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Two-player game

Two-player game (A, B) given by matrices A, B € R™*".
@ Alice plays mixed strategy in A, over the m rows.
@ Bob plays mixed strategy in Ag over n columns.

For x € A and y € Ap, (expected) cost given by
Caice(X, ¥) = xTAy,  Cgob(X,y) = x"By.

Alice has Sp = {ay,a>} and Sg = {b1, bo, b3 }.

2 1 2 2 4 2
A:<3 3 2) and B:<2 0 4)'

Suppose that x = (1,0) and y = (0.5, 0,0.5), then

0.5
Cgob(X,y) =x"By = (1 0) (2 g i) ( 0 ) =2
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Mixed Nash equilibrium (MNE)

We will use the “best response” version of the MNE definition.

Definition

Column b; is best response against x for Bob if (x7B); = miny(x" B)x.
Row g; is best response against y for Alice if (Ay); = mink(Ay)k-

@ For (x"B) =(2,4,2)", we have (x"B); = 2, (x'B), = 4 and (x" B)3 = 2.

Definition (MNE, best response version)

Pair (x*, y*) is e-MNE if and only if

x>0 = (Ay*)i < ming(Ay* )k + ¢ Vi=1,...,m,
yr>0 = ((x)7B) < ming(x*) Bl +¢ Vj=1,....n.

That is, players only assign positive probability to best responses.

@ Strategies that get positive probability assigned to them play
special role.
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Recap from Lecture 4

Theorem (Nash’s theorem, 1950)
Any finite game I has a mixed Nash equilibrium.

@ Probably no polynomial time algorithm exists for computing one.
o PPAD-hardness.

In two-player zero-sum games (A, B), where A+ B = 0, computing an
MNE can be reduced to solving a linear program.

@ We also saw fictitious play, where empirical beliefs of other
player’s mixed strategy “converge” to MNE.

Today, the goal is to give a “quasi-polynomial” time algorithm that
computes an e-approximate mixed Nash equilibrium.
Supports of mixed strategies play an important role here.
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Support of mixed strategies
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Support of mixed strategy

The support of a mixed strategy x € Ay is
Supp(x) ={a;: x;>0fori=1,...,m} C Sa.
Similarly, for y € Agitis
Supp(y) ={bj:y;>0forj=1,...,n} C Sp

Example (cont’d)
Suppose again that x = (1,0) and y = (0.5,0,0.5). Then
Supp(x) = {as} and Supp(y) = {b1, bs}.

Does it help if one knows the supports of an equilibrium? Yes!

Remark

Informally speaking, knowing the support of an (e-)MNE is enough to
be able to efficiently compute one. Once the support is fixed, the
computation of an equilibrium (with that support) reduces to solving a
linear program.
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Remark (cont’d)
Somewhat more technical, if we know supports Supp(x*) and
Supp(y*) of an (e-)MNE (x*, y*), but not x* and y* themselves, then
there is a linear program to compute MNE with supports Supp(x*) and
Supp(y*)-

@ The linear program does not necessarily return (x*, y*), but

possibly another equilibrium with the same supports.
@ Linear program comes from (best response) MNE definition.

Definition (MNE, best response version)

Pair (x*, y*) is MNE if and only if
X;’< >0 = (Ay*), = mink(Ay*)k Vi=1,...,m,
y/-* >0 = ((X*)TB)]' = mink((x*)TB)k Vj =1,...,n

o For Alice, expected costs for rows in support should be equal, and
minimal compared to rows not in support.
o For Bob, expected costs for columns in support should be equal,
and minimal compared to columns not in support.
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Sketch of how to get linear program

Suppose for MNE (x, y) we have Supp(x) = {a1}, Supp(y) = {by, bz}.

21 2 2 4 2
A:<3 3 2) and B:<2 0 4)'
For Bob:

@ Expected cost for Bob, given Alice’s strategy x, on by and bs are equal:
2x1 +2x2 = (x'B)1 = (x"B)3 = 2x1 +4x;

@ Expected cost of by, by are minimal compared to that of b,:

2x1 +2x2 = (X" B)1 (or3) < (X" B)2 = 4x1 + 0.
@ Non-support columns have zero probability: y» = 0.
@ Support columns have positive probability: y1, y5 > 0.

For Alice:
@ For Alice, minimality of expected cost on ay gives
2¥1 + Yo +2y3 = (Ay)1 < (Ay)2 = 3y1 + 3y2 + 25.

@ Similarly as for Bob, we get x» = 0 and x; > 0. 6/28



That is, (x, y), with Supp(x) = {a1}, Supp(y) = {bi, bs}, should satisfy

2X1 + 2Xo = 2Xx1 +4x

2x1 + 2X2 < 4x1 +0xo
2y1+y2+2ys < 3y1 +3y2+2y3

X1 + Xo = 1

Yity:+ys = 1

Xo=Y)2=0

X1, ¥1,¥3 >0 (not linear constraint)

To turn the last constraint into a linear one, we consider the program

max )
subjectto  2x1 + 2x2 = 2x1 +4x»
2x1 + 2x < 4x1 + 0x»
21 +Yy2+2ys < 3y1+3y2+2)3
X =y, =0, Xt+Xe=y1+y2+ys=1
X1 > 1)
)2 > 9
Y3 > 6

(A, B) has MINE with given supports iff LP returns feasible solution with 6 > 0.
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Computing MNE by support enumeration

Let TaC {ay,...,am} and Tg C {by,...,bn}.
Theorem

There is a polynomial time algorithm A to decide if there exists an
MNE (x*, y*) with Supp(x*) = Ta and Supp(y*) = Tg. An MNE will be
computed by A in polynomial time in case the answer is YES.

@ Algorithm A consists of solving linear program (given later).

Corollary (Support enumeration)

There exists an 2" ™poly(n, m, |A|,|B|) algorithm that computes an
MNE of a two-player game (A, B) with A, B € QM*".

Proof (of corollary): We have 2™ choices for T4, and 2" choices of Tg.

@ For fixed (T, Tg), we can compute an MNE with those supports in
polynomial time with A (or decide that none exists).

Nash’s theorem guarantees that at least one MNE (x*, y*) exists.
@ For T4 = Supp(x*) and Tg = Supp(y*), A will return an MNE. O
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The algorithm A (linear program)

Let Ta C {ay,...,am} and Tg C {by,..., by} be “candidate” supports.

max )

subjectto  (Ay)i=U a €Ty (x"B)j=V bjeTg
X; >0 ai €Ty ij(s bjETB
(Ay),- > U a; ¢ Ta (XTB)j >V bj ¢ Ts
X,'ZO a,-¢TA yj: bjgéTB
Sy X =1 27:1}’/':1
U/ xq,...,Xm,0 €R V,yi,....,¥n€R

@ Note that (Ay),' = Zj Aijyj and (XTB)]' = ZiXiBij'

Theorem

There exists an MNE (x*, y*) with Supp(x*) = T and Supp(y*) = Tg
if and only if linear program above returns optimal solution with § > 0.

Exercise: Prove this theorem (using best response definition of MNE).
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Computing MNE with sparse supports

MNE (x*, y*) is k-sparse if |Supp(x*)|, |Supp(y*)| < k.
@ Players assign positive probability to at most k strategies.
@ Game (A, B) is called k-sparse if it has k-sparse MNE.

Theorem (Computation of sparse MNE)

There exists (nm)Xpoly(n, m,|A|,|B|)-time algorithm to decide whether
k-sparse MNE exists (and that outputs one if answer is YES) in games
(A, B) with A, B € QM.

Proof: There are 3_5_, () < m* choices of support of Alice that are

k-sparse, and 2521 (Z) < nf*+1 for Bob. Remainder is similar to proof
of corollary on Slide 10. O

Remark

There exist games with unique MNE (x*, y*) having |Supp(x*)| = m
and [Supp(y*)| = n.

Theorem useful for computation of approximate Nash equilibrium. , .



Computation of approximate MNE
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Approximate equilibrium

Consider two-player game (A, B) played by Alice and Bob.
@ For x € Ay and y € Ap, (expected) cost given by
Chiice(X, y) = xTAy, Cob(X,y) = xTBy.

Definition (Approximate MNE, pure strategy formulation)
For e > 0, mixed strategies (x*, y*) form ¢-MNE iff
(x)TAy* < (eNTAy* +¢ i=1,....m,
(x)TBy* < (x)'Bel +¢ j=1,...,n.
That is, players both have no improving move to pure strategy.

Captures idea that mixed strategies are “almost” an equilibrium.
@ Players might be able to improve cost, but at most by term e.
Example

x =(1,0),y = (1,0) is 0.1-approximate equilibrium for game

11 1 2
A:<0.9 2) and B:(z 2>'




Let TaC {ay,...,am}and Tg C {by,...,bn}.

Theorem

There is a polynomial time algorithm A to decide if there exists an
e-approximate MNE (x*, y*) with Supp(x*) = Ta and Supp(y*) = Tg.
An e-approximate MNE will be computed by A in polynomial time in
case the answer is YES.

@ Modify the linear program from the case ¢ = 0 on Slide 11.

max 1)

subjectto  (Ay); < U+e a €Ty (x"B); < V+e beTg
Xj >0 ai €Ty yj>9 bjc Tg
(Ay),- > U a; ¢ Ta (XTB)j >V bj ¢ Ts
xi=0 a,-¢TA ijO bj%TB
Sl X =1 Zf=1yj:1
Uxq,....Xm,0 €R V.vi,...,¥n € R

@ “Support enumeration” corollary on Slide 10 also holds for e-MNE.
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Small support approximate equilibria

An e-MNE (x*, y*) is k-sparse if |Supp(x*)|, |Supp(y*)| < k.
@ Same as for MNE (since definition does not involve ).
Theorem (Computation of sparse approximate MNE)

Suppose game (A, B), with A, B € QM*", has k-sparse e-MNE. Then
there is an (nm)kpoly(n, m, |A|,|B|)-time algorithm to compute one.

Lemma (Lipton, Markakis and Mehta (LMM), 2003)
Forany e > 0, (A, B) with A, B € [-1,1]"*" has e-MNE (x<, y¢) with
| Supp(x“)| = O(log(n)/e?) and |Supp(y<)| = O(log(m)/e?).

e

Corollary

There exists (nm)OUes(ma{m.n))/&) nopin m, |Al,|B|) time algorithm for
computing e-MNE in game (A, B) with A, B € [—1,1]™*".

4

@ Assuming m > n, running time reduces to mO(°s(m/)poly(n, m, |A|,|B]).

@ For constant e > 0, m9U°e(™) dependence is much better than 29(™.



Computation of approximate MNE
Proof of LMM lemma
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Recap (computation of approximate MNE)

Suppose there is an e-MNE (x*, y*) with |[Supp(x*)|, |Supp(y*)| < k.

@ Enumerate over all (nm)* possible supports ( Ty, Tg).
e Solve linear program for every fixed ( Ty, T5).

For exact MNE (e = 0), there is no non-trivial bound known for k.
@ There exist games for which k is as large as m (or n) for all MNE.

For e-MNE, with e constant, there does exist a non-trivial bound on k.

Lemma (Lipton, Markakis and Mehta, 2003)

Foranye >0, (A, B) with A, B € [-1,1]"*" has e-MNE (x<, y¢) with
| Supp(x)| = O(log(n)/¢?) and |Supp(y<)| = O(log(m)/e?).

@ The normalization of A and B is not without loss of generality!
@ Just like Nash’s theorem, proof is non-constructive!
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Proof of LMM lemma

Lemma (Lipton, Markakis and Mehta, 2003)
Foranye > 0, (A, B) with A, B € [-1,1]"*" has e-MNE (x¢, y¢) with
| Supp(x©)| = O(log(n)/e?) and |Supp(y©)| = O(log(m)/?).

Proof: We start with an exact (¢ = 0) mixed Nash equilibrium (x, y).
@ Always exists at least one because of Nash’s theorem.

High-level idea
@ First, replace y by mixed strategy y© with properties:
® [Supp(y<)| = O(log(m)/€?),
e (x,y¢)is 5-approximate MNE.
@ Then, replace x by mixed strategy x© with properties:
o [Supp(x‘)| = O(log(n)/¢?),
o (x¢,y¢) is e-approximate MNE.

Both sparsification steps can be proved in a similar way
(Of course, one may also first sparsify x, and then y.)
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Sparsifying mixed strategy y

What should the mixed strategy y satisfy for (x, y©) to be 5-MNE?
@ (Note that mixed strategy x is fixed throughout sparsification of y.)
Definition (e-MNE, pure strategy version)
Pair (x, y©) is 5-MNE if
xTAye < (eNTAy +5 i=1,....m,
x"By¢ < x"Bel+§ j=1,....n
That is, players both have no improving move to pure strategy.

For Bob, we want x" By < x"Be/ +¢/2forj=1,...,n.

@ If expected cost of Bob does not change much, i.e.,
Ix"By — x"By<| < ¢/2, (1)
then, for any pure strategy e with j =1,..., m,
x"By < x"By +¢/2 < x"B(€/) + ¢/2.
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For Alice, we want x" Ayc < (e/)TAyc + sfori=1,....m.

The expected cost per row for Alice should not change much.
@ Suffices to have

(Ay)i = (Ay )l < gfori=1.....m.
@ This is the same as saying ||Ay — Ay||c < §-
@ (Infinity norm: ||z|| = max;|z;| for z = (z1,...,2,) € R".)
Why? Inequality (2) implies
xT Ay — xTAy“| < [|x|[1]|Ay — Ay‘|oc < ¢/4

@ (1-norm: ||z[|1 = > ;|zi| for z = (z4,...,2n) € R".)

Now, for pure strategy €' fori = 1,..., mof Alice, we have
xTAy < xTAy + 5 < ()T Ay + § < () Ay + 5 + 4.
@ Remember that (Ay); = (€')T Ay

@ Inequalities use (3), fact that (x, y) is MNE, and (2) (respectively).
Evarcice: Show that havina | xT Av — xT Avel < /2 ie not sufficient!
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To summarize, (x, y©) will be an 5-MNE, if y© satisfies
xTBy — x"By| < ¢/2
1Ay — Ayflleo < €/4

Does there always exist such a vector y¢ with Supp(y©) = O(log(m)/e?)?
Yes!

A concise representation of requirements
Consider (m+ 1) x n matrix obtained by appending row-vector x’Bto A, i.e.,

, [ A
4= (,75)

The pair (x, y©) will be an 5-MNE, if y© € Ap satisfies

Ay — Ayl < €/4.

22/28



Sparse approximation of vectors

Theorem (Sparse vector approximation)

Let D € [-1,1](m1)xn and let y € Ag = Ap. Forany e > 0 there is a

multi-set S, of columns in {by, ..., by} of size |S.| = O(log(m)/e?) such
that the empirical distribution 1 ‘
V= @

|Se|
JES:
satisfies ||Dy — Dy*||oo = maxi—1....m+1|(Dy)i — (Dy9)i| < ¢/4.

Here & € {0,1}" is defined as usual (with e’,'( =1 if and only if j = k).
Example (Empirical distribution)
Let n= 4. If S. = {by, by, bs, by, bs, bo}, then y< = 1(1,3,2,0).

Remark

It holds that |Supp(y€)| < O(log(m)/€?), i.e., the vector y* has at most
O(log(m)/€?) non-zero entries.

A

v
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Proof of theorem: Fix e > 0 and let y € Ag. Let ¢4, ..., cr be random
columns in {by, ..., by} distributed according to y.

@ Thatis, we have P(c; = bj) = y;forj=1,...,nand every r.

@ Write e for pure strategy corresponding to (random) column c;.

Remember that y< = 1 3T, ec.

It suffices to show that, if T = O(log(m)/e?),

P (|(Dy); — (Dy)i| < e/dfori=1,....m+1) >0 (4)

Why? Because this implies that there is some (deterministic) multi-set
of columns S, with |S.| = O(log(m)/€?), for which its empirical
distribution y© satisfies |(Dy<); — (Dy)i| < e/4 fori=1,...,m+1.
@ This is called the probabilistic method.
e Very roughly: Define random process, and show desired object is
outputted with strictly positive probability.
@ |t is non-constructive, as we do not know y!

Also note that 1T
( ( Z‘ﬂ” 7> E[(De*)] = (Dy):

E[(Dy)i] =
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In order to show (4), it suffices to show that for every individual /,

P (/(0y): — (DY) > /4) < — =, ®

@ This follows from a union bound argument (check yourself!).
@ Remember that E [(Dy<);] = (Dy); and

;T
== e
T ;

In order to bound probability that a random variable attains a value far
away from its expectation, one needs a concentration inequality.

Hoeffding’s inequality implies that 2
P (|(Dy); — (Dy)i| > €/4) <2exp( 71-6)

How large should T be so that (5) is satisfied? Take T = O(log(m)/€?). O
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Computation of approximate MNE
Final remarks
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Small support equilibria in multi-player games

We use the following notation for finite game I' = (N, (S;), (C;)) here.
@ k= |N| > 2 is the number of players.

@ mis number of strategies of every player, i.e., |Si| = m Vi € N.

Theorem (Lipton, Markakis and Mehta, 2003)

For every ¢ > 0, there exists an e-MNE (2", ..., z¥) where

|Supp(2')| = O(K? log(k?m) /¢?)

@ Can be improved to O M [Babichenko-Barman-Peretz, 2014].
P ¢
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Remarks on sparse vector approximation

Theorem (Sparse vector approximation)

Let D € [-1,1](m1)xn and Jet y € Ag = Ap. Forany e > 0 there is a
multi-set S. of columns in {by, ... b,,} of size | S| = O(log(m)/€?) such
that the empirical distribution

> e

ye =
| e‘jese
satisfies ||Dy — Dy¢||oc = max;|(Dy); — (Dy¢)i| < ¢/4.

There exist many similar theorems like the above:

@ Related to Maurey’s lemma, approximate Carathéodory’s
theorem, ...

@ There is an /p-norm version [Barman, 2018].

There is also a refinement in terms of VC (or pseudo)-dimension of
matrix D.

@ Used to prove the “Fundamental Theorem of Statistical Learning”.
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