
Faster FPT algorithms using 
algebraic methods

Inclusion-exclusion principle•
Counting Hamiltonian paths in time           and polynomial ◦
space.
Steiner tree in time            and polynomial space.◦

Polynomials •
k-path in time             and polynomial space.◦

Sieving : Sieve out unwanted objects using algebraic 
cancellations.
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Counting Hamiltonian path problem
Input: A directed graph G
Output: The number of Hamiltonian paths in G?

Recall from Exercise sheet #2: 
Hamiltonian path can be solved in time 
(using dynamic programming over subsets). 

Proof idea:
For every vertex subset X,
T[X,v] =1, if there exists a path starting at v with vertex set X.

Space complexity:
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Goal: Hamiltonian path in time 
and polynomial space
using  the inclusion-exclusion principle.



Inclusion-exclusion principle
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Useful: When finding intersection of sets is easier than finding their union.
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Inclusion-exclusion principle (union version)



   
 

Useful: When finding the union of the sets is easier than finding their intersection.

Proof hint:  Use De Morgan's law on the formula for inclusion- 
exclusion principle (union version).

De Morgan's law: 
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Inclusion-exclusion principle (intersection version)



   
 

Useful: When finding the union of the sets is easier than finding their intersection.

Let Al Az Ane U
U is a finite set Universe
Then
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If Afi is computable in poly time FX
iEX

then nai is computable via 072 arithmeticoperation
and in polynomialspace

Applications 7

Inclusion-exclusion principle (intersection version)



Relaxing paths - walks

Walk: is a traversal of the edges of the graph with the 
possibility of repeating vertices.

Length of a walk is the number of edges it uses. 
Here repetitions are counted each time.
Every k-path is a k-walk.

k-walk is a walk of length k.
A walk from vi to vj is a walk that starts at vi and ends at vj

V V V3Ex
e

Vienna ez V ez Vzezyry is a 4 length
walk from v to Vy

Counting Hamiltonian path problem



Consider an undirected graph G. 
(also works for directed graphs- Exercise)

Let M be the adjacent matrix of G.
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Counting k-walks is polynomial time solvable
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Indeed counting k walks is easier

(Exercise: use induction).

Since matrix multiplication can be done in polynomial time, 
counting k-walks can be done in polynomial time.

Counting k-walks is polynomial time solvable 
(contd.)
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Back to counting Hamiltonian paths
- use inclusion-exclusion for sieving.



 

It can be computed in polynomialtime

It n It can be represented using
Oln log n bits

Inclusion exclusion
I
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Theorem

Counting Hamiltonian paths can be done in
0 12 time and polynomial space
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Steiner tree
Input: A graph G, a set of terminals K, an integer p 
Question: Does there exist a tree with ≤ p edges that contain 
K?

Steiner tree can be solved in time 
using DP over subsets.

Goal: Steiner tree can be solved in time 
and polynomial space,
using inclusion-exclusion.

O IP

Steiner tree problem

Recall from lecture #3:



 

Ordered, rooted tree H
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homomorphisms preserve edges

Branching walk: traverse the edges in possibly multiple 
directions by possibly repeating edges.

A branching walk (H,h) is a tree if and only if h is injective.

Relaxing trees
— branching walks

          G

Homomorphism H to G:

A branching walk (H,h) starts at a vertex v of G if h(root)=v. It 
contains a vertex v of G if there exists some x in V(H) such 
that h(x)=v.

A branching walk (H,h) is a homomorphism h from an ordered, 
rooted tree H to G.

The length of a branching walk (H,h) is |E(H)|.
A k-branching walk is a branching walk of length k.



Use dynamic programming.

Exercise: Prove the formal correctness.

Computing #of p-branching walks in any graph can be done in 
polynomial time.
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Computing #of k-branching walks in 
polynomial time



U set of all p branching walks
trek
Ap set of all p branching walks

contains at V

M Ar of p branching walks that
re k contain all vertices of k

Check as an exercise that hav
VEK

does not count all Steinertrees for k with
p edges

Claim MA 0 iff Fa Steiner treefork
rek with p edges

Proof E
BS

i Enough to check if I n Ar 0
v E k

Back to the Steiner tree problem



MAI for each X E K
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Theorem

Steiner Tree can be solved in
0 12 time and polynomial space

Using inclusion-exclusion, it is enough to compute,



pose at

or

n't k 6

play 2 Nit Nit 22in
or

hit 32,22 1022 40

play Rn monomial

E
c ee en Elaugozynas

son Nini ain

where Ac cn
E field F

and Aa cn are non zero only for a
finite number of tuples G cn

degree of pit man latest tcu
Ac Cw

PCM Mn interpreted over field Ft

Polynomials



A field is a triple (F,+,.) such that the following hold:

We are interested in finite fields.

F is a set
and are binary operations

f a b EF at be F a be F

Associativity at b c at bed
a b C a b c

Commutativity atb bta a b b a

Distributivity a btc a b a e

Additive Identity 70 EF suchthat faff Ota a

MultiplicativeIdentity Fief suchthat faff 103 1 a a

AdditiveInverses faff Fb Ef suchthat atb o

MultiplicativeInverses Faff 03 Fb Ef suchthat a b 1

Examples Q t x R T x E Tx

These are examples of infinite fields

Field (F,+,.)



For every integer s 1 and aprimep
there exists a finite field of size p

when 5 1

Fp 0,1 p 13 mod p x mod p
is a finite field
when s 31 it is non trivial to

construct these fields beyond the

scope of the course

We will be interested in finite fieldsof
size 2 For the purposes of the courses
it is enough to remember the following facts
without proof

About finite fields of size 2
6 They exist forevery s

31

2 Arithmetic operations can beperformedfast in time
0 slogs log logs

3 They are of characteristic two that is 1 1 0

In particular foranyelement
a of this field

at a a I 1 I a o 0



Recall from lecture #2: 
 
k-path can be solved in time 
using Color Coding.

Goal: k-path can be solved in time
by a randomized algorithm,
using polynomial identity testing (PIT).
This can be done in polynomial space 
by additional using the inclusion-exclusion principle.

Ke

0 12S

PIT Is plan pen identically zero
that is
is plan an 0

for all M sent

Ex pln E tht H H O

is identically zero

k-path problem
Input: A (directed) graph, an integer k
Question: Does there exist a path on k vertices (k-path) in G?



Algorithm for k path problem

Step1 Reduce K path to PIT
Step2 Solve the instance of PIT Randomized

k-path problem
Input: A (directed) graph, an integer k
Question: Does there exist a path on k vertices (k-path) in G?



Reduce k-path to PIT

Constructing the polynomial p



Attempt 1

p x y E

w

mon
w

x y
all
K walks

If p x y 0 for all x y

then is there a k path in G
Not necessarily

Recall p C will be interpreted over

Fas ti which is a field of characteristic2
EX Nv Nv Nv Yi 42,43 Nv Aviv Yi Yi 431 0

Non-path walks should cancel out!



Attempt 2 final Introduce labelled walks
V V2 V Vu

V5

Labelled walk

W l V eh V2 Ez V3 235 V5 23573944

Wik V1 ele V2 Ez V3 235 V5 235V3 Gym

W l V eh V2 Ez V3 235 V5 235V3 Gym

Labelled walk is a pair Wl
where W Vi vk is a k walk
and l k 2 k is a bijection



Construct a monomial for everylabelled walk W l

For every vertex v and i ECK ie
create a variable xv.it any
For every edge

e luv
create a variable yup
W l V E V2 Ez V3 E3 V5 235V3 Gym

MONCW l NV Ny Ny Nus Us Nuys

Y1,2 42,3 43,5 Y3,4

p x y E money x y
all labelled
K walks W l

E E
K Walk W e Ck k

MON W L
X Y

l is a bijection





Observe Monomials for labelled paths
do not cancel out

1 Distinct paths will have distinct
monomials irrespective ofthe labelling

function
V Y 12 V2 423 V3 Yay V4 Y usV5

V Y V3 43 NY Yu V6 468V8

2 Same path with different
labelling function will also have
distinct monomials

Wil V Y V2 423 V3 You V4 Yust

W l V Y 2 V2 423 V3 You V4 Y usV5

Conclude Fak path iff
p x y 0



Step 1 done

Reduce k path to

checking if p x 0

Step2

How to check if
p x y 1 0



Is pl x y 0

degree of PC K Kt 2K I

The followings true for general polynomials
If p was a univariate polynomial

pen n't n

highschool A non zero univariate polynomial
of degree d over the reals has
at most d roots

Multivariate polynomials can have

arbitarily many roots
E X p Ni Ru N N

Schwartz Zippel Lemma Informal

Roots of multivariate polynomials are sparse
that is when we randomly sample the values
of the variables from a finite subset of the
field the probability of finding the root is small



Swartz Zippel Lemma

Let PCR pen be a polynomial
of degree d over a field F
such that p is not identically zero

Let s be a finite subset of F
Sample values a an from S

uniformly at random

Then
ppl plan as an 0 Ts

Proof Induction on n

n 1 pla is a univariate polynomialof degree d
Show that pen has Ed roots Then
Pr plait o E d 1st



n Rewrite
d

PCN rn Egri Pick tn

Let ke 0,1 d be the largest index
such that Patna an is not identically
zero Such a K exists

degree of Prinz an
I d k

For sampled values as an define
a univariate polynomial

que Egri Pilar an

Want to compute Pr q a o

Pr plan an o Pr q q o

Let E be the event that q a 1 0 and

E be the event that pis la an 0



Pr plan an o Pr E

Pr E ne Pr Eine

Pr e Pr le le Pr E Prleite

Pr Eu t Pree IE

s dig Is dis

Pr Ez Prl pie ar an o Edits
from induction hypothesis

Arlene
E Pk Az an 0

If É happens when gem is not identicallyzero
coefficient of a is pieces an 0

q G is a univariate polynomial that is

not identically zero
Also degree of gin is k of choice ofK
i

By induction hypothesis Pr Eiler E K 1st D



Back to our polynomial p x y

degree of pl Kt K l
2 K 1

Algorithm fork path

Evaluate pl over random values
from the field Fzlogan t

If evaluation makes pl 1 0 return No
no k path

Otherwise return yes

Correctness

e If we return Yes p is not

identically zero there is a k path

2 If there is a k path PC is not

identically zero
degree of pl E 2k 1 9 with probability
I
2kg4 It

the evaluation makes pl zero

74



Theorem There is a one sided error

Monte Carlo algorithm
with false negatives
that solves k path

in time 042



How to evaluate our polynomial at

given values

p x y E E
e Casca II hi.eu YvivitWV Vic

is a walk l is a bijection

Use dynamic programmingsimilar to the color coding DP

for each Z E CK and vEVCG compute

TEZ r E E
walk l 121 z

IIviseci yvi.vn

W V VH
V V

Informally
2 monk l

labelled walks
will oflength 121
labels from colorset

Then p x y E This u

reves





Let Al An E U
Let w U R and for any XE U
W X Ex win

Denote Ae UI Ai U

Then

w nai E HM w AAXE n
ie n it x

Using weighted inclusion exclusion
principle together with the previous
ideas one can show that

There is a one sided error MonteCarlo algorithm
with false negatives that solves e path
also for directed graphs in time 0 2k
and polynomial space

Weighted inclusion-exclusion principle


