Phase Locked Loops, PLLs, for Clocking Chips

Outline

Part 1:

- Overview
- Intro to PLLs
- Clocking with PLLs
- Analog PLLs

Part 2:

- Recap
- Digital PLLs
- Future challenges
- Summary

Recap

- © Clocked chips => ease design (uniformity)
- PLLs => low jitter, stable
 - => programmable
 - => ratioed phase-related clocks
 - => enable many forms of data communication
- Analog PLLs => excellent, but:
 large & high power

Outline

Part 1:

- Overview
- Intro to PLLs
- Clocking with PLLs
- Analog PLLs

Part 2:

- Recap
- Digital PLLs
- Future challenges
- Summary

Analog PLL

 $f_{PLL} = N \times f_{REF}$

Digital PLL

 $f_{PLL} = N x f_{REF}$

Digital PLL Components

OSC – External clock reference

DCO – On-chip Digital Controlled Oscillator

DPD – Digital Phase Detector

DLF – Digital Loop Filter

Digital PLL Components

OSC – External clock reference

DCO – On-chip Digital Controlled Oscillator

DPD – Digital Phase Detector

DLF – Digital Loop Filter

Digital Controlled Oscillator, DCO

Digital Controlled Oscillator, DCO

Digital PLL Components

OSC – External clock reference

DCO – On-chip Digital Controlled Oscillator

DPD – Digital Phase Detector

DLF – Digital Loop Filter

Digital Phase Detector, DPD

Time-To-Digital Converter, TDC:

Digital Phase Detector, DPD

TDC waveforms:

Digital Phase Detector, DPD

TDC steps:

Digital PLL Components

OSC – External clock reference

DCO — On-chip Digital Controlled Oscillator

DPD – Digital Phase Detector

DLF – Digital Loop Filter

Digital Loop Filter, DLF

4-stage FIR low-pass filter:

Digital PLL

Discussion Session #1

- What needs further explanation?
- When the DPD resolution?
- What makes the digital loop filter smaller than it's analog counterpart?

Note: Digital filter design is a whole subject in itself!

Discussion Session #1: Vernier Tapped Delay Line

Do you see any possible problems?

Discussion Session #1: Digital loop filter size

Digital filter can be 10x smaller than analog filter: large capacitances required by analog filter.

Discussion Session #1

Outline

Part 1:

- Overview
- Intro to PLLs
- Clocking with PLLs
- Analog PLLs

Part 2:

- Recap
- Digital PLLs
- Future challenges
- Summary

Clocking Challenges

- Gate delays becoming more sensitive to supply voltage variations
 - need to quickly adjust the clock to compensate
- Cost of synchronization delays at clock domain crossings is too high
 - takes multiple clock cycles

Future

Future Chips

Technology advances bring:

- complete systems on chip
- more computing
- more clock domains
- more delay variation

Beyond PLLs

PLLs are so good!

Why are we fussing?

- PLLs are intentionally slow to respond to changes!
- We require the clock frequency to adapt more rapidly to changes.

Future?

Rapid adjustment and tuning of clocks:

Outline

Part 1:

- Overview
- Intro to PLLs
- Clocking with PLLs
- Analog PLLs

Part 2:

- Recap
- Digital PLLs
- Future challenges
- Summary

Summary

- PLLs are the greatest thing since sliced bread!
- Stable & low jitter = more computing per clock cycle.
- PLLs enable reliable data transfers.
- Large power hungry circuits => move to digital PLLs.
- Future needs:
 - responsive clock generators
 - clock tuning schemes

Discussion Session #2

- What's not clear?
- Why have PLLs become the main way to generate on-chip clocks?
- Why are analog PLLs still the most common?
- Why are digital PLLs becoming popular?
- Other future needs?

Happy Holidays!

