Faster FPT algorithms using algebraic methods

- Inclusion-exclusion principle
 Counting Hamiltonian paths in time (2) and polynomial space.
 - Steiner tree in time $O(2^k)$ and polynomial space.
- Polynomials
 k-path in time (2^k/2^k) and polynomial space.

Sieving : Sieve out unwanted objects using algebraic cancellations.

Lecture #8 December 07, 2021 Roohani Sharma

Counting HAMILTONIAN PATH problem

Input: A directed graph G Output: The number of Hamiltonian paths in G?

Recall from Exercise sheet #2: Hamiltonian path can be solved in time $O^*(2^n) = O(2^n n^{O(n)})$ (using dynamic programming over subsets).

Proof idea: For every vertex subset X, T[X,v] =1, if there exists a path starting at v with vertex set X.

Space complexity: $\binom{*}{2^n}_{.}$ **Goal**: Hamiltonian path in time $\binom{*}{2^n}_{.}$ and polynomial space using the inclusion-exclusion principle.

Inclusion-exclusion principle (union version)

Let A₁, A₂,..., A_n
$$\subseteq U$$
;
U is a finite set (Universe).
Then, $(n) = \{1, 2, ..., n\}$
 $\left| \bigcup A_{i} \right| = \int (-1)^{|X|+1|} \left| \bigcap A_{i} \right|$
Useful: When finding intersection of sets is easier than finding their union.
Proof:
Fix $e \in \bigcup A_{i}$. Show that e is counted exactly once
 $ieCnj$ in $R:HS$.
Let e be present in exactly the sets A_{i} , $A_{i_{2}}, ..., A_{i_{k}}$.
Then,
 $e \in \bigcap A_{i}$ iff $X \subseteq \{1, 1, 2, ..., 1_{k}\}$
Contribution of e in $RHS = \sum_{i=1}^{k} (-1)^{|X|+1}$
 $\phi \neq X \subseteq \{1, ..., i_{k}\}$
 $= (-1) \sum_{j=1}^{k} (k_{j}) (-1)^{j} = (-1) ((-1+1)^{k}-1) = 1.$
Use Binomial
theorem : $(a+b)^{n} = \sum_{i=0}^{m} (n)^{i} a^{n-i} = b^{n} + \sum_{i=1}^{m} (n)^{i} a^{b^{n-i}}$

Inclusion-exclusion principle (intersection version)

Let
$$A_1, A_2, \dots, A_n \subseteq U$$
;
 U is a finite set (Universe).
Then
 $\left| \bigcap_{i \in [n]} A_i \right| = \underbrace{\leq}_{i \in [n]}^{i \times i} \left| \bigcap_{i \in X} A_i \right|$
 $\overline{A}_i = U \setminus A_i$.

Useful: When finding the union of the sets is easier than finding their intersection.

Proof hint: Use De Morgan's law on the formula for inclusionexclusion principle (union version).

De Morgan's law:	A, UA,	1	$\overline{A}_{I} \cap \overline{A}_{2}$
	A, A,	1	Ā, UĀ,

Inclusion-exclusion principle (intersection version)

Let
$$A_1, A_2, \dots, A_n \subseteq U$$
;
 U is a finite set (Universe).
Then
 $\left| \bigcap_{i \in [n]} A_i \right| = \sum_{x \in [n]}^{i} (-1)^{|x|} \left| \bigcap_{i \in x} \overline{A_i} \right|$
 $\overline{A_i} = U \setminus A_i$.

Useful: When finding the union of the sets is easier than finding their intersection.

Counting HAMILTONIAN PATH problem

Walk: is a traversal of the edges of the graph with the possibility of repeating vertices.

Ex:

$$V_1 \qquad V_2 \qquad V_3$$

 $e_{12} \qquad e_{24} \qquad e_{24}$
 $V_{4} \qquad e_{12} \qquad e_{23} \qquad V_3 \qquad e_{23} \qquad V_2 \qquad e_{24} \qquad V_4$) is a 4-length
walk from v_1 , to v_4 .

Length of a walk is the number of edges it uses. Here repetitions are counted each time. **Every k-path is a k-walk**.

k-walk is a walk of length k. A walk from vi to vj is a walk that starts at vi and ends at vj

Counting k-walks is polynomial time solvable

Consider an undirected graph G. (also works for directed graphs- Exercise)

Let M be the adjacent matrix of G.

Counting k-walks is polynomial time solvable (contd.)

Since matrix multiplication can be done in polynomial time, counting k-walks can be done in polynomial time.

(Indeed counting k-walks is easier!)

Back to counting Hamiltonian paths
- use inclusion-exclusion for sieving.

$$\left| \bigcap_{v \in V(G)} A_{v} \right| = \sum_{x \in V(G)} \left| \bigcap_{v \in X} \overline{A}_{v} \right|$$
Let $U = set$ of all (n-v-walks of 6. $(n = lV^{(4)l})$
 $\forall v \in V(G)$,
 $A_{v} = set$ of all (n-v-walks containing v.
Observe, $\left| \bigcap_{v \in V(G)} A_{v} \right| = \#$ of Hamiltonian peths.
 $(set of all(n-v)walks that contain V(G))$.
 $\underline{C \ laim}$: For any $X \subseteq V(G)$, $\left| \bigcap_{v \in X} \overline{A}_{v} \right|$ can be
computed in polynomial time.
 \underline{Proof} :
 $\left| \bigcap_{v \in X} \overline{A}_{v} \right| = set of all n-walks not containing
any vertex of X
 $= set of all n-walks in G-X$$

$$\begin{cases} * \left| \bigcap_{v \in x} \overline{A}_{v} \right| & \text{ can be computed in polynomial time.} \\ * \left| \bigcap_{v \in x} \overline{A}_{v} \right| &\leq n => \left| \bigcap_{v \in x} \overline{A}_{v} \right| & \text{ can be represented using } \\ O(n \log n) & \text{ bits.} \\ + & \text{ Inclusion - exclusion} \\ \\ \left| \bigcap_{v \in v(G)} A_{v} \right| & \text{ can be computed using } \\ O^{*} (2^{n}) & \text{ arithmetic operations of } \\ O(n \log n) & \text{ bit numbers,} \\ \\ & \text{ in polynomial space.} \\ \end{cases}$$

Theorem:

Counting Hamiltonian paths can be done in O*(2") time and polynomial space.

Application 2-

Steiner tree problem

Recall from lecture #3:

STEINER TREE Input: A graph G, a set of terminals K, an integer p Question: Does there exist a tree with \leq p edges that contain K?

Steiner tree can be solved in time $O^*(3^{l})$ using DP over subsets.

Goal: Steiner tree can be solved in time $\binom{*}{2}$ and polynomial space, using inclusion-exclusion.

Relaxing trees — branching walks

Branching walk: traverse the edges in possibly multiple directions by possibly repeating edges.

Homomorphism H to G:
$$h: V(H) \rightarrow V(G)$$
 such that
if $(x, y) \in E(H)$,
then $(h(x), h(y)) \in E(G)$.
(homomorphisms preserve edges)

A branching walk (H,h) is a homomorphism h from an ordered, rooted tree H to G.

The **length** of a branching walk (H,h) is |E(H)|.

A **k-branching walk** is a branching walk of length k.

A branching walk (H,h) is a tree if and only if h is injective.

A branching walk (H,h) starts at a vertex v of G if h(root)=v. It contains a vertex v of G if there exists some x in V(H) such that h(x)=v.

Computing #of k-branching walks in polynomial time

Use dynamic programming. $\forall x \in V(G) \text{ and } j \in \{0, \dots, p\},$ $T_j[x] = \notin of j$ -branching walks starting atv. (We are looking for $\sum_{x \in V(G)} T_k[x].$) Compating $T_j[x]$: $T_j[x] = 1$ if j=0 $\sum_{x \in V(G)} T_j[x] = j-1$ if j=0 $\sum_{y \in N(n)} \sum_{j_1+j_2=j-1}^{j_1+j_2=j-1} T_j[x] \cdot T_j[y]$ otherwise

Exercise: Prove the formal correctness.

Computing #of p-branching walks in any graph can be done in polynomial time.

Back to the STEINER TREE problem

U= set of all p-branching walks
Hv EK,
Av = set of all p-branching walks
contains at v.

$$|\bigcap Av| = \# of p-branching walks that
vek | contain all vertices of K
Check (as an exercise) that | \bigcap Av|
vek | oes not count all Steiner trees for K with
pedges
Claim: | \bigcap Av| = D iff Ja Steiner treefork
with pedges.
Proof:$$

: Enough to check if $|\bigcap_{v \in k} |n| = 0$.

Using inclusion-exclusion, it is enough to compute,

$$\left| \begin{array}{c} \bigcap \overline{A}_{v} \\ x \in k \end{array} \right|, \text{ for each } X \in k.$$

$$* \left| \begin{array}{c} \bigcap \overline{A}_{v} \\ X \in k \end{array} \right| = \# \text{ of } p \text{ - branching walks in } G - X.$$

$$* \left| \begin{array}{c} \bigcap \overline{A}_{v} \\ X \in k \end{array} \right| = \# \text{ of } p \text{ - branching walks in } G - X.$$

$$* \left| \begin{array}{c} \bigcap \overline{A}_{v} \\ X \in k \end{array} \right| = \# \text{ of } p \text{ - branching walks in } G - X.$$

$$* \left| \begin{array}{c} \bigcap \overline{A}_{v} \\ X \in k \end{array} \right| = \# \text{ of } p \text{ - branching walks in } G - X.$$

$$* \left| \begin{array}{c} \bigcap \overline{A}_{v} \\ X \in k \end{array} \right| = \# \text{ of } p \text{ - branching walks in } G - X.$$

$$* \left| \begin{array}{c} \bigcap \overline{A}_{v} \\ X \in k \end{array} \right| = \# \text{ of } p \text{ - branching walks in } G - X.$$

$$* \left| \begin{array}{c} \bigcap \overline{A}_{v} \\ X \in k \end{array} \right| = \# \text{ of } p \text{ - branching walks in } G - X.$$

Theorem: Steiner Tree can be solved in O*(2) time and polynomial space.

Polynomials

$$p(x) = x + 1$$

= $x^{2} + x - 6$
$$p(x_{1}, x_{2}) = x_{1}^{2} + x_{2}^{2} + 2x_{1}x_{2}$$

= $x_{1}^{2} + 3x_{1}x_{2} + 10x_{2} - 40$

$$p(x_1, ..., x_n) = \text{monomial}$$

$$\underbrace{f_1}_{(C_1, ..., C_n)} \in (N \cup \{0\})^n \xrightarrow{\alpha_{C_1, ..., C_n}} x_1^{C_1} x_2^{C_2} \cdots x_n^{C_n}$$

$$(C_1, ..., C_n) \in (N \cup \{0\})^n \xrightarrow{\alpha_{C_1, ..., C_n}} x_1^{C_1} x_2^{C_2} \cdots x_n^{C_n}$$

$$\underbrace{where}_{\text{and}} \alpha_{C_1, ..., C_n} \xrightarrow{\alpha_re}_{\text{non-zero}} \text{only for a}$$

$$\underbrace{finite}_{\text{number}} \text{of tuples} (C_1, ..., C_n)^{C_n}$$

$$degree of p(.) = \max_{\alpha_{C_1, ..., C_n}} (C_1 + C_2 + ... + C_n)$$

$$p(x_1, ..., x_n) \text{ interpreted} \text{ over field} (F, t, .).$$

Field (F,+,.)

A field is a triple (F,+,.) such that the following hold:

• Multiplicative Inverses: YaEFIE03, JbEF such that a.b=1

Examples: (Q, +, x), (R, +, x), (C, +, x) These are examples of infinite fields.

We are interested in finite fields.

Finite fields

k-ратн problem

Input: A (directed) graph, an integer k Question: Does there exist a path on k vertices (k-path) in G?

Recall from lecture #2:

k-path can be solved in time $O^*((2e)^k)$ using Color Codin

Goal: k-path can be solved in time $O^*(2^k)$ by a randomized all with by a randomized algorithm, using polynomial identity testing (PIT). This can be done in polynomial space by additional using the inclusion-exclusion principle.

PIT: Is p(x, ..., xn) identically zero, that is, is $p(x_1, \ldots, x_n) = 0$ for all (x_1, \ldots, x_n) ? $E_{x}: p(x) = x^{2} - 2x + x + x^{2} - x = 0$ is identically zero.

k-ратн problem

Input: A (directed) graph, an integer k Question: Does there exist a path on k vertices (k-path) in G?

<u>Algorithm</u> for K-path problem

Step1: Reduce K-path to PIT. Step2: Solve the instance of PIT (kandomized).

Reduce k-path to PIT

$$\frac{\text{Goal: Construct a polynomial } p(\cdot) \text{ such that}}{\text{G has a } k-path iff } p(\cdot) \neq 0.$$

Constructing the polynomial p

$$\frac{Attempt 1: (construct a monomial for every K-walk.)}{every K-walk.}$$
For every vertex v, create a variable x_v .
For every edge $e = (u, v)$, create a variable y_{uv} .
For every edge $e = (u, v)$, create a variable y_{uv} .
Walk W: $v_1 e_{12} v_2 e_{23} v_3 e_{31} v_3 e_{14} v_4$

$$\frac{v_1}{v_1} = x_{v_1}^2 x_{v_2} x_{v_3} x_{v_4} y_{12} y_{23} y_{31} y_{14}$$
Ex: lath W: $v_1 e_{12} v_2 e_{23} v_3 e_{34} v_4 e_{45} v_5$

$$mon_{W'} = x_{v_1} x_{v_2} x_{v_3} x_{v_4} v_5 y_{14} y_{23} y_{34} y_{45} (Multilinear)$$

Non-path walks should cancel out!

Recall $p(\cdot)$ will be interpreted over $(F_{2^{s}}, t, x)$ which is a field of characteristic2. E_{X} . $x_{v_{1}}^{*} x_{v_{2}} x_{v_{3}} y_{12} y_{23} y_{31} + x_{v_{1}}^{*} x_{v_{2}} x_{v_{3}} y_{12} y_{23} y_{31} = 0$.

Attempt 2 (Final): Introduce labelled walks.

Labelled walk

Construct a monomial for every labelled walk (W, l). For every vertex v and $i \in [K]$ ($i \in \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$), create a variable $x_{v_i}(x_{v_i})$. for every edge e=(u,v), create a variable yur. $(W, L): \mathcal{V}_{1} \in \mathcal{V}_{2} \mathcal{V}_{2} \in \mathcal{V}_{3} \mathcal{V}_{3} \in \mathcal{V}_{3} \in \mathcal{V}_{3} \mathcal{V}_{3} \in \mathcal{V}_{3} \mathcal{V}_{3} \in \mathcal{V}_{3} \mathcal{V}_{3}$ mon(W,l) $= \chi_{V_{1}}, \chi_{V_{2}}, \chi_{V_{3}}, \chi_{V_{5}}, \chi_{V_{3}}, \chi_{V_{4}},$ Y12 Y23 Y35 Y34 $p(\mathbf{x}, \mathbf{y}) = \sum_{w, w, w} mon_{(w, k)} (\mathbf{x}, \mathbf{y})$

all labelled

$$k-walks(W,l)$$

 $= \underbrace{\leq}_{k-walk} \underbrace{\leq}_{k-walk} w \underbrace{\leq}_{k-walk} w \underbrace{\leq}_{k-walk} w \underbrace{\leq}_{k-walk} w \underbrace{\leq}_{k-walk} \underbrace{\leq}_{k-walk} w \underbrace{\leq}_{k-walk} \underbrace{\leq}_{k-walk} w \underbrace{\leq}_{k-walk} \underbrace{\leq}_{k-walk$

Claim: $p(\mathbf{x}, \mathbf{y}) = \sum_{\text{all labelled}} mon_{(w,l)}(\mathbf{x}, \mathbf{y})$ K-paths W Proof Sketch: Show that monomials for labelled walks that are not paths, cancel out. Hix a walk W, $(W, L_1) = V_1 e_{12} V_2 e_{23} (V_3) e_{35} V_5 e_{35} (V_3) e_{34} V_4$ $mon_{(W,l_1)} = \chi_{V_{1,0}} \chi_{V_{2,0}} \chi_{V_{3,0}} \chi_{V_{5,0}} \chi_{V_{3,0}} \chi_{V_{4,0}}$ $y_{1,2} y_{2,3} y_{3,5} y_{3,4}$ $(W_{1}, l_{2}) = V_{1} e_{12} V_{2} e_{23} V_{3} e_{35} V_{5} e_{35} V_{3} e_{34} V_{4}$ $mon_{(W,l_{2})} = \chi_{v_{1}, \bullet} \chi_{v_{1}, \bullet} \chi_{v_{1}, \bullet} \chi_{v_{3}, \bullet} \chi_{v_{5}, \bullet} \chi_{v_{3}, \bullet} \chi_{v_{4}, \bullet$ Observe: mon(w,l,) = mon(w_1,l)

Observe: Monomials for labelled paths do not cancel out.

(1) Distinct paths will have distinct monomials (irrespective of the labelling function).
V, Y₁₂ V₂ Y₂₃ V₃ Y₃₄ V₄ Y₄₅ V₅

 (W, I_1) : $v_1, y_{12}, v_2, y_{23}, v_3, y_{34}, v_4, y_{45}, v_5$

 $(W_{1}l_{2})$: \mathbb{V}_{1} \mathcal{Y}_{12} \mathbb{V}_{2} \mathcal{Y}_{23} \mathbb{V}_{3} \mathcal{Y}_{34} \mathbb{V}_{4} \mathcal{Y}_{45} \mathbb{V}_{5}

Conclude: $\exists a \ k - path \quad ; ff p(\mathbf{x}, \mathbf{y}) \neq 0.$

Stepl: (done) Reduce K-path to checking if $p(\mathbf{x}, \mathbf{y}) = 0$? Step2: How to check if $p(\mathbf{x}, \mathbf{y}) = 0?$

Swartz-Zippel Lemma ?
Let
$$p(x_1, ..., x_n)$$
 be a polynomial
of degree d over a field F,
such that p is not identically zero.
Let S be a finite subset of F.
Sample values $a_1, ..., a_n$ from S
uniformly at random.
Then, $Pr(p(a_1, a_2, ..., a_n)=0) \leq \frac{d}{151}$
Proof: Induction on n
 $n=1$: $p(x_1)$ is a univariate polynomial of degree d.
Shows that $p(x_1)$ has $\leq d$ roots. Then,
 $Pr(p(a_1=0) \leq d \mid 151$.

n >1: Rewrite

$$p(x_1, ..., x_n) = \sum_{i=0}^{d} x_i^i \cdot p_i(x_2, ..., x_n)$$

degree of
$$p_k(x_{2,...,x_n}) \leq d-K$$

• Net
$$K \in \{0, 1, ..., d\}$$
 be the largest index
such that $P_K(x_2, ..., x_n)$ is not identically
zero. (Such a k exists).
degree of $P_K(x_2, ..., x_n) \leq d-K$
• For sampled values $a_{2,..., a_n}$ define
a univariate polynomial,
 $q(x_1) = \sum_{i=0}^{d} x_1^i \cdot P_i(a_{2,..., a_n})$

• Want to compute
$$Pr(q(a_1)=0)$$
.
 $(Pr(p(a_1,...,a_n)=0) = Pr(q(a_1)=0))$

Let \mathcal{E}_1 be the event that $q(a_1)=0$, and \mathcal{E}_2 be the event that $p_k(a_1,...,a_n)=0$

 $\Pr\left(p(a_1, \dots, a_n) = 0\right) = \Pr\left(\mathcal{E}_i\right)$ $= \Pr(\mathcal{E}_1 \cap \mathcal{E}_2) + \Pr(\mathcal{E}_1 \cap \overline{\mathcal{E}}_2)$ $= lr(\mathcal{E}_{2}) lr(\mathcal{E}_{1}|\mathcal{E}_{2}) + lr(\overline{\mathcal{E}}) lr(\mathcal{E}_{1}|\overline{\mathcal{E}}_{2})$ $\leq lr(\mathcal{E}_{L}) + lr(\mathcal{E}_{1} | \overline{\mathcal{E}}_{2})$ $\leq \frac{d-K}{|S|} + \frac{K}{|S|} = \frac{d}{|S|}.$ • $lr(E_2) = lr(p_k(a_2, ..., a_n) = 0) \leq \frac{d-k}{\sqrt{2}}$ from induction hypothesis. • $\ln\left(\mathcal{L}\right)$ $\tilde{\mathcal{E}}_{2} \Rightarrow f_{k}(a_{2,\ldots},a_{n}) \neq 0$ If \overline{E}_{2} happens when $q(x_{1})$ is not identically zero : coefficient of n_{1}^{K} is $p_{K}(a_{2}, ..., a_{n}) \pm 0$. i. q (24) is a univariate polynomial that is not identically zero. Also, degree of e (24) is k (". of choice of K). : By induction by pothesis, Pr(E1 (2) ≤ K/151.

Back to our polynomial $p(\mathbf{x}, \mathbf{y})$ degree of p(.) = K + K - I. = 2K - IAlgorithm for K-path · Evaluate p(·) over random values from the field (F210guk, t, ·). · If evaluation makes p(.)=0 => return No (no k-path). Otherwise, return yes. ა Correctness: (1) If we return Yes => p(.) is not identically zero => there is a k-path. (2) If there is a k-path =) p(.) is not

identically zero. S-Z Lemma degree of $p(.) \leq 2k-1 \implies$ with probability $\leq \frac{2k-1}{2^{\log 4k}} \leq \frac{1}{2}$ the evaluation mates p(.) zero. Theorem: There is a one-sided error

Monte Carlo algorithm with false negatives that solves k-path in time $O(2^{k})$

How to evaluate our polynomial at given values?

 $P(\mathbf{X}, \mathbf{\gamma}) = \underbrace{\leq}_{W=v_1, \dots, v_k} \underbrace{\leq}_{L: [k] \to [k]} \underbrace{\prod}_{i=1}^{k} \mathbf{\chi}_{v_i, l(i)} \underbrace{\prod}_{i=1}^{k-1} y_{v_i, v_{i+1}}$ is a walk *L* is a bijection Use dynamic programming. (similar (to the color coding DP) for each Z = [*] and v & V(G) compute $T[Z, v] = \underbrace{\leq}_{Walk} \underbrace{\leq}_{L:[|Z|] \to Z} \underbrace{\uparrow}_{i=i}^{I\times i} \underbrace{\downarrow}_{v_i, l(i)} \underbrace{\downarrow}_{i=i}^{V\times i-i} \underbrace{\downarrow}_{i=i}^{V} \underbrace{\downarrow}_{v_i, v_{i+l}}$ $\mathcal{M} = \mathcal{V}_{1} \cdots \mathcal{V}_{1}$ $\mathcal{N}_{1} = \mathcal{V}$ informally S' labelled walks monwill (w, l) of length (Z) & labels from color set Z Then $p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{v} \in \mathbf{v}(G)} T[[\mathbf{v}], \mathbf{v}].$

Each T(Z, v) can be computed in polynomial time $p(\mathbf{x}, \mathbf{y})$ can be evaluated in $O^*(2^{\mathbf{x}})$ time. Weighted inclusion-exclusion principle

Let
$$A_1, ..., A_n \subseteq U$$
.
Let $w: U \rightarrow R$ and for any $X \subseteq U$,
 $w(X) = \underset{X \in X}{\leq} w(X)$.
Denote $(U \setminus A_i) = U$.
 $i \in \phi$

Then, $\omega\left(\bigcap_{i\in [n]}A_{i}\right)=\sum_{X\subseteq [n]}(-l)^{|X|}\omega\left(\bigcap_{i\in X}A_{i}\right)$

· Using weighted inclusion-exclusion principle, together with the previous ideas, one can show that

There is a one-sided error Monte Carlo a lgorithm with false negatives that solves k-path (also for directed graphs) in time $0^{+}(2^{k})$ and polynomial space.