How to Clock Your
Computer:

Digital Logic Design 1/3
Moti Medina

Slides, slides material, and figures are taken from “Digital Logic Design : a rigorous approach” lecture
slides and book by Guy Even and M (Chapters: 10, 11, 12, 14).

http://hyde.eng.tau.ac.il/Even-Medina/index.html

Our Journey:
From Transistors to
Computers

+Flip-
flops=Synchronous
circ.

Gates+wires+acyclicity

Transistors .. .
= combinational circ.

Picture taken from here. 2

https://medium.com/@memetic007/a-journey-to-gameb-4fb13772bcf3

‘Today’s plan

* 40 min lecture session (~pages 1-9, 15-16 in the “reading material™).
* Transistors
* From transistors to gates
« Combinational gates
* Wires
« Combinational circuits
« Equivalence to Boolean functions.

* Rest of the lecture:
* Discuss, solve and present Question 1, Question 2 &3, or Question 4.
* Questions appear on Page 17 in the reading material.

Transistors

A lot to say about these devices.
 Let’'s keep it simple in the 15t 3 sessions.
* Let’s view transistors as “switches”

* N-transistor:
 “turn it on” - drain=source (i.e., conducting).
 “turn off” - drain and source are not connected
(.e., not conducting)
* P-transistor:
 “turn it off” - drain=source.
 “turn on” = drain and source are not connected.

« “Turn on/off” = depends on the voltage at the
gate.

drain source
gate gate o)
source drain
N-—transistor P—transistor

Inputs: gate & source
Qutput: drain

W From Transistors to Gates

« How does an inverter look like?
Vb e{0,1}:INV(x) =1—x

« Every gate has its propagation delay
° tpd
* Time from stable logical inputs to

stable logical outputs.
* There are more parameters...

« Gates are “analog”

* We interpret voltages as 0 and 1
according to some thresholds.

* There are noises in any system.

« = Thresholds has to be separate
« = there is a "non-logical” area.

« More about this later in the course.

5 volts

—=9|| P-transistor
IN— — OUT

N—transistor

0 volts

If IN = low, then:
@ P-transistor is conducting
@ N-transistor is not conducting
= v(OUT) = high
If IN = high, then:
@ P-transistor is not conducting
@ N-transistor is conducting
= v(OUT) = low

Combinational Gates

« Computes a simple Boolean
function
« AND, OR, XOR, NXOR, NOT,...

- Takes t,,; time so that the output
equal to the stable inputs.

« What happens when the inputs stop
being stable?

* t.ont time after that the gate’s output
becomes “garbage”

 Let’s throw in MUX as a gate as
well.

 All our gates have a single output.

* Inputs & outputs of a gate aka
« Terminals, ports, and pins.

The outputs become stable at most t,4 time units after the inputs
become stable. The outputs remain stable at least t.on: time units
after the inputs become instable.

et

outputs NG

inputs N]
I

> tcont

Figure: The x-axis corresponds to time. The red segments signify that
the signal is not guaranteed to be logical; the green segments signify that
the signal is guaranteed to be stable.

- > 4 »

inverter AND—gate NAND—gate
XOR—gate OR—gate NOR-—gate

Figure 11.6: Symbols of common gates. Inputs are on the left side, outputs are on the right 6
side.

W Combinational Gates

* All out gates have a single output.

* Inputs & outputs of a gate aka
« Terminals, ports, and pins.

* Fan-in of a gate =
e number of input ports =

« number of bits in the gate’s Boolean
function =

* In-degree of a node that represents
the gate.

« Our “basic” gates have fan-in 1-3.

 Let’'s add input and output gates

» Get the “Iinputs” from the outer world
and feed the output back to it.

 Fan-inis 0-3

Figure 11.6:

side.

Syn

$o- 3) J »

CCCC

AND—gate

NAND—gate

DD

XOR—gate

1bols of common gates.

e

Input Gate

OR—gate

Inputs

NOR-gate

> on the left side, outputs are

_— >

Output Gate

1 the

right

Wires

e Simply a connection between two terminals.
« Fan-out of a gate = number of input ports it feeds.

W Combinational Circuits

e Wires “have direction”: from The combinational circuit C = (G,) is called a Half-Adder.
an output port to an input)

(OUT, coue) [1] —~ M
port. F J—= - -
* Each input port is fed by a o —) - o

single output port.

* Map gates to vertices, wires to
arcs = Directec (Iabeled) Graph- The set of the combinational gates in this example is

: - - [= {AND, XOR}. The labeling function 7: V — T U /O is as
* Directed graph Is acyclic lone.
(DAG) = Combinational
Circuit.

Figure: A Half-Adder combinational circuit and its matching DAG.

(1) = (IN, a), (2)
7(3) = AND, (4
7(5) = (OUT, cout), 7(6) = (ouT,s) .

(IN, b),
OR,

=

S’

W Bad Circuits

Can you explain why these are not valid combinational circuits?

Do

— o

Figure: Two examples of non-combinational circuits.

10

W Comb. Circuits = Boolean function

 Given stable input to a Combinational Circuit C (or its graph
representation G.), we can:
1. Simulate the circuit in linear time (w.r.t. to the size of G.),
2. Analyze the delay of C Iin linear time.

 How? Topological sorting.

« Every Combinational circuit € implements a Boolean function.

« Given that we can simulate, this argument is obvious.
 Remove the MUX from our “basic gates” to make things easier (i.e., fan-in < 2).

 For every Boolean function f:{0,1}"* — {0,1} there is a Comb. Circuit C
that implements f
» That is, Vx € {0,1}*: SIMUL(C, x) = f(x).

11

Complexity Measures: Cost and Delay

« Each gate has its cost.

« We are interested in the asymptotic behavior of our measures.
 Basic gates are of constant cost we treat them as cost=1.
 The cost of a Comb. Circ. C is the number of its gates.

« Each gate has its propagation delay.
« Again, we are interested in the asymptotic behavior of our measures.
* Basic gates are of constant delay we treat them as t,,;=1.

 The delay of a Comb. Circ. C is the length of the longest input to
output path in C.

12

»
-

ff

v -

.-
Ay, S S
>

-
’

-
-

'

pletely

<

-
.
.
— -~
L

Lower Bounds: Cost and Depth

« Reminder |: The depth of arooted tree with n leaves is > [log, n].
« Reminder Il: The #nodes of every rooted tree with n leaves is 2n — 1.

« Reminder lll: Cost of every gate is 1 (input and output gates have O
cost)

Let flip; : {0,1}" — {0,1}" be the Boolean function defined by

A

flip;(X) = y, where

A{xj if j £ i

NOT(x;) if i=].

14

W The Cone of a Boolean Function

Definition (Cone of a Boolean function)

The cone of a Boolean function f : {0,1}" — {0,1} is defined by

cone(f) = {i : 3V such that £(V) % f(flip;(V))}

v

cone(XOR) = {1, 2}. l

We say that f depends on x; if i € cone(f).

15

‘An Example

Consider the following Boolean function:

0 if 3, x <3

\ 1 otherwise.

Suppose that one reveals the input bits one by one. As soon as 3
ones are revealed, one can determine the value of f(X).
Nevertheless, the function f(X) depends on all its inputs, and
hence, cone(f) ={1,...,n}.

16

Composition of Functions & Graphical Cone

If g(X) = B(f(X), £2(X)), then

cone(g) C cone(f;) U cone(f) .

Let G = (V, E) denote a DAG. The graphical cone of a vertex
v € V is defined by

coneg(v) = {u € V : deg; (u) = 0 and Jpath from u to v}.

In a combinational circuit, every source is an input gate. This
means that the graphical cone of v equals the set of input gates
from which there exists a path to v.

17

'Functional Cone < Graphical Cone

Let H= (V, E,n) denote a combinational circuit. Let
G = DG(H). For every vertex v € V, the following holds:

cone(f,) C coneg(v).

Namely, if f, depends on x;, then the input gate u that feeds the
input x; must be in the graphical cone of v.

18

W ‘“Hidden” Rooted Trees

Let G = (V, E) denote a DAG. For every v € V, there exist
UC V and F C E such that:

Q 7T =(U,F) is a rooted tree;

Q v is the root of T;

Q coneg(v) equals the set of leaves of (U, F).

The sets U and F are constructed as follows.

Q Initialize F = () and U = ().
Q@ For every source u in coneg(v) do

(a) Find a path p, from u to v.

(b) Let g, denote the prefix of p,, the vertices and edges of which
are not contained in U or F.

(c) Add the edges of q, to F, and add the vertices of g, to U.

19

Putting things together! LB on Cost

Theorem (Linear Cost Lower Bound Theorem)

Let H= (V,E,) denote a combinational circuit. If the fan-in of
every gate in H is at most 2, then

> — 1.
c(H) > max lcone(f,)| — 1

w
Corollary

Let C,, denote a combinational circuit that implements OR,,. Then

c(Cp) > n—1.

20

‘Lower Bound on Delay

Theorem (Logarithmic Delay Lower Bound Theorem)

Let H= (V, E,) denote a combinational circuit. If the fan-in of
every gate in H is at most 2, then

tod(H) > max log, |cone(f,)|.
vE

o

Corollary

Let C, denote a combinational circuit that implements OR,. Let 2
denote the maximum fan-in of a gate in C,,. Then

tpd(Cn) = [logy | .

21

W Effect of fan-in< k on Lower Bounds

Theorem (Logarithmic Delay Lower Bound Theorem)

Let H= (V, E,n) denote a combinational circuit. If the fan-in of
every gate in H is at most k, then

thd(H) > max log, |cone(f,,)|
ve

v

Corollary

Let C,, denote a combinational circuit that implements OR,. Let k
denote the maximum fan-in of a gate in C,. Then

tpd(Cn) > [logy n] .

22

See you on Monday!

Enjoy the discussion ©

How to Clock Your
Computer:

Digital Logic Design 2/3
Moti Medina

Slides, slides material, and figures are taken from “Digital Logic Design : a rigorous approach” lecture
slides and book by Guy Even and M (Chapters: 17-20).

24

http://hyde.eng.tau.ac.il/Even-Medina/index.html

Our Journey:
From Transistors to

Computers

<

<

: . +Flip-
. Gates+wires+ licit
Transistors Gates atesrwiresracyclicity flops=Synchronous
= combinational circ. :
. circ.
: A\

=Boolean
Functions

https://medium.com/@memetic007/a-journey-to-gameb-4fb13772bcf3

‘Today’s plan

* 40 min lecture session (~pages 9-17 in the “reading material”).
e The clock (2 min)
» Clock cycles (2 min)
* Flip-flop and Clock enabled Flip-Flops (4 min)
* The Zero-delay model (2 min)
« Example: Sequential XOR. (4 min)
« Canonic form of a synch. Circuit. (5 min)
« FSMSs (4 min)
« Analysis and Synthesis (4 min)
« Example 1: analysis of a counter (4 min)
« Example 2: analysis of shift register (4 mins)
« Example 3: synthesis of a 2-state FSM (6 min)

 Rest of the lecture:

 Discuss, solve and present Question 5, Question 6, or Question 10, 12.
« Questions appear on Page 17 in the reading material.

W The Clock

the clock is generated by rectifying and amplifying a signal
generated by special non-digital devices (e.g., crystal oscillators).

A clock is a periodic logical signal that oscillates instantaneously
between logical one and logical zero. There are two instantaneous
transitions in every clock period: (i) in the beginning of the clock
period, the clock transitions instantaneously from zero to one; and
(ii) at some time in the interior of the clock period, the clock

transitions instantaneously from one to zero.

logical level .
\ clock fall clock rise

clock period

pulse width

time

27

‘Clock Cycles

@ A clock partitions time into discrete intervals.
@ t; - the starting time of the /th clock cycle.
@ [t;, ti11) -clock cycle i.

@ Clock period = tj11 — t;.

We assume that the clock period equals 1.

tiv1=t+1.

28

Flip-flop

A flip-flop is defined as follows.
Inputs: Digital signals D(t) and a clock CLK.
Output: A digital signal Q(t).

Functionality:
Q(t+1)=D(t).

D t || D[t] | Q[t]
$ 0 1 ?
1 0 1
CLK —0-> FF 2 0 0
‘ 3 1 0
Q 4 1 1

Clock-enabled Flip-Flops

A clock enabled flip-flop is defined as follows.
Inputs: Digital signals D(t),CE(t) and a clock CLK.
Output: A digital signal Q(t).

Functionality:

~) D(t) ifce(t)=1
RS L= {Q(t) if CE(t) = 0.

We refer to the input signal CE(t) as the clock-enable signal. Note
that the input CE(t) indicates whether the flip-flop samples the
input D(t) or maintains its previous value.

v

D
'
CLK —e CE-FF
CE(t)—e
'
Q

‘The Zero-delay Model

@ Transitions of all signals are instantaneous.
@ Combinational gates: t,g = teont = 0.
@ Flip-flops satisfy:

Q(t+1) = D(t).

@ Simplified model for specifying and simulating the
functionality of circuits with flip-flops.

@ For a signal X, let X; denote its value during the ith clock
cycle.

31

'Example: Sequential XOR

XOR
D - 1| A | Y| 4
LK 0] 0] o]0
1 0] o]0
2l 1] 10
@ El R ENE
. . 410141
* How much a comb. circuit that imp. cil O\T
XOR,, costs at best? Delay? oo 0:\01
« Sequential version has cost of 0(1)! 211110
How can that be? sll o111

32

‘Canonic Form of a Synch. Circuit

> - Functionality (without
comb.)\leClllt OUT 51007
IN ——e » Logical value of a signal X
during the ith clock cycle by
X
*comb. circuit . Cllaim: Eori>0
0 * S5;i=NS;_1
® NSl = 6(1Nl,Sl)
e OUTL = A(INL,SL)
5 Q Dl V5 * Why every Synch. Circuit
AN can be represented In this

‘ Canonic Form?

Figure: A synchronous circuit in canonic form.

33

W FSMs

The functionality of a synchronous circuit in the canonic form is so
important that it justifies a term called finite state machines.

A finite state machine (FSM) is a 6-tuple A = (Q, X, A, 0, A, qo),
where

@ (@ is a set of states.

@ X is the alphabet of the input.

@ A is the alphabet of the output.

@ 0: Q XX — Qis a transition function.
o

o

A @ X2 — Ais an output function.

go € @ is an initial state.

34

What does an FSM do?

An FSM is an abstract machine that operates as follows. The

input is a sequence {x,.},,_o of symbols over the alphabet X. The

output is a sequence {y,.}‘,_D of symbols over the alphabet A. An
FSM transitions through the sequence of states {g;}"_,. The state
g; is defined recursively as follows:

VAN
di+1 — 5(qf'v Xf)

A finite state machine (FSM) is a 6-tuple A = (Q, X, A, 4§, A, qo),
where
The output y; is defined as follows: ®QBaseoliae
@ ¥ is the alphabet of the input.
@ A is the alphabet of the output.
AN @ §: QX X — Qis a transition function.

y! p—)\(q;,X;). @ A: Q x X — Aisan output function.

@ go € Q is an initial state.

‘Analysis and Synthesis

Two tasks are often associated with synchronous circuits. These
tasks are defined as follows.

@ Analysis: given a synchronous circuit C, describe its
functionality by an FSM. -

© Synthesis: given an FSM A, design a synchronous circuit C

that implements A. -

36

'Example 1: Analysis of a Counter

A counter(n) is defined as follows.
Inputs: a clock CLK.
Output: N € {0,1}".

Functionality:

vVt : (Ng) = t(mod 2")

No input?! Input is “implied”: it is the (missing) reset signal!

37

‘Counter Implementation

:

incrementer(n)

CLK —&> FF(n)

Figure: A synchronous circuit that implements a

A counter(n) is defined as follows.
Inputs: a clock CLK.
Output: N € {0,1}".

Functionality:

vVt @ (N;) = t(mod 2")

counter. 25

‘Counter Analysis

'

incrementer(n)

CLK —&{> FF(n)

Figure: An FSM of a counter(2). The output always equals binary

representation of the state from which the edge emanates.
39

'Example 2: Analysis of Shift Register

A shift register of n bits is defined as follows.
Inputs: D[0](t) and a clock CLK.
Output: Q[n — 1](t).
Functionality: Q[n — 1](t + n) = D[0](t).

T [DO] QB0
D3| Dp2) Dl Dlo] 0l 1 0000
: g X : X : " 1| 1 | ooot
) FFa > FFy - FF;] FF 2 1 OO 1 1
1 ! il 1 3 0 0111
) Qp el Qlo] 4 1 1110
Figure: A 4-bit shift register. (b) Simulation of shift

register

'Example 2: Analysis of Shift Register

(0,0)

N

D[] D[o]

41

'Example 3: Synthesis of a 2-state FSM

Consider the FSM A = (Q, X, A, 4, A, qo) depicted in the next
figure, where

Q — {quql}a
Y =A={0,1}.
(1,0)
\ B /

Figure: A two-state FSM.

42

'Example 3: The circuit

(1 0)

(0,1)

(11

,/

IN

l

Q

FF
N

D

Figure: Synthesis of A.

CLK

C
'6i>—¢- ouT
.
Cs

NS

43

See you on Thursday!

Enjoy the discussion ©

How to Clock Your
Computer:

Digital Logic Design 3/3
Moti Medina

Slides, slides material, and figures are taken from “Digital Logic Design : a rigorous approach” lecture
slides and book by Guy Even and M (Chapters: 15, 17-22).

45

http://hyde.eng.tau.ac.il/Even-Medina/index.html

Our Journey:
From Transistors to

Computers

<

<

+Flip-

Gates+wires+acyclicity flops=Synchronous

Transistors .. .
= combinational circ.

= Boolean
Functions

Picture taken from here.

https://medium.com/@memetic007/a-journey-to-gameb-4fb13772bcf3

‘Today’s plan

* 45 min lecture session (~pages 9-17 in the “reading material”).
« Sequential Adder (4 min)

Binary Adder (2 min)

Ripple Carry Adder (RCA) (4 min)

Relation between Ripple Carry Adder and Seq. Adder (2 min)

Recursive Def. of RCA(n) (2 min)

Registers: parallel load and serial load (aka Shift registers) (6 min)

Random Access Memory (RAM) (10 min)

A simplified CPU example — the DLX. (14 min)

Recap (1 min)

* Rest of the lecture:
 Discuss, solve and present Question 7, Question 8, or Question 9.
« Questions appear on Page 17 in the reading material.

‘Sequential Adder

A sequential adder is defined as follows.
Inputs: A, B and a clock signal cLK, where A;, B; € {0,1}.
Output: S, where S; € {0,1}.

Functionality: Then, for every i > 0,
(A[i : 0]) + (B[i : 0]) = (S[i : 0]) (mod 2'*1).

48

‘Sequential Adder: Implementation

Cin

| KR
A
. Full-Adder
A sequential adder is defined as follows.
C S Inputs: A, B and a clock signal cLK, where A;, B; € {0, 1}.
FF Output: S, where S; € {0,1}.

Functionality: Then, for every i > 0,

D (A[i : 0]) + (B[i : 0]) = (S[i : 0]) (mod 2i+1).

N

49

‘Sequential Adder: Correctness

SOA P+ B2 =82 4 coue(i) - 27

j=0 j=0 j=0
The proof is by induction on 1. Complete the
The induction basis for i = 0 follows from the functionality of the
full-adder:

Ao + By + C,'n(O) =2 - Cout(O) + 5.

This requires that C;,(0) = 0! Namely, that the FF is initialized to
Zero.

[

v 50

‘Binary Adder

ADDER(n) - a binary adder with input length n is a combinational
circuit specified as follows.

Input: A[n—1:0],B[n—1:0] € {0,1}", and C[0] € {0,1}.
Output: S[n—1:0] € {0,1}" and C[n] € {0, 1}.

Functionality:

—

(S)+2"-Cln] = (A)+(B)+C[0l. (1)

y

Addition terminology:
o addends: (A) = """ A[i]- 27, and (B) = 2771 B[] - 2
@ carry-in bit : C[0]
o sum: (S)
@ carry-out bit: C[n]

51

Ripple Carry Adder RCA(n)

Bln—1 Aln—1] Bln—2 Ajn—2] BI] A[l] Bl0] A[0]
] L - .
— C[0]
FA,, 1 FAp—o | | FAq FAg
o L] ‘ | |
ClnlSin—1] Cln—1] Sjn—2] Cln—2) c2l S Cll SO

@ same addition algorithm that we use for adding numbers by
hand.

@ row of n Full-Adders connected in a chain.

@ the weight of every signal is two to the power of its index.
(Do not confuse weight here with Hamming weight. Weight
means here the value in binary representation.)

52

Relation between RCA(n) and Seq. Adder

Q FA; is “simulated” by the FA (in Seq. Adder) in the i'th clock
cycle.

@ We can view RCA(n) as an “unrolling” of the Seq. Adder.

Bln—1 Aln—1] Bln—2] A[n — 2] B[1] A[] Bl0] A[0]

[0
FA,,_1 FAp o | | FA4 FAq

C S C S C S C S

o L] | |

Cln]Sh—1 Cn—1] Sn—2] Cln—2] C[2] S[1] Cl1] S[0]

53

'Recursive Definition of RCA(n)

Basis: an RCA(1) is simply a Full-Adder.
Reduction Step:

Bn—1] Aln—1] Bn—-2:0 An—2:0]

- pri g

FA,_1 RCA(n — 1)

C S

| =

Cln| Sin—1] Cn —1] Sln —2:0]

Can We Do Better?

° COSt and Delay Of RCA(n) are @ (n) " ADDER(n) - a binary adder with input length n is a combinational

circuit specified as follows.
Input: A[n—1:0],B[n—1:0] € {0,1}", and C[0] € {0,1}.

» Lower bound of Binary Adder Q(logn) for oo 7" o mecnei
the delay and (1(n) for the cost () +2" - Clrl = (A +(By+ CloL. (1)

* What is the cone of the S[n — 1]?

* What is the cone of C[n]?

« Again: How did we manage to get a const.
I basis: A csA(1) is simply a Full-Adder.

Size sed. adder then? _
reduction step:
Bin—1:4 Apn—1:4K Bln—1:K An—1:4 Blk—1:01 Afk—1:0]
« Can you somehow “pbreak”™ RCA(n) and (A 1 SR (S R R A
make it more “parallel™? a4 a4 o
. Almost optimal design CSA(n) e [R €
« Cost is 0(n'0823) ot i) |
« Optimal design uses Parallel-Prefix Comp. foohe o

Cln]-Sn—1:k|

e Next semester.
55

»
-

ff

v -

.-
Ay, S S
>

-
’

-
-

'

pletely

<

-
.
.
— -~
L

Registers

A term register is used to define a memory device that stores a bit
or more. There are two main types of register depending on how
their contents are loaded.

@ Parallel Load Register
Q@ Shift Register (also called a serial load register)

57

Parallel Load Register - specification

An n-bit parallel load register is specified as follows.
Inputs: @ D[n—1:0|(¢t),
@ CE(t), and
@ a clock CLK.

Output: Q[n —1:0](t).

Functionality:

D[n—1:0](¢) if cu(t)
Q[n—1:0](t) if c(t)

1
0.

v

Q[nl:O](t—I—l):{

Parallel Load Register - design

i || D[3:0] | cE | Q[3:0] D3 -0
0l 1010 | 1 | 0000 4i
1 0101 1 1010
CLK —&{>
2 1100 | 0 | 0101 b e CE-FF(4)
3 1100 1 0101
4 0011 1 1100 4 i
Q|3 : 0]
DJ3] D[] D] D[0]
1i 1i li 1
CLE = CE-FF CLK —& CE-FF CLK —& CE-FF CLEK _’> CE-FF
CE —e CE —e CE —e CE —&
1i 1i li 1i
Q[3] Q[2] Q1] Q[0]

Figure: A 4-bit parallel load register

59

'Random Access Memory (RAM)

W RAM - definition

A RAM(2") is specified as follows.
Inputs: Address[n —1:0](t) € {0,1}",Din(t) € {0,1},
R/W(t) € {0,1} and a clock CLK.
Output: Dgu(t) € {0,1}.

Functionality :

@ data: array M[2" — 1 : 0] of bits.
Q initialize: Vi : M[i] < 0.
© Fort =0 to oo do

@ Doui(t) = M[{Address)](t).
@ For all i # (Address): M[i](t + 1) < M[i](t).
(S

Din(t) if R/W(t) =0
M[(Address)](t) else.

M[(Address)|(t + 1) « {

Dy, Addressin —1:0]
t oy

) RAM(2™)

'

Dout

CLK —&
R/W—e

Figure: A schematic of a RAM(2").

61

‘Memory Cell - specification

« Wait a minute...how do we do this for a single bit? R0
A single bit memory cell is defined as follows.
Inputs: Din(t), R/W(t), sel(t), and a clock CLK. Dy,
Output: Dyyut(t). i
. - CLK —
Functionality: sel ANOT(R/W) —elcE FF
Assume that Do, is initialized zero, i.e., Doyt(0) = 0. The '
Dout

functionality is defined according to the following cases.

D..(t) if sel(t) =1 and R/W(t) =
Dout(t) otherwise.

Figure: An implementation of a memory cell.

62

'RAM -design

Addressin — 1 : 0]

o

DECODER(n)
_
A rRAM(2") is specified as follows.
Inputs: Address[n —1: 0](t) € {0,1}",Din(t) € {0,1},
R/W(t) € {0,1} and a clock CLK.
Output: Dout(t) € 10,1} Di, |sel[2™ — 1] Din |sel[1] D, | sel[0]
Functionality : *1 A1 * X 1 *] 1
Q data: array M[2" —1: 0] of bits. Y _ . . . Y 7 | M R/
@ initialize: Vi : M[i] < 0. 21— R/W 1 R/ o R/
© Fort =0 to oo do

@ Dou(t) = M[(Address)](t). 1 1 A1
@ For all i # (Address): M[i](t + 1) < M[i](t). D[2" —1] DI[1] DI[0]

o
2n

sel[2" —1:0]

Din(t) if R/W(t)=0 D[2" —1:0]
M[(Address)|(t) else.

M[({Address)](t + 1) + {

Addressn — 1 : 0]—— (2” . 1) — MUX

mn
Tl
63

<
O

‘We are ready...

* We are now ready to start talking about a high-level implementation of a
simplified processor (don’t get confused — this is a huge achievement).

* We know how to implement FSMs and how to implement any Boolean
function.

* We also have some (more than) rough idea on how a RAM looks like.

 Let us assume a processor that interacts with a RAM which stores both
Instructions and data that the processor operates on.

* These instructions have some syntax and semantics, that we won't
discuss here.

* Nevertheless, we will see how to combine all the things that we saw In
this series of lectures to implement a “system” that reacts to the bits that

encode instructions and we shall see how that data flows in the
Processor.

The Datapath of the Simplified DLX Machine

‘Memory Controller
$D0(31:0]

DI[31:0]

The ALU is a combinational circuit that supports: addition and L
subtraction, bitwise logical instructions, and comparison 1o
instructions. | ¢GPRE"V-¢ | \"'“l""”’/
A
X[31:0] Y[31:0] ‘PCE"V'l ‘ A<| ‘ B<| ‘MDFKl ||R E""'l
o0 o1 10 J * 1100¢1
A 5 cypers:o) | S1MUX / s‘zmux /
SUB(32) ‘[)R\'.!Q]] COMP(32) ° 51 Sz
e AND(32) ‘;ﬁ J‘.—‘
SHIFT ALU
32 Env. Env
A z1 122
1Y 0
The main three subcircuits of the ALU are: (1) 32-bit oINT
adder/subtractor, ADD-SUB(32), (2) bitwise logical operations, E‘j
XOR, OR, AND, and (3) a comparator, COMP(32). Note that the
comparator is fed by the outputs of the adder/subtractor circuit. aowox

AO[31:0]

. Memory Controller

W ALU Environment

An ALU environment is a combinational circuit specified as
follows:

Input: x[31:0],y[31:0] € {0,1}3?, type € {0,1}°.
Output: z[31:0] € {0,1}3.
Functionality:
Z = fype(%,7)

We now need to describe how the ALU functions are encoded...

X[31:0] Y[31:0]

FF

ALU

2 type[4:0]
XOR(3
ADD-SUB(32) OR(32

55}
~—

COMP(32)

=) :
PSR
5w

o

—
—

v

32

Z[31:0]

67

W Shifter Environment

@ The shifter is a 32-bit bi-directional logical shifter by one
position.

Definition

_Memory Controller

dpor31:0]

The shifter environment is a combinational circuit defined as
follows:

Input:
o x[31:0] € {0,1}%,
e shift € {0,1}, and
e right € {0,1}.
Output: y[n—1:0] € {0,1}.
Functionality: The output y satisfies

X, if shift =0,

LLS(X,1), if shift =1, right =0,
LRS(X,1), if shift =1 right = 1.

A

y

The shifter also implements the identity function: route a word
through the shifter in the execution of some instructions.

£1

1Y

0
; DINTMUX

DINT

Y

MAR<|

oY 1
iADMUX

A0[31:0]

- Memory Controller

Y
c-
Ll_ oY Y
| GPREnv. | ‘\womwux
' ! 1 \
‘PC Env.l \ A<| \ B<| \mnn<| |IR Envl
0% o1
oy Y 11 * A ‘1“ *“
S1MUX / samux /
s1

68

The GPR Environment

There are 32 registers in the GPR Environment, called

RO,R1,...,R31. The GPR Environment (or GPR, for short) can

support one of two operations in each clock cycle. /
@ Write the value of input C in R/, where i = (Cadr).
© Read the contents of the registers R/ and R/, where

I = <Aad‘r> d nd J = (Badr> . Din[31: 0] Din[31: 0]
CLK ___| CLK___|
Memory Controller CLK CLK
RAM(2%) x 32 RAM(2%) x 32
pI(31:0]| fPO[31:0] GPR_WE J_DOQPR_WE’ R/ GPRWE'| 77
Cadr— OR-tree(5)
Address[4 : 0] Address[4 : 0]
GPR Env. | \MDRMUX
: \ Dowt[31: 0] Dout[31: 0]
[PCEnv. [’\E E'BH MR IR Env]
— o o 5
R p— T A Cadr 1 s
S1MUX / S2MUX / Aadr 5
[s1 s2
' l GPR_WE
SHIFT ALU
- Env. 1 b)
1 z Badr ﬁ; 0 Aour 39 39
\\ DINTMUX GPR.WE 32
DINT -
Z€ero
tester
1
AEQZ A By

Memory Controller

Special Registers

* A, B, C, MAR, MDR, PC, and IR are (ce-)
registers
« With some additional logic (e.g., MUXes) for reg’s
with env’s.

* IR (Instruction Reg.) holds the instruction
brought from memory.

« A,B,C are used as “interface” registers to the
GPR env.

* PC (Program Counter) simply holds a “pointer”

to memory which (unless the programmer
affects it) advances by 1 after bringing an
Instruction from memory (e.g., PCenvis a CE
Counter).

« MAR, MDR (Mem. Add. Reg, Mem. Data. Req.)
holds a memory address that some data should

be brought from and MDR holds data that is
brought from memory.

« All registers in this processor are 32 bit wide

oo}

AO[31:0]

- Memory Controller

DLX Control |

* The control is an FSM that interprets the DLX g
Instructions. I

* For every DLX instruction the control output a .
sequence of control signals that are input to
tF%e)data-path (clock enables, MUX select bits,
etc.

« These control signals are output according to
the state in which the FSM is at and according
to the executed instruction...as in every FSM.

« Essentially, these control signals control the
way the bits are routed between the registers.

* Let us stop here.

* By now, you know that you can implement any
FSM. The complete processor consists of
the Control and the DATA path.

Our journey is over:
From Transistors to

Computers

<

<

+Flip-
flops=Synchronous
circ.

Gates+wires+acyclicity

Transistors .. .
= combinational circ.

= Boolean J S S/8%: Canbeimpbya
Functions 4 Sia Synch. Circ.!

Picture taken from here.

https://alastairhumphreys.com/feel-journey/

Good Luck!

Enjoy the discussion ©

