Exercise 1

Consider the graph depicted below. How many vertices have to be removed from this graph to decrease its treewidth by one? Justify your answer.

![Graph Image]

Exercise 2

A tree decomposition of some graph G is given below. What is the width of this decomposition? Give a nice tree decomposition of the same width for G.

![Tree Decomposition Image]

Exercise 3

Given a graph G, the Independent Dominating Set problem asks for a set S of vertices (of any size) that is both an independent set and a dominating set. That is, vertices in S are not adjacent to each other and every vertex not in S has a neighbor in S. Use Courcelle’s Theorem to show that Independent Dominating Set is FPT parameterized by the treewidth of G.

Exercise 4

Show that if a graph G has a vertex cover of size k, then the treewidth of G is at most k.

Exercise 5

Given a graph G and an integer k, the Odd Cycle Transversal problem asks for a set S of at most k vertices such that $G - S$ is bipartite. It can be shown using a dynamic programming approach that the problem is FPT parameterized by the treewidth of a given tree decomposition.

(a) What would be the subproblems in the dynamic programming?

(b) How many subproblems do you need to solve in total?

(Note: You do not have to give a complete algorithm, just answer these questions.)