
Roohani Sharma
February 08, 2021

Kernelization++
- Turing Kernelization

- Lossy Kernelization

Lecture #14

Roohani Sharma
February 08, 2021

Kernelization++
- Turing Kernelization

- Lossy Kernelization

Lecture #14

Kernelization

- Efficient pre-processing with guarantees for parameterized problems

∏ admits a kernel of size g(k).

If g(k) is a polynomial/exponential function, then ∏ admits a polynomial/exponential kernel.

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

≡
|I’|, k’ ≤ g(k)

Eg. k-path, Steiner Tree, Max leaf Subgraph (Exercise #03) do not admit poly kernel.

Max Leaf Subtree
Input: A graph G, a positive integer k
Parameter: k
Question: Does G have a subtree with at least k leaves ?

Eg. k-path, Steiner Tree, Max leaf Subgraph (Exercise #03) do not admit poly kernel.

Max Leaf Subtree
Input: A graph G, a positive integer k
Parameter: k
Question: Does G have a subtree with at least k leaves ?

Has a subtree with 4 leaves, no subtree with 5 leaves

Eg. k-path, Steiner Tree, Max leaf Subgraph (Exercise #03) do not admit poly kernel.

Max Leaf Subtree
Input: A graph G, a positive integer k
Parameter: k
Question: Does G have a subtree with at least k leaves ?

Has a subtree with 4 leaves, no subtree with 5 leaves

1

2

3
4 5 6 7 8

9

10

11

Has a subtree with 6 leaves

Eg. k-path, Steiner Tree, Max leaf Subgraph (Exercise #03) do not admit poly kernel.

Max Leaf Subtree
Input: A graph G, a positive integer k
Parameter: k
Question: Does G have a subtree with at least k leaves ?

Has a subtree with 4 leaves, no subtree with 5 leaves

1

2

3
4 5 6 7 8

9

10

11

Has a subtree with 6 leaves

Observe: It is not a coincidence that each solution subtree is a spanning

What next?

What next?
•In essence, a kernelization algorithm returns the “hard part” of the input

with a guarantee that the hard part is small.

What next?
•In essence, a kernelization algorithm returns the “hard part” of the input

with a guarantee that the hard part is small.

•There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

What next?
•In essence, a kernelization algorithm returns the “hard part” of the input

with a guarantee that the hard part is small.

•There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

•For example, consider the Maximum Clique problem parameterized by the
vertex cover size of the input. This problem is denoted by Clique/VC. One
can show that this does not admit a polynomial kernel using OR-composition.

What next?
•In essence, a kernelization algorithm returns the “hard part” of the input

with a guarantee that the hard part is small.

•There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

•For example, consider the Maximum Clique problem parameterized by the
vertex cover size of the input. This problem is denoted by Clique/VC. One
can show that this does not admit a polynomial kernel using OR-composition.

•Clique/VC: Given a graph G and a vertex cover X of G of size at most k,
find the size of a maximum clique in G. The parameter is k.

What next?
•In essence, a kernelization algorithm returns the “hard part” of the input

with a guarantee that the hard part is small.

•There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

•For example, consider the Maximum Clique problem parameterized by the
vertex cover size of the input. This problem is denoted by Clique/VC. One
can show that this does not admit a polynomial kernel using OR-composition.

•Clique/VC: Given a graph G and a vertex cover X of G of size at most k,
find the size of a maximum clique in G. The parameter is k.

|X| ≤ k

G- X is an independent set.

What next?
•In essence, a kernelization algorithm returns the “hard part” of the input

with a guarantee that the hard part is small.

•There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

•For example, consider the Maximum Clique problem parameterized by the
vertex cover size of the input. This problem is denoted by Clique/VC. One
can show that this does not admit a polynomial kernel using OR-composition.

•Clique/VC: Given a graph G and a vertex cover X of G of size at most k,
find the size of a maximum clique in G. The parameter is k.

|X| ≤ k

G- X is an independent set.
Any clique uses at most 1 vertex of G-X.

•We say Q has a polynomial Turing kernel if f(k) is a polynomial function.

•We say Q has a polynomial Turing kernel if f(k) is a polynomial function.
•For Clique/VC, we produced O(n) instances, each of size k+1, such that each
of them can be solved independently so give an output of the input instance.

•We say Q has a polynomial Turing kernel if f(k) is a polynomial function.
•For Clique/VC, we produced O(n) instances, each of size k+1, such that each
of them can be solved independently so give an output of the input instance.

•Generally speaking, one can produce instances such that the i-th instance
depends on the Oracle’s answer to the previous (i-1) instances. Such kind of
Turing kernels are known for k-Path on certain graph classes.

Max leaf Subgraph (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

Max leaf Subgraph (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

G1,k G2,k Gt,k

G1 G2 Gt

…

… (G,k)

Max leaf Subgraph (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

G1,k G2,k Gt,k

G1 G2 Gt

…

… (G,k)

The reduction essentially shows that MLS do not admit a polynomial kernel on disconnected
graphs with a “lot” of connected components.

Max leaf Subgraph (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

G1,k G2,k Gt,k

G1 G2 Gt

…

… (G,k)

The reduction essentially shows that MLS do not admit a polynomial kernel on disconnected
graphs with a “lot” of connected components.

What happens to MLS on connected graphs?

Max leaf Subgraph (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

G1,k G2,k Gt,k

G1 G2 Gt

…

… (G,k)

The reduction essentially shows that MLS do not admit a polynomial kernel on disconnected
graphs with a “lot” of connected components.

What happens to MLS on connected graphs?

MLS on connected graphs admit a polynomial kernel!

Max leaf Subgraph (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

G1,k G2,k Gt,k

G1 G2 Gt

…

… (G,k)

The reduction essentially shows that MLS do not admit a polynomial kernel on disconnected
graphs with a “lot” of connected components.

What happens to MLS on connected graphs?

MLS on connected graphs admit a polynomial kernel!

MLS admits a polynomial Turing kernel!

=>

MLS on connected graphs admit a polynomial kernel - Proof

If there exists a vertex v such that |N(v)| ≥ k, then it is a Yes-instance.

Basic reduction rules:

MLS on connected graphs admit a polynomial kernel - Proof

If there exists a vertex v such that |N(v)| ≥ k, then it is a Yes-instance.

If there exists a vertex v such that |N2(v)| ≥ k, then it is a Yes-instance.

Basic reduction rules:

MLS on connected graphs admit a polynomial kernel - Proof

If there exists a vertex v such that |N(v)| ≥ k, then it is a Yes-instance.

If there exists a vertex v such that |N2(v)| ≥ k, then it is a Yes-instance.

If there exists a vertex v such that |N3(v)| ≥ k, then it is a Yes-instance.

Basic reduction rules:

MLS on connected graphs admit a polynomial kernel - Proof

If there exists a vertex v such that |N(v)| ≥ k, then it is a Yes-instance.

If there exists a vertex v such that |N2(v)| ≥ k, then it is a Yes-instance.

If there exists a vertex v such that |N3(v)| ≥ k, then it is a Yes-instance.

Therefore, we know that for each vertex v, Nd(v) < k for each d.

Basic reduction rules:

MLS on connected graphs admit a polynomial kernel - Proof

If there exists a vertex v such that |N(v)| ≥ k, then it is a Yes-instance.

If there exists a vertex v such that |N2(v)| ≥ k, then it is a Yes-instance.

If there exists a vertex v such that |N3(v)| ≥ k, then it is a Yes-instance.

Therefore, we know that for each vertex v, Nd(v) < k for each d.

Basic reduction rules:

Reduction rule for long degree-2 paths:
If there exists a path v1-v2-v3 such that degree of each vi is exactly 2 in G, then
contract the edge v1-v2.

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ k

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ kv1

N(v1)

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ kv1

N(v1)

Sv1

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ kv1

N(v1)

N2(v1)

Sv1

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ kv1

N(v1)

N2(v1)

Sv1

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ kv1

N(v1)

N2(v1)

Sv1

v2

N(v2)

Sv2

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ kv1

N(v1)

N2(v1) N2(v2)

Sv1

v2

N(v2)

Sv2

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ kv1

N(v1)

N2(v1) N2(v2)

Sv1

v2

N(v2)

Sv2
vr

Svr

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ kv1

N(v1)

N2(v1)

Claim: The stars in the red boxes are disjoint. vrv2v1

N2(v2)

Sv1

v2

N(v2)

Sv2
vr

Svr

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.
Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report
Yes-instance.

r ≥ kv1

N(v1)

N2(v1)

Constructing a subtree from these stars (with at least k leaves):
Join the red stars by adding arbitrary paths between the vi vertices.
The resulting connected graph has at least r leaves.

Claim: The stars in the red boxes are disjoint. vrv2v1

N2(v2)

Sv1

v2

N(v2)

Sv2
vr

Svr

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in
the resulting graph).

Suppose the above procedure runs for r < k steps.

v1 v2 vr

N(v1)

N2(v1)

N(v2)

N2(v2)

|X| = O(k2)

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in
the resulting graph).

Suppose the above procedure runs for r < k steps.

v1 v2 vr

N(v1)

N2(v1)

N(v2)

N2(v2)

|X| = O(k2)

Every vertex of G-X has degree at most 2.
G-X is a disjoint union of paths and cycles.

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in
the resulting graph).

Suppose the above procedure runs for r < k steps.

v1 v2 vr

N(v1)

N2(v1)

N(v2)

N2(v2)

|X| = O(k2)

Every vertex of G-X has degree at most 2.
G-X is a disjoint union of paths and cycles.
The green vertices are neighbours of X.
|N(X)| = O(k2)

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in
the resulting graph).

Suppose the above procedure runs for r < k steps.

v1 v2 vr

N(v1)

N2(v1)

N(v2)

N2(v2)

|X| = O(k2)

Every vertex of G-X has degree at most 2.
G-X is a disjoint union of paths and cycles.
The green vertices are neighbours of X.
|N(X)| = O(k2)
The black vertices between two consecutive green
vertices are degree 2 vertices in the entire graph.

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.
Let Sv be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in
the resulting graph).

Suppose the above procedure runs for r < k steps.

v1 v2 vr

N(v1)

N2(v1)

N(v2)

N2(v2)

|X| = O(k2)

Every vertex of G-X has degree at most 2.
G-X is a disjoint union of paths and cycles.
The green vertices are neighbours of X.
|N(X)| = O(k2)
The black vertices between two consecutive green
vertices are degree 2 vertices in the entire graph.
Therefore, |V(G) \X| ≤ (|N(X)| +1)= O(k2)

Lower bound machinery for Turing kernels?

• How to show that a problem does not exhibit any Turing kernel?

• So far, no machinery exists that allows one to prove such statements.

• Rather, we developed some hardness theory based on conjectures like,

Connected Vertex Cover does not admit a Turing kernel, or

Steiner Tree does not admit a Turing kernel.

