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Mechanism Design

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain
that outcome as a result of strategic behaviour?

Examples:
Auctions

Sponsored search auctions (e.g., Google)
Online selling platforms (e.g., eBay)

(Stable) matching problems
Matching children to schools
Matching medical students to hospitals

Kidney exchange markets

We focus mostly on (online) auctions.
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Selling one item
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Selling one item

Bidders:
Set of bidders {1, . . . ,n} and one item.
Bidder i has valuation vi for the item.

Maximum amount she is willing to pay for it.
Private information: vi not known to other players or seller.

Bidder submits bid bi .
Vector of all bids denoted by b = (b1, . . . ,bn).

Seller: Collects (sealed) bids.
Gives item to some bidder (if any).

Allocation rule x = x(b) = (x1, . . . , xn), with

xi =

{
1 if i gets the item,
0 otherwise.

Charges price of p to bidder i∗ receiving item.
Pricing rule p = p(b).

Utility of bidder i:
ui(b) = xi(b)(vi − p(b)) =

{
vi − p(b) if i gets the item,
0 otherwise.
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We have

Bidders with valuations v = (v1, . . . , vn) and bids b = (b1, . . . ,bn).
Seller with allocation rule x(b) and pricing rule p(b).
Utility of player given by ui(b) = xi(b)(vi − p(b)).
Revenue of seller is p if item is sold.

Definition
A (deterministic) mechanism (x ,p) for selling an item to one of n
bidders is given by an allocation rule x : Rn → {0,1}n with

∑
i xi ≤ 1,

and pricing rule p : Rn → R.

Goal of bidder i is to maximize utility given mechanism (x ,p).
Bidders will try to bid strategically.
How should we design auction to prevent undesirable outcomes?
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First price auction

First price auction
Bidders report bids b = (b1, . . . ,bn).

Item is given to i∗ = argmaxibi
and price p = maxi bi is charged.

Example
Suppose there are three bidders

Valuations (v1, v2, v3) = (10,30,25).
Bids (b1,b2,b3) = (5,22,23).

Winner is bidder i∗ = 3, with price p = 23. Utilities are u = (0,0,2).

Is this a good auction format?
Does not incentivize truthful bidding.

Bidders have incentive to lie (i.e., not report true valuation vi ).
Bidder 2 values item the most, but does not get it.
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Selling one item
Second price auction
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Second price auction

Second price auction

Given bids b = (b1, . . . ,bn):
Item is allocated to highest bidder i∗ = argmaxibi .
Price charged is second-highest bid p = maxj 6=i∗ bj .

Ties are broken according to some fixed tie-breaking rule.

Example
Suppose we have three bidders.

Valuations (v1, v2, v3) = (10,30,25).
Bids (b1,b2,b3) = (10,30,22).

Winner is bidder i∗ = 2 and pays p = 22. Utilities are u = (0,8,0).

Second price auction has many desirable properties.
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Desired properties

Bidders have incentive to be truthful: Reporting vi is dominant strategy.

Definition (Strategyproof)
Mechanism (x ,p) incentivizes truthful bidding if for every bidder i ,
alternative bid b′i , and bids b−i = (b1, . . . ,bi−1,bi+1,bn) of other
bidders, it holds that

ui(b−i , vi) ≥ ui(b−i ,b′i ),

where ui(b) = xi(b)(vi − p(b)).

Bidders have non-negative utility (when reporting truthfully).

Definition (Individually rational)
Mechanism (x ,p) is individually rational if for every bidder i it holds

ui(b) ≥ 0
for every bid vector b = (b1, . . . ,bi−1, vi ,bi+1, . . . ,bn).

9 / 23



Desired properties

Bidders have incentive to be truthful: Reporting vi is dominant strategy.

Definition (Strategyproof)
Mechanism (x ,p) incentivizes truthful bidding if for every bidder i ,
alternative bid b′i , and bids b−i = (b1, . . . ,bi−1,bi+1,bn) of other
bidders, it holds that

ui(b−i , vi) ≥ ui(b−i ,b′i ),

where ui(b) = xi(b)(vi − p(b)).

Bidders have non-negative utility (when reporting truthfully).

Definition (Individually rational)
Mechanism (x ,p) is individually rational if for every bidder i it holds

ui(b) ≥ 0
for every bid vector b = (b1, . . . ,bi−1, vi ,bi+1, . . . ,bn).

9 / 23



Desired properties

Bidders have incentive to be truthful: Reporting vi is dominant strategy.

Definition (Strategyproof)
Mechanism (x ,p) incentivizes truthful bidding if for every bidder i ,
alternative bid b′i , and bids b−i = (b1, . . . ,bi−1,bi+1,bn) of other
bidders, it holds that

ui(b−i , vi) ≥ ui(b−i ,b′i ),

where ui(b) = xi(b)(vi − p(b)).

Bidders have non-negative utility (when reporting truthfully).

Definition (Individually rational)
Mechanism (x ,p) is individually rational if for every bidder i it holds

ui(b) ≥ 0
for every bid vector b = (b1, . . . ,bi−1, vi ,bi+1, . . . ,bn).

9 / 23



Desired properties

Bidders have incentive to be truthful: Reporting vi is dominant strategy.

Definition (Strategyproof)
Mechanism (x ,p) incentivizes truthful bidding if for every bidder i ,
alternative bid b′i , and bids b−i = (b1, . . . ,bi−1,bi+1,bn) of other
bidders, it holds that

ui(b−i , vi) ≥ ui(b−i ,b′i ),

where ui(b) = xi(b)(vi − p(b)).

Bidders have non-negative utility (when reporting truthfully).

Definition (Individually rational)
Mechanism (x ,p) is individually rational if for every bidder i it holds

ui(b) ≥ 0
for every bid vector b = (b1, . . . ,bi−1, vi ,bi+1, . . . ,bn).

9 / 23



Desired properties

Bidders have incentive to be truthful: Reporting vi is dominant strategy.

Definition (Strategyproof)
Mechanism (x ,p) incentivizes truthful bidding if for every bidder i ,
alternative bid b′i , and bids b−i = (b1, . . . ,bi−1,bi+1,bn) of other
bidders, it holds that

ui(b−i , vi) ≥ ui(b−i ,b′i ),

where ui(b) = xi(b)(vi − p(b)).

Bidders have non-negative utility (when reporting truthfully).

Definition (Individually rational)
Mechanism (x ,p) is individually rational if for every bidder i it holds

ui(b) ≥ 0
for every bid vector b = (b1, . . . ,bi−1, vi ,bi+1, . . . ,bn).

9 / 23



Mechanism has good performance guarantee.

Definition (Welfare maximization)
Mechanism (x ,p) is welfare maximizer if it maximizes∑

i vixi(b) = “Revenue for seller” + “Player utilities”

assuming that bidders are truthful.

For now this just means we want to allocate item to a bidder with
highest (true) valuation v∗ = maxi vi .
(In online setting, we are content with approximation.)

Definition (Computational efficiency)
Mechanism (x ,p) should be implementable in polynomial time, i.e.,
compute allocation x and price p in polynomial time.
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Proof strategyproofness (second price auction):

Mechanism (x ,p) incentivizes truthful bidding if for every i , alter-
native bid b′i , and b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn), it holds that

ui(b1, . . . , vi , . . . ,bn) ≥ ui(b1, . . . ,b′i , . . . ,bn).

Fix i and b−i . Let p(b) = s be second-highest bid.
We compare vi ,b′i and s (using case distinction).

Assume vi 6= s for simplicity.

Case s > vi :
Bidder i would only win if b′i ≥ bmax, but then ui = vi − p < 0.
For any bid b′i < bmax (then i does not get item), we have ui = 0.

Case s < vi :
Bidder i wins. Charged price s same for all b′i > s. For b′i < s, we
have ui = 0. Hence, bidding vi is an optimal choice.
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Myerson’s lemma

Myerson’s lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying
what type of allocation rules yield strategyproof mechanisms.

Pricing rule follows from allocation rule.

Myerson’s lemma (very informal)
If there exists a monotone allocation rule x , then there is a unique
pricing rule p so that the mechanism (x ,p) is strategyproof (and vice
versa).

Monotone allocation rule has the property that, if bidder i gets item
when bidding bi , she also gets item when bidding b′i ≥ bi .

That is, {0,1}-variable xi = (bi ,b−i) is non-decreasing in bid bi .

Exercise: Show second price auction has monotone allocation rule.
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Selling multiple items

Unit-demand setting:

Set of items M = {1, . . . ,m}
Set of bidders N = {1, . . . ,n}
For every i ∈ N a private valuation function vi : M → R≥0.

Value vij = vi(j) is value of bidder i for item j .
For every i ∈ N a bid function bi : M → R≥0.

Bid bij = bi(j) is maximum amount i is willing to pay for item j .

The goal is to assign (at most) one item to every bidder.

Example
Non-existing edges have bij = 0.

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1
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Example
Non-existing edges have bij = vij = 0 (i is not interested in item j)

Items

Bidders

1 2 3 4

1 2 3 4

1
3

3
1

5 6 bij = 1

Definition (Mechanism)
A (deterministic) mechanism (x ,p) is given by an allocation rule

x : Rn×m
≥0 → {0,1}n×m,

with
∑

i xij ≤ 1 and
∑

j xij ≤ 1, and pricing rule p : Rn×m
≥0 → Rm

≥0.

For bidder i , we have bid vector bi = (bi1, . . . ,bim).
With b = (b1, . . . ,bn), we have x = x(b) and p = p(b).

Utility of bidder i is

ui(b) =
{

vij − pj(b) if j is the item i receives,
0 if i does not get an item.

15 / 23
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Desired properties

Strategyproof:

For every i ∈ N, bidding true valuations
vi = (vi1, . . . , vim) is dominant strategy.

It should hold that

ui(b−i , vi) ≥ ui(b−i ,b′i ).

for all b−i = (b1, . . . ,bi−1,bi+1, . . . ,bn) and other bid vector b′i .

Individual rationality: Non-negative utility when bidding truthfully.
Welfare maximization: The allocation x maximizes∑

i,j

xijvij

with xij = 1 if bidder i gets item j , and zero otherwise.
Bipartite maximum weight matching in unit-demand setting.

Computationally tractable: Allocation and pricing rules should
be computable in polynomial time.
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Vickrey-Clarke-Groves (VCG) mechanism

VCG mechanism works in more general settings than unit-demand.

Notation:
Bipartite graph B = (X ∪ Y ,E) with edge-weights w : E → R≥0.

OPT(X ′,Y ′) is sum of edge weights of max. weight bipartite
matching on induced subgraph B′ = (X ′ ∪ Y ′,E) where
X ′ ⊆ X ,Y ′ ⊆ Y .

VCG mechanism
Collect bid vectors b1, . . . ,bn from bidders.

Compute maximum weight bipartite matching L∗ (the allocation x)
If bidder i gets item j , i.e., {i , j} ∈ L∗(N,M), then charge her

pij(b) = OPT(N \ {i},M)−OPT(N \ {i},M \ {j}),

and otherwise nothing.

OPT(N \ {i},M)−OPT(N \ {i},M \ {j}) is welfare loss for other players by
assigning j to i .
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We use shorthand notation aibj for edge {ai ,bj}.

Example
Suppose these are reported bids (non-existing edges have bij = 0)

Items

Bidders

a1 a2 a4

b1 b2 b3

2
3

2
4

b4

6
15

a3

L∗(N,M) = {a1b2,a2b3,a3b4}.
OPT(N,M) = 3 + 4 + 6 = 13.

L∗(N \ {b4},M) = {a1b1,a2b2,a3b3}.
OPT(N \ {b4},M) = 2 + 2 + 5 = 9.

L∗(N \ {b4},M \ {a3}) = {a1b2,a2b3}.
OPT(N \ {b4},M \ {a3}) = 3 + 4 = 7.

Price charged to bidder b4 for item a3 is
p43(b) = 9− 7 = 2.
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VCG mechanism satisfies all desired properties:

Strategyproofness (bidding truthfully is optimal).
Exercise: Prove this.

Individually rational.
Bidding truthfully gives non-negative utility.

Social welfare maximizer.
It computes max. weight bipartite matching (where the weights are
the true valuations).

Computationally tractable.
Computing max. weight bipartite matching solvable in poly-time.
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Online mechanism design
Selling one item
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Selling one item online

Setting:
Bidders have private valuation vi ≥ 0 for item.
Whenever bidder arrives online, it submits bid bi .

Bidders arrive one by one in unknown order σ = (σ(1), . . . , σ(n)).

Online mechanism (informal)
For k = 1, . . . ,n, upon arrival of bidder σ(k):

Bid bk is revealed.
Decide (irrevocably) whether to allocate item to σ(k).

If yes, charge price p(bσ(1), . . . ,bσ(k)) and STOP.

Goal: Allocate item to bidder with highest valuation v∗ = maxi vi .

Utility of bidder i , when σ(k) = i , is given by

ui,k (bσ(1), . . . ,bσ(k)) =
{

vi − p(bσ(1), . . . ,bσ(k)) if i gets item,
0 otherwise.
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Requirements for (online) deterministic mechanism (x ,p):

Takes as input deterministic ordering (y1, . . . , yn) and bids b1, . . . ,bn for
the item.

Specifies for every k = 1, . . . ,n whether to allocate to yk .
This {0,1}-variable xk (and price p) for k is function of:

Total number of bidders n.
Bidders y1, . . . , yk .
Bids b1, . . . ,bk .
The order (y1, . . . , yk ).

Last aspect is usually irrelevant.

The variables xi induce the allocation rule x .
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Desired properties

Bidding truthfully should be dominant strategy for every arrival order σ
and every arrival time of bidder i .

Definition (Strategyproof)
Consider arbitrary i , ordering (σ(1), . . . , σ(n)), and k with i = σ(k). We
say an online mechanismM = (x ,p) is strategyproof if for every
alternative bid b′i and every bσ(1), . . . ,bσ(k−1), it holds that

ui,k (bσ(1), . . . ,bσ(k−1), vi) ≥ ui,k (bσ(1), . . . ,bσ(k−1),b′i ).

Individually rational: Non-negative utility for bidder i when
bidding truthful.
Constant factor α-approximation for welfare maximization

For uniform random arrival model:
Eσ[v(M(σ))] ≥ α ·maxi vi

With v(M(σ)) valuation of bidder that gets item.
Computationally tractable: Decision on who to allocate item to,
and computation of charged price, in poly-time.
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