
Metastability

1 What is Metastability

Consider the hilly landscape shown in Figure 1. In the diagram x is the position
in meters, and h(x) the height in meters at position x. For simplicity we assumed
a periodic landscape with h(x) = cos(x) that is symmetric around x = 0.

Figure 1: Landscape with valleys and hills.

We may now position a ball1 at any position x0 within this landscape and
observe its trajectory over time. The result of this thought experiment for
x0 = 2 is shown in Figure 2.

As expected, the ball/particle follows a damped oscillation, approaching the
right valley’s center at π. Placing the particle at a higher initial position, but
this time at the other side of the central hill, say at x0 = −1, we observe a more
accentuated oscillation in Figure 3.

Again the particle quickly approaches a valley’s center; this time the left
valley. Interestingly, with the naked eye, at time 25 s the particle seems to have
almost come to rest in the valley like for x0 = 2; the initial position where we
let it go did not play a considerable role after some seconds.

This game can be played with several positions x0 within (−2π, 2π) with
similar results: the particle seems to approach one of the valley centers rather
quickly, and the concrete valley side depends on whether we position it left or

1Our ball will be a particle of negligible size in comparison to the landscape.

1

Figure 2: Particle moving in the landscape if initially positioned at x0 = 2. At
the bottom the landscape with the particle’s initial position (in black) is shown.
At the top the trajectory over the next 25 s is shown.

right to x = 0. There is one exception to this behavior: Figure 4 shows the case
where the particle is placed at the top of the central hill at x0 = 0. It seems to
remain there forever.

While this behavior coincides with our physical intuition, our practical ex-
perience tells us that we would expect the particle to eventually fall to any side.
Let us take a closer look in the following.

2

Figure 3: Particle moving in the landscape if initially positioned at x0 = −1.

3

Figure 4: Particle not moving if initially positioned at x0 = 0.

4

The initial position. In practical situations, one may arguably not be able
to exclude all external forces, the tip of the hill will not be a single point, and
static friction forces may play in our favor, but for the sake of the thought
experiment let us exclude all these effects and check what happens if we are not
able to perfectly place the particle at x = 0. Figure 5 shows the case where we
position it slightly to the right at x0 = 10−13.

Figure 5: Particle moving delayed if initially positioned at x0 = 10−13.

Interestingly, the particle seems to reside at the initial position for around
10 s until when it rolls down the right hill. Also, we observe that at time 25 s
it did not come to rest in the right valley’s center as in the previous scenarios.
A word of warning is due at this point: The figures were obtained by numerical
integration with 64bit floats. So the trajectory may be off. However, one can
indeed show that for all initial positions within (−2π, 2π), the particle’s position
approaches −π for strictly negative initial positions, π for strictly positive initial
positions, and remains at 0 forever if started at 0. There are two other initial
positions that result in the particle not moving over time: the valley centers −π
and π.

Before going into details, we introduce some notation. One can model the

5

dynamics of this system as a state x in Rn that evolves over time. To do so, we
set

d

dt
x = f(x) ,

where f : Rn → Rn.

Example 1. In our case of the particle within the landscape, the dimension of
the state space is n = 2 with x = (x, ẋ), and we have

d

dt
x = ẋ

d

dt
ẋ = −g sin(α(x)) cos(α(x))− γẋ ,

where α(x) = arctan(− sin(x)), the velocity dependent damping factor γ =
0.3 s−1, and gravitational acceleration g = 9.809 m s−2 as measured in Paris.

Definition 1 (Fixed point). A state x ∈ Rn is a fixed point if d
dtx = 0.

Exercise 1. Show that there are three fixed points whose first component is
within (−2π, 2π) and whose second component is 0.

In summary, we may say that:

• There are three initial positions within (−2π, 2π) that result in the particle
not moving, i.e., dx

dt = 0: the two valley centers −π and π, and the hill
center 0.

• For all initial x0 in (−2π, 0), we have x(t) → −π for t → ∞. For all
initial x0 in (0, π), it is x(t) → π for t → ∞. Both initial points are
attractors. The regions (−2π, 0) and (0, 2π) are basins of attraction for
these attractors: started within them, x(t) will converge to the respective
attractor.

• Initial value 0 is also an attractor, but its basin of attraction is the set
{0}, only. Any small perturbation to this initial position will result x(t)
to converge to a different attractor. We thus call −π and π stable, and 0
metastable.

Formally, we distinguish between stable and metastable, respectively, unsta-
ble fixed point as follows.

Definition 2 (Stable fixed point). A fixed point x′ is stable if for all ε > 0,
there exists a δ > 0, such that,

||x(0)− x′|| ≤ δ ⇒
∀t ≥ 0 : ||x(t)− x′|| ≤ ε .

It is unstable or metastable, otherwise.

6

The definition requires a norm || · || on Rn. Typically the Euclidean (2-
norm) ||(x1, x2, . . . , xn)||2 =

√∑n
i=1 x

2
i is used, if not stated otherwise. With

this definition, stability requires more than we have discussed: it must tolerate
a perturbation in all components and a combination thereof restricted only by
the Euclidean distance to the fixed point.

Exercise 2. Show that x = (0, 0) is a metastable fixed point in our setting.

The time to resolve. Let us come back to the almost stable behavior at
x0 = 10−13. From Figure 5 one may deduce that the particle resides steadily at
x0 until it diverges at around 10 s. For that purpose let us zoom into the first
5 s at a smaller scale of 10−6 m. The result is shown in Figure 6

Figure 6: Particle starting at x0 = 10−13. Zoomed in view.

One observes a strong divergence to the right: the particle is not at all
at rest, but diverges significantly. It rather takes another 5 s to observe this
behavior at the meter scale.

We may run another simulation to see how long it takes for x(t) to first cross
0.1 if we vary x0 within (0, 0.001), i.e., on the right side of the central hill near
the metastable point at 0. The result is shown in Figure 7.

We observe a large increase of times when approaching the metastable point
at x = 0. In fact one can show that the times approach ∞ as x → 0; and for
x = 0 the crossing time does not exist at all. By the symmetry of our setting,
the same curve would be observed for small negative initial positions x → 0−;
but this time for the crossing of x = −0.1. We will discuss this behavior in the
following.

2 Metastability in Hardware

The picture of the landscape and the particle may seem far fetched for a book
on hardware design at the first glance. We will, however, show that scenarios
like this occur thousands of times on a single chip.

7

Figure 7: Time until x(t) crosses 0.1 for the first time for initial positions from
within (0, 0.001).

For that purpose consider the Moore state machine from Figure ?? in Chap-
ter ??. Further assume that it has a single input signal i(t) that is periodically
sampled at the rising clock transition of clock clk. As a thought experiment, we
will zoom into a single rising clock transition that occurs at, say, time 0, and
observe the output Q of the flip-flop, depending on the input i driving the data
input port D of the flip-flop. Figure 8 depicts this setup.

Figure 8: Input signal sampled for further processing by the synchronous state
machine.

Let us assume that the input i(t) is a step function at varying times x, i.e.,
it is 0 before time x, and 1 afterwards. Assume that setup/hold times are 0.1 ns.
Now consider the following two cases:

8

1. Case x = 1 ns. If so, the flip-flop will sample a 0 at its input and thus
output a 0.

2. Case x = −1 ns. If so, the flip-flop will sample a 1 at its input and thus
output a 1.

The outcome is not far from the landscape: depending on the initial x,
the flip-flop output will settle at 0 or 1; given that initial values respect the
setup/hold window and are not within [−0.1, 0.1]. This is much like the two
valley centers that are attractors in the landscape scenario.

What happens within this region? Interestingly, one also observes the same
qualitative behavior as in the landscape for initial values near 0. If we plot the
times until the flip-flop output first crosses 0.1, and in case x is strictly positive,
we will likely obtain a behavior as in Figure 7.

Indeed, Figure 9 shows simulations for such times for a flip-flip in 15 nm
technology.

Figure 9: [TODO: redo this figure with real simulations of a gate. The current
figure is a placeholder.] Resolution times for the flip-flop output u2 and a
threshold of 0.1 V for different initial values of x.

We will later see that an analogous behavior is obtained in a simplified model
of the fip-flop.

In practical realizations of latches and flip flops the output of the actual
storage loop (formed by the cross-coupled inverters) is not directly provided to
the cell output. In order to protect the storage element from being flipped by
coupling effects through the connected cells and interconnect, it is buffered by
an inverter whose input is connected to the storage loop and whose output then
supplies the cell output. In case of metastability this inverter will receive an

9

intermediate voltage (a voltage level somewhere in between a well defined HI and
a well defined LO) and might convey that to its own output. This will happen
when the inverter’s threshold matches the voltage level of the metastable storage
loop output. However, if the inverter’s threshold is slightly higher (aka high
threshold inverter) then the intermediate input voltage is below that threshold
and will be regarded as a LO. Figure 10 (a-d) shows the possible outcomes of
that: If the previous output was HI, then upon moving to metastability the
output will definitely cross the high threshold, producing a HI output at the
inverter output (mind the inversion!) immediately. When the metastability
later resolves back to HI (Figure 10(a)), we see another threshold crossing on
the way back. This will make the inverter output go back to LO – we have
experienced a glitch. However, in the alternative case that the metastability
resolves to LO (case (b)), no further threshold crossing occurs and it looks like
the inverter’s initial output transition had made the right guess. This case is
called early transition. This is the most desirable case, as, from the view of the
inverter output, it looks like no metastability ever happened.

For the remaining two cases we assume that the previous output had been
LO. Then, on the way to the metastable state, no threshold crossing occurs yet.
For a metastability resolving back to LO (case (c)) no threshold crossing occurs
either, so the inverter output does not switch at all (no transition). This is
another desired behavior, as it is perfectly fine to see no output reaction for an
input sequence of LO followed by LO. Should, however, the metastable state
resolve to HI (case (d)), then the threshold is crossed, but too late, namely only
when metastability is resolving. This case is called late transition.

Alternatively, a low-threshold inverter can be used. As illustrated in Fig-
ure 10 on the right (cases (e) to (h)), we observe the same effects, albeit in
different scenarios. So while the cases of no transition and early transition do
not cause any negative effects for the subsequent logic, the glitch and the late
transition are dangerous and hence undesired.

10

Figure 10: Manifestations of metastability after a high- or low-threshold inverter

11

3 Why is it inevitable?

One may argue that the fact that there is a metastable fixed point between the
two stable fixed point may be specific to our setting of the landscape. We will
next show that this is indeed a more general phenomenon. The precise shape of
the hill in the middle of the two values is not needed to show such phenomena.
But the result is also not specific to classical mechanics. It holds as well for
electronic systems that are described by ODEs under only mild assumptions.
We start this argument with a result in topology:

Theorem 1. Let A and B be two topological spaces and f : A→ B a continuous
function. If X ⊆ A is connected, then so is f(X) ⊆ B.

For the landscape we choose A = B to be the Euclidean topology on R. The
topology A will be the initial position x of the particle, and the topology B the
position the particle will converge to. Accordingly, for a T ≥ 0, we choose fT
to be the function that maps the initial position to the position of the particle
at time T . By definition, f0 is the identity. We further choose X = (−2π.2π)
as the subset of initial positions that we are interested in.

First, observe, that X is connected. Now choose an arbitrary T ≥ 0, and let
us take a closer look at function fT . First, we may simplify the system’s ODE
to

d

dt
x = h1(x, ẋ) = ẋ

d

dt
ẋ = h2(x, ẋ) =

g sin(x)

sin2(x) + 1
− γẋ .

Both functions h1 and h2 are Lipschitz on R2. For an initial value x(0) = (x0, 0),
with x0 ∈ (−2π, 2π), let us denote the corresponding solution x(t) = (x(t), ẋ(t))
by (x(t;x0), ẋ(t;x0)) to highlight the dependency on x0. It can be shown that
from the fact that h1 and h2 are Lipschitz, the solution (x(t;x0), ẋ(t;x0)) is
continuous in x0; see, e.g., [?]. This finally implies that fT as defined above is
continuous.

We may now apply Theorem 1 and deduce that fT (X) is connected.
To see the concrete implications for the particle in the landscape, choose

T = 25 s. We observed that for an initial position x0 = 2, fT (x0) was close to
π; the center of the right valley. Also for an initial position x0 = −1, fT (x0)
was close to −π; the center of the left valley. From the connectedness of fT (X)
it follows that for any value between −1 and 2, e.g., 0.1, we may find an initial
position x′0 such that the particle is at this value, here 0.1, at time T = 25 s.

We will later derive ODEs for the hardware setting and metastability therein.
Analogous arguments, as the ones made for the landscape, will be seen to hold
for them, too.

In fact, it was shown by Marino [?] that under mild assumptions on the
ODEs that reflect constraints by Newtonian physics, for any system that has
two stable fixed points, we can find an input that results in the system’s output

12

attaining any output value between the two stable outputs, at an arbitrarily
late time. In short: there exists no shape of the hill and no implementation of
a flip-flop that does not have such behavior.

4 Calculating the MTBU

We have seen that often metastability cannot be completely avoided, so we
have to cope with it. However, if we still want to build reliable systems, we
need to be able to quantify the risk of metastability-induced failures. To this
end, we must first specify more precisely the notion of a “metastability-induced
failure”. Consider a flip flop FFm whose output is metastable – when would
that be a problem? In fact, the problem starts when one (or more) flip flops
(FFv) connected to FF′m s output, either directly or through some combina-
tional gates, capture an incorrect or metastable value as a consequence of FFm
being metastable. We call this a metastable upset. Notice that FFm becoming
metastable alone does not yet constitute a metastable upset; if the metasta-
bility resolves before FFv captures the output, then no harm was done. So
apparently whether a metastable output of FFm causes a metastable upset de-
pends on how much time we give FFm to resolve its metastability. We call
the available time margin between the input change at FFv in the regular case
(i.e. without metastability) and the instant of FFv actually capturing its in-
put (typically with the rising clock edge) the resolution time tres. This is the
safety margin available for a potential metastability at FFm to resolve, and it
is clearly a design choice. We have already seen that the time required to re-
solve actually depends on how deep FFm has been driven into metastability,
and clearly, the more resolution time we allow, the deeper cases of metastabil-
ity we can still tolerate. So actually there are other reasons to provide such a
margin, like tolerances in delay parameters, as well as their temperature and
voltage dependence; but the resolution time is the actual margin that remains
in the given operation. So practically, the resolution time depends on how ag-
gressively we optimize the clock period of our system – being more conservative
about tolerances also directly increases tres.

In order to approach a risk quantification, in a next step let us develop a
model of the storage element under examination, especially its behavior in the
metastable state. To this end we need to decompose the flip flop into its two
constituent latches, as discussed in Section 2. As was already laid out there,
each of these latches, in turn contains a pair of cross-coupled inverters that form
the actual storage element.

To be able to model analog behavior like metastable voltage, we need to
leave the digital abstraction and consider the analog function of the inverter.
Figure 11 shows the transfer characteristic (output voltage as a function of input
voltage) of the inverter. Since we are interested in the metastable behavior, we
can concentrate on the middle range of the characteristics (around half the
voltage). Fortunately, the characteristics is a straight line there, which means
the inverter acts as an analog amplifier Vout = −A ·Vin+ VDD

2 (since the slope is

13

negative we put the minus sign in front to get a positive value for the gain A).
To get rid of the constant term, we will move our zero potential to VDD

2 , which,
mathematically speaking, is a simple coordinate transformation. So from now on
“0” corresponds to the perfect metastable point, while a perfect LO (HI) equals
−VDD2 (+VDD

2). This is the simple abstraction we will use in the following. For
the original paper proposing this model see [?].

Figure 11: Inverter characteristics and its linear approximation

In addition we need to model the dynamic behavior as well. As a rough
approximation (which turns out quite valid in practice), let us assume this is a
first order dynamic system, which, in terms of electrical engineering, is a low-
pass constituted by a so called RC element (a series resistor R followed by a
parallel capacitor C, as shown in Figure 12). By applying circuit analysis tech-
niques (Kirchhoff’s Laws), Ohm’s Law (U = R · I) and the U/I characteristics
of a capacitor (iC = C · u̇C), and considering the above amplifier behavior, the
analog behavior of the inverter can finally be expressed by

uout(t) = −A · uin −RC · u̇out (1)

Figure 12: Circuit model for the inverter loop

14

Now, with this model, we are in the position to form a storage element by
cross-coupling two such inverters, where uout of one becomes uin of the other.
Denoting the output voltages of the two inverters by u1 and u2, the resulting
ODEs are

d

dt
u1 =

−Au2 + u1
RC

d

dt
u2 =

−Au1 + u2
RC

.

By solving the resulting system of two first-order ODEs we obtain a solution for
how the storage cell will leave its metastable state. Note that for this purpose
we consider the latch in opaque mode (D input decoupled), which, conveniently,
yielded a homogeneous ODE. This solution is

u2(t) =
U2

0 − U1
0

2
· e

A−l
RC t +

U2
0 + U1

0

2
· e−

A+l
RC t (2)

Here u1 is the voltage at the input end of the cell, and u2 at the output,
which is the relevant one for us as it represents the voltage trajectory along
which the cell leaves the metastable state. Furthermore, U1

0 and U2
0 are the

respective starting values (voltages across the capacitors) at the moment when
the resolution starts.

Exercise 3. The case U1
0 = U2

0 = 0 represents the perfect metastable state
(recall the offset we introduced). How does the output trajectory look like in this
case? Is this as expected?

The left term in Equation (2) has a positive exponent in the exponential
function, so it will increase over time. It describes how the difference in the
initial voltages U1 and U2 evolves over time, if the inverter loop is left on its
own. The right term, in contrast, describes the evolution of the initial common
mode voltage (the average of U1 and U2) over time. As this term has a negative
exponent, it will decay. Since, moreover, in regular operation we will always
have u2(t) ≈ −u1(t) and therefore do not expect a significant common mode
component, it is quite safe to ignore the right term in the following. In that
case we end up with a purely exponential trajectory with time constant RC

A−1

and starting value U2
0−U1

0

2 , which we will further call Ud.

u2(t) = Ud · e
A−l
RC t (3)

Clearly, this trajectory will saturate once it approaches VDD or GND, but
for the area around the metastable point our amplifier approximation without
saturation will be sufficiently precise.

We can now use this trajectory of u2 to predict the resolution time from
a given metastable state (see Figures 13 and 14): We simply have to define a
threshold Uth, beyond which the state is considered “resolved”. Considering
that the resolution can go both in upward or downward direction, we demand
|u2(tres)| > Uth. For a given resolution time tres we can therefore calculate the

15

Figure 13: Trajectories of u2 for different initial values of Ud

smallest difference voltage U ′d required to still cross the threshold Uth and thus
reach a resolved state by rephrasing Equation (3) as

|U ′d| > Uth · e−
A−l
RC tres (4)

Figure 15 depicts the resolution times for Uth = 0.1 V for the two inverters
parametrized as in Figure 14.

In practice, Equation (4) gives us the condition for the inverter loop to still
resolve, if left on its own (i.e. latch switched to opaque) with an initial difference
voltage Ud. Intuitively it is clear that for smaller (absolute) Ud the exponential
trajectory will be too flat to reach the threshold in time. So for any Ud with
−U ′d < Ud < +U ′d we cannot obtain resolution within the available resolution
time tres.

In a next step we will elaborate a mapping from input timing to difference
voltage. To this end, let us assume we have a linear voltage ramp at the input
with slope S (in V/s) as illustrated in Figure 16. For this signal to cross the

critical interval [−U ′d,+U ′d] it will take a time Tcrit =
2U ′d
S . This is the width of

the critical time window during which the inverter loop should not be decoupled,
i.e. the latch be switched to opaque. Using U ′d from Equation (4) we get

Tcrit =
2Uth
S
· e−

A−l
RC tres (5)

Note that the size of the critical window can be scaled with the resolution
time, so by increasing tres, we can make Tcrit smaller.

If we use our latch as part of a flip-flop in a synchronous circuit with a clock
period Tclk = 1

fclk
, we can turn this argument around and postulate, that around

the rising clock edge (at which we switch the master latch to opaque) we must
keep an interval of width Tcrit free from input transitions, because otherwise

16

Figure 14: Trajectories of u2 for different initial values of u2(0) plotted as for
the landscape scenario in Figure 2. We set u1(0) = −u2(0). Here, we assume
an inverter with delay of 2 ps, accordingly choosing RC = 2/0.69 ps, and an
amplification of A = 3.

the distance between the input transition and the clock transition will violate
Equation (5). In consequence this means, that for an input transition that
arrives completely uncorrelated to the clock (mind this assumption!), we have
a probability of Pcrit = Tcrit

Tclk
for it to occur within the window Tcrit, hence

violate Equation (5), thus create a too low difference voltage Ud, and in final
consequence cause a metastable state that does not resolve within the available
resolution time t′res. This is what we had called a metastable upset. With such
uncorrelated transitions on the data input occurring at rate λd, we obtain a rate
of metastable upsets given by λupset = λd · Pcrit. Putting that all together, we
obtain

λupset = λd · Pcrit = λd · fclk · Tcrit = λd · fclk
2Uth
S
· e−

A−l
RC tres (6)

If we now substitute the circuit parameters 2Uth
S = TW (aperture window)

and RC
A−1 = τc (resolution time constant), we finally obtain the commonly used

equation for estimating the mean time between upsets MTBU = 1
λupset

:

MTBU =
1

λd · fclk · TW
· e

tres
τc (7)

The MTBU is the expected interval between two successive metastable up-
sets. This is a statistical value that does not allow any direct conclusion on a
specific case. Typically one will design a system for an MTBU of over 10 years,

17

Figure 15: Resolution times for u2 if the threshold is 0.1 V. Different initial
values of u2(0) are plotted as for the landscape scenario in Figure 7. Again, we
set u1(0) = −u2(0). An inverter with RC = 2/0.69 ps and an amplification of
A = 3 is assumed.

so the probability of seeing a metastable upset in the lifetime of the system is
very low (but still one cannot safely exclude such upsets). In this sense the
MTBU is a very important design parameter.

In essence, Equation (7) shows an inverse proportionality of MTBU to the
rate λd of input events as well as to the clock frequency, which is both intuitive,
since the more transitions we have (both on clock and data), the higher the
threat of hitting the critical window. Note that the resolution time tres is in the
exponent, which means higher resolution time has a dramatic positive effect on
MTBU.

5 Determination of τc and TW through measure-
ment

If we draw Equation (7) in a semi-logartithmic diagram with tres on the x-axis
and ln(MTBU) on the y-axis, we obtain a straight line:

ln(MTBU(tres)) =
1

τc
· tres − ln(TW)− ln(λd · fclk) (8)

The slope is given by 1
τc

and the offset determined by the logarithms of
clock frequency fclk, rate λd of input transitions, and a parameter TW . Recall
from the previous section that both, τc and TW are circuit parameters; the for-
mer characterizing the dynamic properties of the inverter, and the latter being

18

Figure 16: Mapping from critical voltage to critical time window

determined by threshold voltage and signal slope. Clearly, if we want to esti-
mate MTBU through Equation (7), we need to have these parameters available.
Looking at the linear graph described by Equation (8), these parameters are
relatively easy to measure: For a given setting of fclk and λd we can experimen-
tally determine the graph by measuring the MTBU for different choices of tres.
The slope and the offset of the resulting straight line will allow us to determine
the two circuit parameters. For integrated circuits, of course the manufacturers
will do this characterization and provide the required parameters (even though
they are often hard to find in the data sheets) – but they typically use the
described measurement principle.

The good thing about this approach is that is does not suffer from the sub-
stantial simplifications that have been made in the derivation of Equation (7),
such as assuming a first-order dynamic system, assuming equal parameters for
forward and backward inverter, dropping the decaying term in Equation (6),
etc. In fact it only uses the insight that the dependence between resolution
time and MTBU is exponential, which is well confirmed by experiments in the
literature. The rest is in some sense “calibrated away” through the experimental
measurement.

On the downside, the practical implementation of the experimental measure-
ment is quite challenging: To keep the measurement duration within reasonable
limits, short MTBU must be targeted, as for each setting of tres numerous up-
sets must be collected to obtain valid statistics (recall that MTBU is a statistical
value, and the upsets do not occur regularly spaced). This requires short reso-
lution times with precise control of their temporal spacing (in the order of 10 ps
for modern technologies).

Figure 17 shows an example circuit from [?]. Here the target flip flop (termed
DUT for “device under test”) is provided with two independent clocks, one (osc
1) at the clock input and one (osc 2) at the data input. This creates exactly
the equally distributed phase relation that was assumed in the derivation of
Equation (7). A controllable delay element (var ∆) is used to determine the
point in time at which the output of the DUT is captured by a successor flip flop
(FF1). Obviously this determines the resolution time, and the controllable delay
element is the one that requires specific care in its implementation. Another

19

Figure 17: Block diagram for metastability characterization circuit

flip flop, FF2, is used to capture the output of the DUT at a significantly
later point in time, when it can be safely assumed that any metastability in
the DUT has already resolved2. By comparing the outputs of FF1 and FF2

we can determine whether the value captured by FF1 had already been the
final, resolved value. In case of a mismatch we can conclude that the output
of the DUT had not yet been resolved at the time FF1 captured it, so the
resolution took longer than the resolution time allowed through the controllable
delay element. That indicates an upset. By counting these upsets and relating
them to the observation period, a fault rate, and its inverse, the MTBU can
be calculated. The pair of values (tres,MTBU) thus obtained constitutes one
point of our linear graph. To determine a next point a new value of tres is
chosen through the controllable delay element, and the process for measuring
the associated MTBU is repeated. Knowing that the graph is linear, one could
essentially come along with measuring two points only; however in practice there
is some tolerance for both, tres as well as MTBU, and so it makes sense to collect
several points and do a linear regression fitting as shown in Figure 18.

The relevant slope is the one in the center of the figure (from 0 to 400ps).
The parallel lines in the lower right corner characterize the metastability of the
slave latch. As can be seen, the slave latch becomes metastable only when the
metastability (of the master) persists longer than the clock half period, which
occurs very rarely.

2Note that, since the duration of the metastable state is essentially unbounded, there
is always a residual probability for FF2 to still capture an unresolved state, but with an
appropriate dimensioning the related probability becomes negligible

20

Figure 18: Measurement result from metastability characterization

21

6 Mitigating metastability

Equation (7) not only allows us to calculate the MTBU for a given setting –
it is also a good foundation for studying which knobs to turn to maximize the
MTBU. Let us use its inverse for this purpose in the following:

UR =
1

MTBU
= λd · fclk · TW · e−

tres
τc (9)

An obvious measure to decrease the upset rate UR is to minimize the clock
frequency fclk or the data rate λd. While this is most often impossible or at
least undesired for a given application, it is still good to keep in mind that
unnecessarily high values there will worsen the upset rate. Another important
insight is that setting either fclk or λd to zero, i.e. completely avoiding the
sampling of an asynchronous input, is the only way to get a zero upset rate.
Neither the exponential function can become zero, nor can we expect a circuit
to exhibit TW = 0. As for the circuit parameters, a low value of TW is desir-
able, corresponding to a small sensitive window; as well as a low metastability
resolution constant τc, allowing fast resolution. These parameters can only be
influenced by choosing the most modern technology available, as they get better
at roughly the same pace as the propagation delay of a technology decreases.

Finally we have the resolution time as the most effective design parameter,
since it has an exponential influence on the upset rate. Unsurprisingly, larger tres
results in lower FR. This is because, clearly, allowing more time for resolution
increases the chances of sampling a resolved value. In a strictly synchronous
system the resolution time is determined by the choice of the clock frequency
as follows:

Tclk = tco + tcomb + tsu + tres (10)

In the relation given in Equation (10) the clock period is determined such
that all delays involved in the propagation of a signal edge for the output of
a producer flip flop to the input of a consumer flip flop can be accommodated
(in the worst case). More specifically, tco, the nominal clock-to-output delay,
is the delay it takes for a flip flop to present at its output the input value it
just captured with a clock edge (i.e. the time from the clock edge to the point
in time where the output is valid; in the non-metastable case); tcomb is the
propagation delay of combinational elements that process the output on the
way to the receiver flip flop (including interconnect delays), and tsu is the setup
time required by the receiving flip flop, i.e. the time the input value needs to be
stable before the clock edge in order to safely prevent metastability. Obviously,
the clock period must be chosen large enough to accommodate these parameters
to make the system work at all. Any choice of Tclk larger than that minimum
will leave room for a non-zero resolution time tres which, as explained previously,
can be useful as an extra margin for allowing metastability to resolve, should it
occur. In this sense, increasing tres implies a reduction of the attainable clock
frequency, which is again undesired. In the following section we will see how to
work around that.

22

For the moment let us conclude that an aggressive choice of the clock fre-
quency leaves no room for metastability to resolve. This is, however, generally
unproblematic for flip flops that are never exposed to asynchronous inputs (like
those well within a synchronous environment), as these are not supposed to ever
get metastable.

7 (Waiting) Synchronizer circuits

In the derivation of Equation (7) we have seen that metastability occurs when a
flip flop has to turn a marginal initial voltage difference Ud into a clear logic state
at its output in limited time. If it does not succeed in doing so, the subsequent
flip flop will again capture a marginal Ud and propagate the metastability. How-
ever, let us analyze this case for a cascade of n flip flops, with FF(i+1)’s input
directly connected to FFi’s output, without any combinational gates in between
(see Figure 19). Now assume FF1 starts with a marginal voltage difference Ud,1
and does not get its output across the threshold voltage within the available
time (which is Tclk − tco − tsu). So FF2 will be confronted with an undefined
input voltage. However, during the available resolution time the output voltage
of FF1 has at least undergone an exponential increase (positive or negative), so
FF2 will start from a higher voltage difference Ud,2 > Ud,1. Starting from that
point, FF2 will further increase the output voltage during its resolution time
and either already present a clean logic level to its successor FF3, or at least
cause a further increased initial voltage difference Ud,3, and so on.

Figure 19: Flip flop cascade forming a multistage synchronizer

So in fact, the further one goes downstream along the chain of flip flops,
the more likely it becomes that metastability has resolved, as increasingly more
resolution time is being aggregated. A usual assumption is that this aggregation
occurs in the form of a summation, i.e. the resolution times between the indi-
vidual flip flops can be summed up. This is an excellent way of increasing the
effective resolution time without sacrificing performance by reducing the clock
period

Exercise 4. Start from Equation (3) and show that for a multistage synchro-
nizer summing up the resolution times is indeed justified.

So a common way of mitigating metastability at asynchronous inputs is to
use such a chain of flip flops. This is called a synchronizer. In its simplest form

23

it just comprises two flip flops, a first one that is exposed to the asynchronous
input and hence likely to become metastable, followed by a second one who
only samples its output after (nearly) a full clock cycle of resolution time. It
is important that no combinational logic is inserted in between, as that would
reduce the available tres and hence drastically (exponentially) increase the upset
rate. Also, no fork is allowed in the connection between the flip flops: In fact,
due to tolerances in the thresholds, it is not sure that FF2 will actually consider
FF1’s undefined output as metastable, it might well happen to interpret it as
“above threshold” (logic HI) or “below threshold” (LO), which is perfectly fine.
However, if the different receiving flip flops at the ends of a fork would make
different interpretations (one going for HI and the other going for LO), that
would be a problem.

The synchronizer constituted by just two flip flops is called one-stage syn-
chronizer or two-flop synchronizer (note that a single flip flop is not yet a
synchronizer!). Its MTBU can be calculated by using Equation (7) with a reso-
lution time calculated from Equation (10), using tcomb = 0. Should the MTBU
thus obtained not be sufficient, another flip flop stage can be appended, yielding
a two-stage (3-flop) synchronizer with twice the resolution time. In the general
case of n flip flops cascaded, we obtain a (n−1)-stage (n-flop) synchronizer with
(n − 1)-fold resolution time. Due to the exponential impact of tres on MTBU,
each extra stage substantially improves the situation, and most often MTBU
values of hundred years are easily achieved with only a few stages.

So even though it is not possible to completely rule out metastable upsets in
the general case, their occurrence can be made arbitrarily improbable through
the use of synchronizers. The price, though, is a higher latency: A transition
arriving at the input of an n-stage synchronizer takes n extra clock cycles before
it reaches the output. This can be a substantial performance penalty in the
communication among clock domains. However, at least a reduction of the
clock frequency for the whole synchronous block can be avoided.

The synchronizer circuit described here is the most simple and popular one,
but it should be mentioned here that other approaches exist as well. One uses
just a chain of 3 flip flops and increases MTBU by simply scaling the clock of
the two upstream flip flops, while having the third flip flop in the row run at
full clock. With a scaling factor of k for the clock, this results in an overall
resolution time of (approximately) (k + 1) times that of a single stage. Yet
another approach is using n flip flops in parallel and alternating in supplying
clock edges to them as well in reading their data in such a way that a “resting
time‘” of n clock cycles is obtained for each individual flip flop. More details
can be found in [?].

The principle of all these synchronizers is to trade latency for a better
MTBU, by increasing tres in the exponential term of Equation (7). These types
of synchronizers are generally called waiting synchronizers.

24

8 Eliminating metastability

Let us again have a look at Equation (7). We have already discussed that the
right, exponential term describes the chances of having metastability resolved
within the available time tres. This becomes relevant once the flip flop has
actually become metastable. The probability for the latter is represented by
the left term in the equation. For the waiting synchronizers we have so far
addressed the exponential term, which obviously cannot yield a zero upset rate.

With respect to the right term recall a central assumption in the derivation of
Equation (7): The transitions on the data input arrive completely uncorrelated
to the clock. This assumption was instrumental in deriving the probability
of getting into metastability. Note that this is consequently a fundamental
prerequisite for the validity of Equation (7) for calculating the MTBU of the
waiting synchronizers presented above. There are, however, cases where clock
and data are temporally correlated, like in case of a clock domain crossing with
the clocks on both sides being derived from the same source by division or a PLL.
In such a setting one may easily encounter a periodic sequence of distinct phase
values. Just imagine the case of a 200MHz clock (5ns period) and a 250MHz
clock (4ns period) as a simple example: Starting with a rising transition on
both sides, the 250 MHZ clock will, relative to its next rising edge, observe the
200MHz clock to lag behind by 1ns, then by 2ns and 3ns at its next rising edges,
and finally they will be in phase again at the 5th rising edge (which is actually
the 4th rising edge of the 200MHz clock). No other values will ever be seen –
which is obviously far from the assumption of uncorrelated transitions.

However, such a setting does not represent the “general case” for which
Marino’s formal proof stated that metastability is inevitable [?]. In fact the
input space for the decision (the phase) is now not continuous anymore; it
just comprises 5 discrete values. In the above example e.g., one could simply
move the clocks by 0.5 ns relative to each other and then no data transition
will end up closer than 0.5 ns to any clock edge, which may, depending on
the specific parameters, allow to stay out of the relevant setup/hold windows
– for sure, as these phase values occur deterministically. However, note that
without this phase shift an upset would occur every 200 ns, while Equation (7)
would completely mispredict the MTBU. This time shift is the principle of other
synchronizers, like the time delay synchronizer, the data delay synchronizer.
While it is probably not justified to call the insertion of appropriate static delay
elements during the design process a synchronizer already, the task becomes
more challenging, if the appropriate setting of these delay elements has to be
calibrated upon each power-up or even re-calibrated during operation through
phase estimators. Such synchronizers are capable of handling jitter between the
clocks from the same source, and they can even accommodate clocks that have
the same (nominal) frequency but come from different sources.

Even knowing that both, the clock and the input data are periodic (without
having the same source or being correlated otherwise), is an a-priori knowledge
that can be leveraged to build a synchronizer: In [?] presents an “Even/Odd
Synchronizer” that continuously observes the phase between clock and input

25

data, and, by knowing (or learning) their ratio, can predict those cases where
a setup/hold violation might trigger metastability. If the prediction identifies
such a case, the phase is changed by 180 degree and metastability hence avoided.
However, it should be noted, that the metastability problem now has been
moved to the phase estimator – where, fortunately, its appropriate handling
through waiting synchronizers incurs lower performance penalty. Knowing that
clock and data are uncorrelated here, we have a continuous input space (every
phase relation will occur with the same probability), so clearly the metastability
problem cannot be completely removed. What is done, in fact, is to change the
probability distribution of the phase for the data path to one that does not
comprise the critical ones anymore.

A completely different attempt of eliminating metastability is voting: The
hope is that by having n flip flops sample the same asynchronous input concur-
rently, only a minority of them will get metastable (thanks to subtle variations
in timing and parameters), and so a m-of-n majority vote (with m = n+1

2) can
mask the metastable outputs. Unfortunately this does not work: In case one of
the flip flops actually gets metastable, this implies, that the data transition is
indeed close to the clock transition. In that case, however, it may well be that
some (say r) of the non-metastable flip flops captured their input before the
critical transition occurred, while the others (due to the variations) captured
their input after the data transition. In the unfortunate case of r = n−1

2 we
have one metastable flip flop, while half of the remaining ones disagrees with
the other half. So it is exactly up to the metastable one to decide, in which case
the voter output becomes metastable. One can play this with other choices of
m, but the bottom line is that there is always a residual constellation where the
metastable flip flop decides the outcome – so metastability cannot be reliably
masked by a voter.

There have also been attempts to detect metastability through various pro-
visions. While this is not impossible, the problem here is that, strangely enough,
the decision whether metastability occurred, in itself carries the risk of ending
up in metastability: After all it is a mapping from a continuous space (volt-
age) to a binary one. So this cannot be a reliable measure to safely eliminate
metastability.

A more promising approach is to simply accept the risk of metastable upsets,
but limit the error they introduce to the absolutely necessary amount (like the
LSB in a digital value). In a sensor/actuator system where both, inputs and
outputs are analog this may lead to minute changes in the output that are
absolutely acceptable. More on that will follow in Section ??.

9 How to build a GALS system

A final word about the proper use of synchronizers for parallel data: Synchro-
nizing all bits of a multi-bit data bus leads to consistency problems, due to the
skew (temporal displacement) of the transitions involved when changing from
one data word to a next one. To illustrate that, let us assume we have an 8 bit

26

data bus on which we transmit the following sequence of data words “00110011”
and “00110000”. Since, due to inevitable delay mismatches the two transition in
the rightmost bist will not arrive at the same time, the receiver will see the fol-
lowing sequence (assuming the rightmost bit is faster): “00110011”, “00110010”
“00110000”. It depends on the amount af the skew, how long the inconsistent
data word in the middle, that just results from the switching process, will be
visible for the receiver. Still there is a chance that the receiver will capture that
invalid word, and a waiting synchronizer cannot prevent that – after all there
is no metastability involved here.

The correct way of building such an interface is to encapsulate the actual
data transfer into a handshake that is executed by two extra signals, namely
a req (request) signal with which the sender indicates to the receiver that the
data is valid and should be captured, and an ack (acknowledge) signal used by
the receiver to confirm the receipt of the data. More specifically, the handshake
will comprise the following steps:

1. send data

2. activate req (after some delay to make sure all data transitions are over)

3. capture data

4. activate ack

Note that in this process synchronizers for the data bits are obsolete: The
protocol implies that data are stable when req is activated, so data transition
during the sampling will not occur. However, the handshake signals req and
ack need to be synchronized, but with just one signal per direction consistency
problems cannot occur either. Note that having several synchronizer stages
for req and ack may painfully reduce the transfer speed of the interface (the
handshake requires both, the synchronizer delay at req and that at ack to
be lined up). Therefore, sometimes FIFOs are used for the data to allow for
pipelined transmissions and hence increase the throughput even if the latency
is constrained by the synchronizers. Figure 20 shows a typical solution based
on this principle (without a FIFO).

10 Metastability trends

In the early days of synchronous digital design with low clock frequencies, few
interfaces and ample timing margins, metastability has not even been noticed.
However, over time problems (in fact metastable upsets) were experienced, and
though the seminal works of Molnar, Chaney [?] and Kinniment [?] an under-
standing and related theory of metastability in digital circuits started to be
developed. Unfortunately, the tremendous progress in CMOS technology that
helped boost clock frequencies by orders of magnitude over the past decades,
did not mitigate the metastability issues: In fact, the relevant circuit param-
eters, namely τc and TW , improved with the same pace as the propagation

27

Figure 20: A typical example for a multi-bit clock domain crossing in GALS

delays in a technology, and hence, simply put, through scaling all parameters
in Equation (7), the MTBU remained roughly constant.

While this is true for a single filp flop, the number of flip flops interfacing
clock domain crossings has increased enormously. This is due to the increasing
number of clock domains seen in modern system-on-chip architectures (recall the
GALS architectures from Section ??, e.g.). Consequently, to keep the overall
MTBU constant, the upset rate at a single flip flop must be drastically reduced
– by increasing the number of stages in the synchronizer. The latter, of course,
introduces performance penalties.

On top of that, the more sophisticated technological processes that enable
single-digit nanoscale feature sizes, incur higher timing tolerances, sometimes in
the order of tens of percent. Considering that these tolerances directly impact
the resolution time (recall Equation (10)) their effect on MTBU is exponential.
This can make the difference between considering the best case and the worst
case as large as several extra synchronizer stages [?].

28

11 Difference between Mutex and Synchronizer

Let us briefly recall the mission of a flip flop with an asynchronous data input:
Its purpose is to align data input transitions to the temporal grid imposed by
the clock. In other words, it has to uniquely associate each data transition to
an interval between two specific clock edges such that the data values associ-
ated with those clock edges are well defined. To that end, it needs to decided
whether a data transition occurred before of after a specific clock transition.
This becomes difficult when the data transition coincides with a clock edge, and
then synchronizers come to the rescue to mitigate the resulting metastability
issues.

A different problem of ordering transitions occurs with the access to shared
resources: Here a mutual exclusion mechanism is required to prevent two (or
more) clients from accessing the same resource simultaneously (as the resource
can only service one client at a time). The usual approach here is to allow access
for that client first that also requested the resource first. While this is relatively
easily done in a fully synchronous environment, metastability issues arise as
soon as the requests can arrive in continuous time (i.e. not synchronized with
each other). In that case, again, a discrete decision about a winner must be
made, based on relative arrival times on a continuous scale. And obviously the
problem becomes tough for coincident requests. The circuit element normally
used for this function is the mutual exclusion element (mutex). In some sense
its mission is similar to that of the flip flop in that it needs to decide about
the precedence of its two inputs, however with one important difference: It has
two outputs, namely the so called “grant” signals, one for each client. So while
being metastable, it is perfectly legal for the mutex not to activate (i.e. set
to HI) any of its outputs; and only after resolution has finished, one of the
requesting clients gets its grant activated. This can be accomplished by using
low-threshold inverters at both grant outputs, and so no metastable upsets need
be feared (but unbounded decision time, instead).

The mutex’s mode of operation is called value safe, because it is considered
its most important property to deliver a correct result (namely never activating
both grant outputs at the same time), and it has a choice of delivering ”no
decision” by activating none of the grant outputs for as long as it takes. The
flip flop (and synchronizer), in contrast, operates in time safe mode: Here the
clock dictates the point in time when the output has to be ready, no matter
whether it is already valid/resolved at that time. Moreover, with its single
output, it lacks an option to express not being ready.

12 Summary

Starting from some thought experiments about a particle moving within a hilly
landscape, we have observed stable and metastable fixed points. We then ar-
gued why the landscape scenario is related to scenarios in hardware components
that occur thousands of times in larger circuits. With respect to digital hard-

29

ware we have seen that metastability issues emerge through the mapping from
the continuous space formed by the arrival time of a data transition at a flip
flop input relative to the time of the relevant clock edge. With uncorrelated
timing sources for data and clock no magic solution exists to completely avoid
metastable upsets. However, the mean time between upsets (MTBU) can be
made arbitrarily large by just allowing enough time for the metastability to
resolve before the flip flop output is used. This is the basic principle under-
lying the commonly used waiting synchronizers. By spreading the resolution
time over multiple clock periods, multistage synchronizers can attain resolution
times even substantially larger than a clock cycle. If additional knowledge about
about input transitions is available, like periodicity, metastability can also be
moved away from the data path, like into a phase predictor, where it can be
more easily accommodated.

Complete elimination of metastability is only possible with correlated timing
of clock and input data – which implies that both stem from the same timing
source3. In that case the relative position of the input transitions is no more
continuous and just needs to be appropriately aligned against the clock grid
through delays – either statically, or through continuous adaptation.

Through the increasing number of clock domains and clock domain cross-
ings in modern VLSI architectures, as well as increasing timing tolerances, the
careful consideration of metastability along with the selection of appropriate
synchronizers has become more important than ever.

A Exercises

1. Build a communication system of state machines.

2. Basic Synchronizer Design & Effect of Tolerances. You are given a clock
domain crossing with parameters xyz. Design a synchronizer that obtains
an MTBU of at least xx. Now assume that the parameters have tolerance
of yy

3. Restrictions of the “General Case”. You are given a clock domain crossing
and need to design a synchronizer. Are there alternatives to the waiting
synchronizer for the following cases: both domains have the same clock,
with a known/unknown stable/unstable phase relation less/more than 1
cycle?

4. Clock domain crossing as a special case. You are given a clock domain
crossing and need to design a synchronizer. Clock A has a stable frequency
of x MHz, clock B has a stable frequency of y MHz. Is there a way to
do better than building a waiting synchronizer? (Hint: Consider using a
phase estimator)

3Or they have been synchronized, which just moves the metastablity problem to that
synchronizer.

30

5. MTBU for ratiochronous clocks. You are given a clock domain crossing,
with period of A is k times period of B. Discuss how you can make a safe
synchronization. Can you use a waiting synchronizer here? How do you
calculate the MTBU?

6. Transformations of metastability. Using the output voltage shape of a
metastable flip-flop as an input, discuss the possible output shapes of a
comparator/ a high threshold buffer / a low threshold buffer / a Schmitt
Trigger

7. Oscillatory metastability. Use an inverter model that just exhibits a fixed
pure delay from input to output. Can you make a storage loop built from
such inverters metastable? Can you make it do any other unexpected
thing?

31

