Upon arrival of $e \in E$, its weight $w(e) \geq 0$ is revealed.
Decide irrevocably whether to accept or reject it.
Acceptance is only allowed if $X + e \in \mathcal{F}$.
Goal: Select (online) independent set $X \in \mathcal{F}$ of max. weight.

In general, for arbitrary downward-closed set systems, no constant-factor approximation exists.
Online selection problems

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}$.
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

Online selection:

- Elements in E arrive in unknown uniform random arrival order σ.
Online selection problems

Consider
- Finite set of elements $E = \{e_1, \ldots, e_m\}$.
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

Online selection:
- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
Online selection problems

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}$.
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

Online selection:

- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
Online selection problems

Consider

- Finite set of elements $E = \{e_1, \ldots, e_m\}$.
- Weight function $w : E \rightarrow \mathbb{R}_{\geq 0}$.
- Downward-closed collection $\mathcal{F} \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

Online selection:

- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e \in \mathcal{F}$.
Online selection problems

Consider

- Finite set of elements \(E = \{ e_1, \ldots, e_m \} \).
- Weight function \(w : E \to \mathbb{R}_{\geq 0} \).
- Downward-closed collection \(\mathcal{F} \subseteq 2^E = \{ X : X \subseteq E \} \).
 - Matroid set system (possibly) without augmentation property.

Online selection:

- Elements in \(E \) arrive in unknown uniform random arrival order \(\sigma \).
- Upon arrival of \(e \in E \), its weight \(w_e \geq 0 \) is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if \(X + e \in \mathcal{F} \).

Goal: Select (online) independent set \(X \in \mathcal{F} \) of max. weight.
Online selection problems

Consider
- Finite set of elements $E = \{e_1, \ldots, e_m\}$.
- Weight function $w : E \to \mathbb{R}_{\geq 0}$.
- Downward-closed collection $F \subseteq 2^E = \{X : X \subseteq E\}$.
 - Matroid set system (possibly) without augmentation property.

Online selection:
- Elements in E arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e \in F$.

Goal: Select (online) independent set $X \in F$ of max. weight.

In general, for arbitrary downward-closed set systems, no constant-factor approximation exists.
Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $F = (E, I)$ with m elements and (random) weights in $\{0, 1\}$, obtains an approximation guarantee better than $O(\ln \ln(n) / \ln(n))$.

Proof (very informal): Let $n \geq 0$ be an integer and set $r = \ln(n)$. Let $E = S_1 \cup S_2 \cup \cdots \cup S_k$ be the disjoint union of $k = \lceil n^{r} \rceil$ sets S_i.

Every S_i either has r or $r - 1$ elements.

$X \subseteq E$ in independent (i.e., $X \in F$) if and only if $X \subseteq S_i$ for some $i = 1, \ldots, k$.

This set system is (structurally) very “far away” from a matroid.
Online selection for general systems

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F} = (E, \mathcal{I})$ with m elements and (random) weights in $\{0, 1\}$, obtains an approximation guarantee better than $O(\ln \ln(n) / \ln(n))$.

Proof (very informal): Let $n \geq 0$ be an integer and set $r = \ln(n)$.

$E = S_1 \cup S_2 \cup \ldots \cup S_k$ is disjoint union of sets S_i with $k = \lceil n^r \rceil$.

Every S_i either has r or $r-1$ elements.

$X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) $\iff X \subseteq S_i$ for some $i = 1, \ldots, k$.

This set system is (structurally) very "far away" from a matroid.
Online selection for general systems

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F} = (E, I)$ with m elements and (random) weights in $\{0, 1\}$, obtains an approximation guarantee better than $O(\ln \ln(n) / \ln(n))$.

Proof (very informal): Let $n \geq 0$ be an integer and set $r = \ln(n)$.
Online selection for general systems

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system \(\mathcal{F} = (E, \mathcal{I}) \) with \(m \) elements and (random) weights in \(\{0, 1\} \), obtains an approximation guarantee better than \(O(\ln \ln(n)/\ln(n)) \).

Proof (very informal): Let \(n \geq 0 \) be an integer and set \(r = \ln(n) \).

- \(E = S_1 \cup S_2 \cup \cdots \cup S_k \) is disjoint union of sets \(S_i \) with \(k = \lceil \frac{n}{r} \rceil \).
Online selection for general systems

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system \(\mathcal{F} = (E, \mathcal{I}) \) with \(m \) elements and (random) weights in \(\{0, 1\} \), obtains an approximation guarantee better than \(O(\ln \ln(n) / \ln(n)) \).

Proof (very informal): Let \(n \geq 0 \) be an integer and set \(r = \ln(n) \).

- \(E = S_1 \cup S_2 \cup \cdots \cup S_k \) is disjoint union of sets \(S_i \) with \(k = \left\lceil \frac{n}{r} \right\rceil \).
- Every \(S_i \) either has \(r \) or \(r - 1 \) elements.
Online selection for general systems

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F} = (E, I)$ with m elements and (random) weights in $\{0, 1\}$, obtains an approximation guarantee better than $O(\ln \ln(n)/\ln(n))$.

Proof (very informal): Let $n \geq 0$ be an integer and set $r = \ln(n)$.

- $E = S_1 \cup S_2 \cup \cdots \cup S_k$ is disjoint union of sets S_i with $k = \lceil \frac{n}{r} \rceil$.
- Every S_i either has r or $r - 1$ elements.

$E = S_1 \cup S_2 \cup \cdots \cup S_k$ is disjoint union of sets S_i with $k = \lceil \frac{n}{r} \rceil$. Every S_i either has r or $r - 1$ elements.
Online selection for general systems

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F} = (E, \mathcal{I})$ with m elements and (random) weights in $\{0, 1\}$, obtains an approximation guarantee better than $O(\frac{\ln \ln(n)}{\ln(n)})$.

Proof (very informal): Let $n \geq 0$ be an integer and set $r = \ln(n)$.

- $E = S_1 \cup S_2 \cup \cdots \cup S_k$ is disjoint union of sets S_i with $k = \lceil \frac{n}{r} \rceil$.
- Every S_i either has r or $r - 1$ elements.
- $X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) \iff $X \subseteq S_i$ for some $i = 1, \ldots, k$.
Online selection for general systems

Theorem (Babaioff et al. (2007))

There is no randomized algorithm that, for every downward-closed set system $\mathcal{F} = (E, \mathcal{I})$ with m elements and (random) weights in $\{0, 1\}$, obtains an approximation guarantee better than $O(\ln \ln(n)/\ln(n))$.

Proof (very informal): Let $n \geq 0$ be an integer and set $r = \ln(n)$.

- $E = S_1 \cup S_2 \cup \cdots \cup S_k$ is disjoint union of sets S_i with $k = \lceil \frac{n}{r} \rceil$.
- Every S_i either has r or $r - 1$ elements.
- $X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) $\iff X \subseteq S_i$ for some $i = 1, \ldots, k$.

This set system is (structurally) very “far away” from a matroid.
$X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) $\iff X \subseteq S_i$ for some $i = 1, \ldots, k$.
$X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) \iff $X \subseteq S_i$ for some $i = 1, \ldots, k$.

\[|S_i| \in \{r, r - 1\} \]
X \subseteq E \text{ independent (i.e., } X \in \mathcal{F}) \iff X \subseteq S_i \text{ for some } i = 1, \ldots, k.

\begin{center}
\begin{tabular}{ccc}
\hline
S_1 & S_2 & S_3 \\
\hline
\hline
\end{tabular}
\end{center}

$|S_i| \in \{r, r-1\}$

The weights are generated independently for every $e \in E$:
$X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) \iff $X \subseteq S_i$ for some $i = 1, \ldots, k$.

\[
\begin{array}{c|c|c}
S_1 & \vdots & S_3 \\
\hline
\end{array}
\]

$|S_i| \in \{r, r-1\}$

The weights are generated independently for every $e \in E$:

\[
w_e = \begin{cases}
1 & \text{with probability } \frac{1}{r} \\
0 & \text{with probability } 1 - \frac{1}{r}
\end{cases}
\]
$X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) $\iff X \subseteq S_i$ for some $i = 1, \ldots, k$.

\[
\begin{array}{c|c|c}
S_1 & S_2 & S_3 \\
\hline
\square & \square & \square \ \square \ \square \ \square \\
\end{array}
\]

$|S_i| \in \{r, r - 1\}$

The weights are generated independently for every $e \in E$:

\[
w_e = \begin{cases}
1 & \text{with probability } \frac{1}{r} \\
0 & \text{with probability } 1 - \frac{1}{r}
\end{cases}
\]

No (randomized) algorithm A can give constant-factor approximation.
\(X \subseteq E \) independent (i.e., \(X \in \mathcal{F} \)) \iff \(X \subseteq S_i \) for some \(i = 1, \ldots, k \).

\[
\begin{array}{cccc}
& & & \\
S_1 & S_2 & S_3 \\
& & & \square \square \square \square \square \square \square \square \square \\
|S_i| & \in & \{r, r - 1\}
\end{array}
\]

The weights are generated independently for every \(e \in E \):

\[
w_e = \begin{cases}
1 & \text{with probability } \frac{1}{r} \\
0 & \text{with probability } 1 - \frac{1}{r}
\end{cases}.
\]

No (randomized) algorithm \(A \) can give constant-factor approximation.

What can we achieve online (sketch):
\[X \subseteq E \text{ independent (i.e., } X \in \mathcal{F}) \iff X \subseteq S_i \text{ for some } i = 1, \ldots, k. \]

The weights are generated independently for every \(e \in E \):
\[
 w_e = \begin{cases}
 1 & \text{with probability } \frac{1}{r} \\
 0 & \text{with probability } 1 - \frac{1}{r}
 \end{cases}.
\]

No (randomized) algorithm \(A \) can give constant-factor approximation.

What can we achieve online (sketch):
- As soon as \(A \) selects an element \(e \in S_{i^*} \) (for some \(i^* \)), it can only pick subsequent elements from the same \(S_{i^*} \).
$X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) $\iff X \subseteq S_i$ for some $i = 1, \ldots, k$.

The weights are generated independently for every $e \in E$:

$$w_e = \begin{cases}
1 & \text{with probability } \frac{1}{r} \\
0 & \text{with probability } 1 - \frac{1}{r}
\end{cases}.$$

No (randomized) algorithm \mathcal{A} can give constant-factor approximation.

What can we achieve online (sketch):

- As soon as \mathcal{A} selects an element $e \in S_{i^*}$ (for some i^*), it can only pick subsequent elements from the same S_{i^*}.
- Elements from S_{i^*} that have not yet arrive, have total expected weight at most 1.
\(X \subseteq E \) independent (i.e., \(X \in \mathcal{F} \)) \iff \(X \subseteq S_i \) for some \(i = 1, \ldots, k \).

\[|S_i| \in \{ r, r - 1 \} \]

The weights are generated independently for every \(e \in E \):

\[
w_e = \begin{cases}
1 & \text{with probability } \frac{1}{r} \\
0 & \text{with probability } 1 - \frac{1}{r}
\end{cases}
\]

No (randomized) algorithm \(A \) can give constant-factor approximation.

What can we achieve online (sketch):

- As soon as \(A \) selects an element \(e \in S_{i^*} \) (for some \(i^* \)), it can only pick subsequent elements from the same \(S_{i^*} \).
- Elements from \(S_{i^*} \) that have not yet arrive, have total expected weight at most 1. (By definition of weights.)
$X \subseteq E$ independent (i.e., $X \in \mathcal{F}$) $\iff X \subseteq S_i$ for some $i = 1, \ldots, k$.

The weights are generated independently for every $e \in E$:

$$w_e = \begin{cases} 1 & \text{with probability } \frac{1}{r} \\ 0 & \text{with probability } 1 - \frac{1}{r} \end{cases}.$$

No (randomized) algorithm A can give constant-factor approximation.

What can we achieve online (sketch):

- As soon as A selects an element $e \in S_{i^*}$ (for some i^*), it can only pick subsequent elements from the same S_{i^*}.
- Elements from S_{i^*} that have not yet arrive, have total expected weight at most 1. (By definition of weights.)
- Therefore, set selected by A has weight at most 2 in expectation.
What can we achieve offline (sketch):

Balls-in-bins calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n)/\ln\ln(n))$ elements with weight 1.

Offline optimum $\text{OPT} = \Omega(\ln(n)/\ln\ln(n))$ in expectation.

Final remark:

Theorem (Rubinstein, 2016)

There exists an $\Omega(1/\log(n))$-approximation w.r.t. the offline optimum for general downward-closed set system with weights in $\{0, 1\}$. This is then tight up to a factor $\log\log(n)$.

$|S_i| \in \{r, r - 1\}$
What can we achieve offline (sketch):

$|S_i| \in \{r, r - 1\}$

Theorem (Rubinstein, 2016)
There exists an $\Omega\left(\frac{1}{\log(n)}\right)$-approximation w.r.t. the offline optimum for general downward-closed set system with weights in $\{0, 1\}$. This is then tight up to a factor $\log\log(n)$.

25 / 31
What can we achieve offline (sketch):

- **Balls-in-bins** calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n)/\ln \ln(n))$ elements with weight 1.
What can we achieve offline (sketch):

- **Balls-in-bins** calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n)/\ln \ln(n))$ elements with weight 1.

- Offline optimum $\text{OPT} = \Omega(\ln(n)/\ln \ln(n))$ in expectation.
What can we achieve offline (sketch):

- **Balls-in-bins** calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n) / \ln \ln(n))$ elements with weight 1.

- Offline optimum $\text{OPT} = \Omega(\ln(n) / \ln \ln(n))$ in expectation.

Final remark:
What can we achieve offline (sketch):

- **Balls-in-bins** calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n) / \ln \ln(n))$ elements with weight 1.

- Offline optimum $\text{OPT} = \Omega(\ln(n) / \ln \ln(n))$ in expectation.

Final remark:

Theorem (Rubinstein, 2016)

There exists an $\Omega(1 / \log(n))$-approximation w.r.t. the offline optimum for general downward-closed set system with weights in $\{0, 1\}$.
What can we achieve offline (sketch):

- **Balls-in-bins** calculation shows that, in expectation, there will be always at least one S_i that has $\Omega(\ln(n)/\ln\ln(n))$ elements with weight 1.

- Offline optimum $OPT = \Omega(\ln(n)/\ln\ln(n))$ in expectation.

Final remark:

Theorem (Rubinstein, 2016)

*There exists an $\Omega(1/\log(n))$-approximation w.r.t. the offline optimum for general downward-closed set system with weights in $\{0, 1\}$.**

- This is then tight up to a factor $\log\log(n)$.
Graphic matroid

Korula-Pál algorithm
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
Graphic matroid secretary problem

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown **uniform random arrival order** σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
Graphic matroid secretary problem

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown **uniform random arrival** order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
Graphic matroid secretary problem

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially \(X = \emptyset \))

- Edges of (known) graph \(G = (V, E) \) arrive in unknown uniform random arrival order \(\sigma \).
- Upon arrival of \(e \in E \), its weight \(w_e \geq 0 \) is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if \(X + e \) is forest of \(G \).
 - That is, \(X + e \) does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
Graphic matroid secretary problem

For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown **uniform random arrival order** σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
For many special matroids, there exists a constant-factor approximation (often based on a reduction to secretary problems).

Online selection (with initially $X = \emptyset$)

- Edges of (known) graph $G = (V, E)$ arrive in unknown uniform random arrival order σ.
- Upon arrival of $e \in E$, its weight $w_e \geq 0$ is revealed.
- Decide irrevocably whether to accept or reject it.
 - Acceptance is only allowed if $X + e$ is forest of G.
 - That is, $X + e$ does not contain a cycle.
1/(2e)-approximation

Assume that $V = \{1, \ldots, n\}$.
Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and $A_z = \{(u, z) \in A : \{u, z\} \in E\}$ for $z \in V$.

When the edges arrive:

- Run (in parallel) the secretary algorithm on every A_z.
- We either orient every edge to its node with highest index, or every edge to its node with lowest index.

A_z is the set of all arcs that are oriented into z.

For every $z \in V$ at most one arc from every A_z is selected.
1/(2e)-approximation

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ $(i < j)$ with arc (i, j), or
1/(2e)-approximation

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\} \ (i < j)$ with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\} \ (i < j)$ with arc (j, i).

Let A be the resulting (random) set of directed arcs, and $A_z = \{(u, z) \in A : \{u, z\} \in E\}$ for $z \in V$.

When the edges arrive:
- Run (in parallel) the secretary algorithm on every A_z.
- We either orient every edge to its node with highest index, or every edge to its node with lowest index.
- A_z is set of all arcs that are oriented into z.
- For every $z \in V$ at most one arc from every A_z is selected.
1/(2e)-approximation

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and
1/(2e)-approximation

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$
Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:
Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:
- Run (in parallel) the secretary algorithm on every A_z.
1/(2e)-approximation

Assume that \(V = \{1, \ldots, n\} \).

Graphic matroid secretary algorithm for graph \(G = (V, E) \)

Before the edges arrive:

- With prob. \(\frac{1}{2} \) replace every edge \(\{i, j\} \) \((i < j) \) with arc \((i, j) \), or
- with prob. \(\frac{1}{2} \) replace every edge \(\{i, j\} \) \((i < j) \) with arc \((j, i) \).

Let \(A \) be the resulting (random) set of directed arcs, and

\[
A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.
\]

When the edges arrive:

- Run (in parallel) the secretary algorithm on every \(A_z \).

- We either orient every edge to its node with highest index, or every edge to its node with lowest index.
1/(2e)-approximation

Assume that $V = \{1, \ldots, n\}$.

Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$A_z = \{(u, z) \in A : \{u, z\} \in E\}$ for $z \in V$.

When the edges arrive:
- Run (in parallel) the secretary algorithm on every A_z.
 - We either orient every edge to its node with highest index, or every edge to its node with lowest index.
 - A_z is set of all arcs that are oriented into z.
1/(2\(e\))-approximation

Assume that \(V = \{1, \ldots, n\}\).

Graphic matroid secretary algorithm for graph \(G = (V, E)\)

Before the edges arrive:
- With prob. \(\frac{1}{2}\) replace every edge \(\{i, j\} (i < j)\) with arc \((i, j)\), or
- with prob. \(\frac{1}{2}\) replace every edge \(\{i, j\} (i < j)\) with arc \((j, i)\).

Let \(A\) be the resulting (random) set of directed arcs, and

\[
A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.
\]

When the edges arrive:
- Run (in parallel) the secretary algorithm on every \(A_z\).
- We either orient every edge to its node with highest index, or every edge to its node with lowest index.
- \(A_z\) is set of all arcs that are oriented into \(z\).
- For every \(z \in V\) at most one arc from every \(A_z\) is selected.
Example (Every edge oriented to lowest index node)

Preprocessing.
Randomly orient every edge to highest index, or every edge to lowest index.

Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z.

For all $z \in V$ (in parallel):

Phase I: First observe $\lfloor |A_z| \rfloor$ of edges contained in A_z.

Phase II: Select first edge whose weight exceeds best weight seen in Phase I.
Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
Example (Every edge oriented to lowest index node)

\[
\begin{align*}
A_1 &= \{(6, 1), (5, 1), (2, 1)\} \\
A_2 &= \{(5, 2), (4, 2), (3, 2)\} \\
A_3 &= \{(4, 3)\} \\
A_4 &= \{(5, 4)\} \\
A_5 &= \{(6, 5)\} \\
A_6 &= \emptyset
\end{align*}
\]

Preprocessing.
- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.
Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z.
Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z. For all $z \in V$ (in parallel):
Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z. For all $z \in V$ (in parallel):

- Phase I: First observe $\left\lfloor \frac{|A_z|}{e} \right\rfloor$ of edges contained in A_z.

Example (Every edge oriented to lowest index node)

$$A_1 = \{(6, 1), (5, 1), (2, 1)\}$$
$$A_2 = \{(5, 2), (4, 2), (3, 2)\}$$
$$A_3 = \{(4, 3)\}$$
$$A_4 = \{(5, 4)\}$$
$$A_5 = \{(6, 5)\}$$
$$A_6 = \emptyset$$
Preprocessing.

- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z. For all $z \in V$ (in parallel):

- Phase I: First observe $\left\lfloor \frac{|A_z|}{e} \right\rfloor$ of edges contained in A_z.
- Phase II: Select first edge whose weight exceeds best weight seen in Phase I.
Example (Every edge oriented to lowest index node)

\[
A_1 = \{(6, 1), (5, 1), (2, 1)\}
A_2 = \{(5, 2), (4, 2), (3, 2)\}
A_3 = \{(4, 3)\}
A_4 = \{(5, 4)\}
A_5 = \{(6, 5)\}
A_6 = \{\emptyset\}
\]

Preprocessing.
- Randomly orient every edge to highest index, or every edge to lowest index.
- Resulting arcs A are partitioned into sets A_z for $z \in V$.

Running secretary algorithms on the A_z. For all $z \in V$ (in parallel):
- Phase I: First observe $\left\lfloor \frac{|A_z|}{e} \right\rfloor$ of edges contained in A_z.
- Phase II: Select first edge whose weight exceeds best weight seen in Phase I.
Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:
- Run (in parallel) the secretary algorithm on every A_z.

High-level steps to show it is $\frac{1}{2}e$-approximation:
- First show that indeed forest is outputted. That is, an independent set of the graphic matroid.
- Then compare to (oriented) offline max. weight spanning tree.
- Give bound on expected contribution per node:
 - Factor $\frac{1}{2}$ is result of (randomly) orienting edges.
 - Factor $\frac{1}{e}$ is result of running (parallel) secretary algorithms.
Graphic matroid secretary algorithm for graph \(G = (V, E) \)

Before the edges arrive:
- With prob. \(\frac{1}{2} \) replace every edge \(\{i, j\} \) \((i < j)\) with arc \((i, j)\), or
- with prob. \(\frac{1}{2} \) replace every edge \(\{i, j\} \) \((i < j)\) with arc \((j, i)\).

Let \(A \) be the resulting (random) set of directed arcs, and
\[
A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.
\]

When the edges arrive:
- Run (in parallel) the secretary algorithm on every \(A_z \).

High-level steps to show it is \(\frac{1}{2e} \)-approximation:
Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:
- Run (in parallel) the secretary algorithm on every A_z.

High-level steps to show it is $\frac{1}{2e}$-approximation:
- First show that indeed forest is outputted.
Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

- Run (in parallel) the secretary algorithm on every A_z.

High-level steps to show it is $\frac{1}{2e}$-approximation:

- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.
Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:
- Run (in parallel) the secretary algorithm on every A_z.

High-level steps to show it is $\frac{1}{2e}$-approximation:
- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.
- Then compare to (oriented) offline max. weight spanning tree.
Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:

- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ $(i < j)$ with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ $(i < j)$ with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:

- Run (in parallel) the secretary algorithm on every A_z.

High-level steps to show it is $\frac{1}{2e}$-approximation:

- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.
- Then compare to (oriented) offline max. weight spanning tree.
- Give bound on expected contribution per node:
Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:
- Run (in parallel) the secretary algorithm on every A_z.

High-level steps to show it is $\frac{1}{2e}$-approximation:
- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.
- Then compare to (oriented) offline max. weight spanning tree.
- Give bound on expected contribution per node:
 - Factor $\frac{1}{2}$ is result of (randomly) orienting edges.
Graphic matroid secretary algorithm for graph $G = (V, E)$

Before the edges arrive:
- With prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (i, j), or
- with prob. $\frac{1}{2}$ replace every edge $\{i, j\}$ ($i < j$) with arc (j, i).

Let A be the resulting (random) set of directed arcs, and

$$A_z = \{(u, z) \in A : \{u, z\} \in E\} \text{ for } z \in V.$$

When the edges arrive:
- Run (in parallel) the secretary algorithm on every A_z.

High-level steps to show it is $\frac{1}{2e}$-approximation:
- First show that indeed forest is outputted.
 - That is, an independent set of the graphic matroid.
- Then compare to (oriented) offline max. weight spanning tree.
- Give bound on expected contribution per node:
 - Factor $\frac{1}{2}$ is result of (randomly) orienting edges.
 - Factor $\frac{1}{e}$ is result of running (parallel) secretary algorithms.
By now, $\frac{1}{4}$-approximation for graphic matroid secretary problem is known.
Final remarks

By now, $\frac{1}{4}$-approximation for graphic matroid secretary problem is known.

By now, $\frac{1}{4}$-approximation for graphic matroid secretary problem is known.

- Proof uses similar algorithm and analysis as that of Kesselheim et al. (2013) for online bipartite matching.
Final remarks

By now, $\frac{1}{4}$-approximation for graphic matroid secretary problem is known.

- Proof uses similar algorithm and analysis as that of Kesselheim et al. (2013) for online bipartite matching.
- Technique also applies to other special cases of matroids.
By now, $\frac{1}{4}$-approximation for graphic matroid secretary problem is known.

- Proof uses similar algorithm and analysis as that of Kesselheim et al. (2013) for online bipartite matching.
- Technique also applies to other special cases of matroids.

Is there $\frac{1}{e}$-approximation for graphic matroid secretary problem?