Mechanism Design

Mechanism design is a form of reversed game theory:

Given a (desired) outcome, how should we design the game to obtain that outcome as a result of strategic behaviour?

Examples:

- **Auctions**
 - Sponsored search auctions (e.g., Google)
 - Online selling platforms (e.g., eBay)
- **(Stable) matching problems**
 - Matching children to schools
 - Matching medical students to hospitals
- **Kidney exchange markets**

We focus mostly on (online) auctions.
Selling one item
Selling one item

Bidders:
- Set of bidders \(\{1, \ldots, n\}\) and one item.
- Bidder \(i\) has valuation \(v_i\) for the item.
 - Maximum amount she is willing to pay for it.
 - Private information: \(v_i\) not known to other players or seller.
- Bidder submits bid \(b_i\).
 - Vector of all bids denoted by \(b = (b_1, \ldots, b_n)\).

Seller: *Collects (sealed) bids.*
- Gives item to some bidder (if any).
 - Allocation rule \(x = x(b) = (x_1, \ldots, x_n)\), with
 \[
 x_i = \begin{cases}
 1 & \text{if } i \text{ gets the item,} \\
 0 & \text{otherwise.}
 \end{cases}
 \]
 - Charges price of \(p\) to bidder \(i^*\) receiving item.
 - Pricing rule \(p = p(b)\).

Utility of bidder \(i\):
\[
u_i(b) = x_i(b)(v_i - p(b)) = \begin{cases}
 v_i - p(b) & \text{if } i \text{ gets the item,} \\
 0 & \text{otherwise.}
 \end{cases}
\]
We have

- Bidders with valuations $v = (v_1, \ldots, v_n)$ and bids $b = (b_1, \ldots, b_n)$.
- Seller with allocation rule $x(b)$ and pricing rule $p(b)$.
- Utility of player given by $u_i(b) = x_i(b)(v_i - p(b))$.
- *Revenue of seller is p if item is sold.*

Definition

A (deterministic) mechanism (x, p) for selling an item to one of n bidders is given by an allocation rule $x : \mathbb{R}^n \rightarrow \{0, 1\}^n$ with $\sum_i x_i \leq 1$, and pricing rule $p : \mathbb{R}^n \rightarrow \mathbb{R}$.

Goal of bidder i is to maximize utility given mechanism (x, p).

- Bidders will try to bid strategically.
- How should we design auction to prevent undesirable outcomes?
First price auction

Bidders report bids $b = (b_1, \ldots, b_n)$. Item is given to $i^* = \arg\max_i b_i$ and price $p = \max_i b_i$ is charged.

Example

Suppose there are three bidders

- Valuations $(v_1, v_2, v_3) = (10, 30, 25)$.
- Bids $(b_1, b_2, b_3) = (5, 22, 23)$.

Winner is bidder $i^* = 3$, with price $p = 23$. Utilities are $u = (0, 0, 2)$.

Is this a good auction format?

- Does not incentivize truthful bidding.
 - Bidders have incentive to lie (i.e., not report true valuation v_i).
- Bidder 2 values item the most, but does not get it.
 - Allocation rule does not maximize social welfare objective

 $\text{“Revenue for seller” + “Player utilities”} = \sum_i v_i x_i(b) = v_{i^*}$
Selling one item

Second price auction
Second price auction

Given bids \(b = (b_1, \ldots, b_n) \):
- Item is allocated to highest bidder \(i^* = \text{argmax}_i b_i \).
- Price charged is second-highest bid \(p = \max_{j \neq i^*} b_j \).
- Ties are broken according to some fixed tie-breaking rule.

Example
Suppose we have three bidders.
- Valuations \((v_1, v_2, v_3) = (10, 30, 25) \).
- Bids \((b_1, b_2, b_3) = (10, 30, 22) \).
Winner is bidder \(i^* = 2 \) and pays \(p = 22 \). Utilities are \(u = (0, 8, 0) \).

Second price auction has many desirable properties.
Desired properties

Bidders have incentive to be truthful: Reporting v_i is dominant strategy.

Definition (Strategyproof)

Mechanism (x, p) incentivizes truthful bidding if for every bidder i, alternative bid b'_i, and bids $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, b_n)$ of other bidders, it holds that

$$u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i),$$

where $u_i(b) = x_i(b)(v_i - p(b))$.

Bidders have non-negative utility (when reporting truthfully).

Definition (Individually rational)

Mechanism (x, p) is individually rational if for every bidder i it holds

$$u_i(b) \geq 0$$

for every bid vector $b = (b_1, \ldots, b_{i-1}, v_i, b_{i+1}, \ldots, b_n)$.
Mechanism has good performance guarantee.

Definition (Welfare maximization)

Mechanism \((x, p)\) is welfare maximizer if it maximizes

\[
\sum_i v_i x_i(b) = \text{“Revenue for seller”} + \text{“Player utilities”}
\]

assuming that bidders are truthful.

- For now this just means we want to allocate item to a bidder with highest (true) valuation \(v^* = \max_i v_i\).
- *(In online setting, we are content with approximation.)*

Definition (Computational efficiency)

Mechanism \((x, p)\) should be implementable in polynomial time, i.e., compute allocation \(x\) and price \(p\) in polynomial time.
Proof strategyproofness (second price auction):

Mechanism (x, p) incentivizes truthful bidding if for every i, alternative bid b'_i, and $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$, it holds that

$$u_i(b_1, \ldots, v_i, \ldots, b_n) \geq u_i(b_1, \ldots, b'_i, \ldots, b_n).$$

Fix i and b_{-i}. Let $p(b) = s$ be second-highest bid.

- We compare v_i, b'_i and s (using case distinction).
 - Assume $v_i \neq s$ for simplicity.

Case $s > v_i$:
- Bidder i would only win if $b'_i \geq b_{\text{max}}$, but then $u_i = v_i - p < 0$.
- For any bid $b'_i < b_{\text{max}}$ (then i does not get item), we have $u_i = 0$.

Case $s < v_i$:
- Bidder i wins. Charged price s same for all $b'_i > s$. For $b'_i < s$, we have $u_i = 0$. Hence, bidding v_i is an optimal choice.
Myerson’s lemma

Myerson’s lemma holds in more general settings.

There exists a nice characterization, due to Myerson (1981), specifying what type of allocation rules yield strategyproof mechanisms.

- Pricing rule follows from allocation rule.

Myerson’s lemma (very informal)

If there exists a monotone allocation rule \(x \), then there is a unique pricing rule \(p \) so that the mechanism \((x, p)\) is strategyproof (and vice versa).

Monotone allocation rule has the property that, if bidder \(i \) gets item when bidding \(b_i \), she also gets item when bidding \(b'_i \geq b_i \).

- That is, \(\{0, 1\} \)-variable \(x_i = (b_i, b_{-i}) \) is non-decreasing in bid \(b_i \).

Exercise: Show second price auction has monotone allocation rule.
Selling multiple items

Unit-demand setting
Selling multiple items

Unit-demand setting:

- Set of items $M = \{1, \ldots, m\}$
- Set of bidders $N = \{1, \ldots, n\}$
- For every $i \in N$ a private valuation function $v_i : M \to \mathbb{R}_{\geq 0}$.
 - Value $v_{ij} = v_i(j)$ is value of bidder i for item j.
- For every $i \in N$ a bid function $b_i : M \to \mathbb{R}_{\geq 0}$.
 - Bid $b_{ij} = b_i(j)$ is maximum amount i is willing to pay for item j.

The goal is to assign (at most) one item to every bidder.

Example

Non-existing edges have $b_{ij} = 0$.

![Diagram showing items and bidders with edges and values]
Non-existing edges have $b_{ij} = v_{ij} = 0$ (i is not interested in item j)

Definition (Mechanism)

A (deterministic) mechanism (x, p) is given by an allocation rule

$$x : \mathbb{R}_{\geq 0}^{n \times m} \rightarrow \{0, 1\}^{n \times m},$$

with $\sum_i x_{ij} \leq 1$ and $\sum_j x_{ij} \leq 1$, and pricing rule $p : \mathbb{R}_{\geq 0}^{n \times m} \rightarrow \mathbb{R}_{\geq 0}^m$.

- For bidder i, we have bid vector $b_i = (b_{i1}, \ldots, b_{im})$.
- With $b = (b_1, \ldots, b_n)$, we have $x = x(b)$ and $p = p(b)$.
- Utility of bidder i is

$$u_i(b) = \begin{cases}
 v_{ij} - p_j(b) & \text{if } j \text{ is the item } i \text{ receives}, \\
 0 & \text{if } i \text{ does not get an item}.
\end{cases}$$
Desired properties

- **Strategyproof:** For every $i \in N$, bidding true valuations $v_i = (v_{i1}, \ldots, v_{im})$ is dominant strategy.
 - It should hold that
 \[
 u_i(b_{-i}, v_i) \geq u_i(b_{-i}, b'_i).
 \]
 for all $b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)$ and other bid vector b'_i.

- **Individual rationality:** Non-negative utility when bidding truthfully.

- **Welfare maximization:** The allocation x maximizes
 \[
 \sum_{i,j} x_{ij}v_{ij}
 \]
 with $x_{ij} = 1$ if bidder i gets item j, and zero otherwise.
 - Bipartite maximum weight matching in unit-demand setting.

- **Computationally tractable:** Allocation and pricing rules should be computable in polynomial time.
Vickrey-Clarke-Groves (VCG) mechanism

VCG mechanism works in more general settings than unit-demand.

Notation:
- Bipartite graph $B = (X \cup Y, E)$ with edge-weights $w : E \to \mathbb{R}_{\geq 0}$.
- $OPT(X', Y')$ is sum of edge weights of max. weight bipartite matching on induced subgraph $B' = (X' \cup Y', E)$ where $X' \subseteq X$, $Y' \subseteq Y$.

VCG mechanism

- Collect bid vectors b_1, \ldots, b_n from bidders.
- Compute maximum weight bipartite matching L^* (the allocation x)
- If bidder i gets item j, i.e., $\{i, j\} \in L^*(N, M)$, then charge her
 \[
 p_{ij}(b) = OPT(N \setminus \{i\}, M) - OPT(N \setminus \{i\}, M \setminus \{j\}),
 \]
 and otherwise nothing.

$OPT(N \setminus \{i\}, M) - OPT(N \setminus \{i\}, M \setminus \{j\})$ is welfare loss for other players by assigning j to i.
We use shorthand notation $a_i b_j$ for edge $\{a_i, b_j\}$.

Example

Suppose these are reported bids (non-existing edges have $b_{ij} = 0$)

<table>
<thead>
<tr>
<th>Items</th>
<th>Bidders</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
</tr>
<tr>
<td>a_3</td>
<td>b_3</td>
</tr>
<tr>
<td>a_4</td>
<td>b_4</td>
</tr>
</tbody>
</table>

- $L^* (N, M) = \{a_1 b_2, a_2 b_3, a_3 b_4\}$.
 - $\text{OPT}(N, M) = 3 + 4 + 6 = 13$.
- $L^* (N \setminus \{b_4\}, M) = \{a_1 b_1, a_2 b_2, a_3 b_3\}$.
 - $\text{OPT}(N \setminus \{b_4\}, M) = 2 + 2 + 5 = 9$.
- $L^* (N \setminus \{b_4\}, M \setminus \{a_3\}) = \{a_1 b_2, a_2 b_3\}$.
 - $\text{OPT}(N \setminus \{b_4\}, M \setminus \{a_3\}) = 3 + 4 = 7$.
- Price charged to bidder b_4 for item a_3 is $p_{43}(b) = 9 - 7 = 2$.

18 / 23
VCG mechanism satisfies all desired properties:

- Strategyproofness (bidding truthfully is optimal).
 - Exercise: Prove this.

- Individually rational.
 - Bidding truthfully gives non-negative utility.

- Social welfare maximizer.
 - It computes max. weight bipartite matching (where the weights are the true valuations).

- Computationally tractable.
 - Computing max. weight bipartite matching solvable in poly-time.
Online mechanism design

Selling one item
Selling one item online

Setting:
- Bidders have private valuation $v_i \geq 0$ for item.
- Whenever bidder arrives online, it submits bid b_i.

_Bidders arrive one by one in unknown order $\sigma = (\sigma(1), \ldots, \sigma(n))$."

Online mechanism (informal)

For $k = 1, \ldots, n$, upon arrival of bidder $\sigma(k)$:
- Bid b_k is revealed.
- Decide (irrevocably) whether to allocate item to $\sigma(k)$.
 - If yes, charge price $p(b_{\sigma(1)}, \ldots, b_{\sigma(k)})$ and STOP.

Goal: Allocate item to bidder with highest valuation $v^* = \max_i v_i$.

Utility of bidder i, when $\sigma(k) = i$, is given by

$$u_{i,k}(b_{\sigma(1)}, \ldots, b_{\sigma(k)}) = \begin{cases} v_i - p(b_{\sigma(1)}, \ldots, b_{\sigma(k)}) & \text{if } i \text{ gets item,} \\ 0 & \text{otherwise.} \end{cases}$$
Requirements for (online) deterministic mechanism \((x, p)\):
Takes as input deterministic ordering \((y_1, \ldots, y_n)\) and bids \(b_1, \ldots, b_n\) for the item.

- Specifies for every \(k = 1, \ldots, n\) whether to allocate to \(y_k\).
- This \(\{0, 1\}\)-variable \(x_k\) (and price \(p\)) for \(k\) is function of:
 - Total number of bidders \(n\).
 - Bidders \(y_1, \ldots, y_k\).
 - Bids \(b_1, \ldots, b_k\).
 - The order \((y_1, \ldots, y_k)\).
 - Last aspect is usually irrelevant.

The variables \(x_i\) induce the allocation rule \(x\).
Desired properties

Bidding truthfully should be dominant strategy for every arrival order σ and every arrival time of bidder i.

Definition (Strategyproof)

Consider arbitrary i, ordering $(\sigma(1), \ldots, \sigma(n))$, and k with $i = \sigma(k)$. We say an online mechanism $\mathcal{M} = (x, p)$ is strategyproof if for every alternative bid b'_i and every $b_{\sigma(1)}, \ldots, b_{\sigma(k-1)}$, it holds that

$$u_{i,k}(b_{\sigma(1)}, \ldots, b_{\sigma(k-1)}, v_i) \geq u_{i,k}(b_{\sigma(1)}, \ldots, b_{\sigma(k-1)}, b'_i).$$

- **Individually rational:** Non-negative utility for bidder i when bidding truthful.
- **Constant factor α-approximation for welfare maximization**
 - For uniform random arrival model:
 $$\mathbb{E}_{\sigma}[\nu(\mathcal{M}(\sigma))] \geq \alpha \cdot \max_i v_i$$
 - With $\nu(\mathcal{M}(\sigma))$ valuation of bidder that gets item.
- **Computationally tractable:** Decision on who to allocate item to, and computation of charged price, in poly-time.