Kernelization++
-"Turing Kernelization
- LLossy Kernelization

Lecture #14

Roohani Sharma

February 08, 2021

Kernelization++
-"Turing Kernelization
- LLossy Kernelization

Lecture #14

Roohani Sharma

February 08, 2021

r 1
Kernelization
- Efficient pre-processing with guarantees for paryne’rerized problems
| Z] \ J
\V VR
N /,/
N /
~ . v
> Runsin =
—polynomial =
’/ ' ~
.. Time 3
/// \\\
SN ERRR

M admits a kernel of size g(k).
If g(k) is a polynomial/exponential function, then T admits a polynomial/exponential kernel.

OR-composition

Let L be a parameterized problem.

OR-composition for L

Input: (x1,k),...,(xt, k) such that x; € X* and k is a non-negative

Integer.
Output: (y, k*) such that

m (y,k*) € Lif and only if (x;, k) € L for some i, and
m k* = poly(k).
Time: polynomial in the input, that is poly(>_i_; |xi| + k).

K k K
Instances of language L anw
X1 X3 Xt-1

poly(k)

Instance of language L

~

:03) do not admit poly kernel.

Eg. k-PATH, STEINER TREE, MAX LEAF SUBGRAPH (Exercise :

MAX LEAF SUBTREE

Input: A graph G, a positive integer k

Parameter: k

Question: Does G have a subtree with at least k leaves ¢

~

:03) do not admit poly kernel.

Eg. k-PATH, STEINER TREE, MAX LEAF SUBGRAPH (Exercise :

MAX LEAF SUBTREE

Input: A graph G, a positive integer k

Parameter: k

Question: Does G have a subtree with at least k leaves ¢

e oo ool

Has a subtree with 4 leaves, no subtree with 5 leaves

~

:03) do not admit poly kernel.

Eg. k-PATH, STEINER TREE, MAX LEAF SUBGRAPH (Exercise :
MAX LEAF SUBTREE
Input: A graph G, a positive integer k

Parameter: k
Question: Does G have a subtree with at least k leaves 2

2 9
"} 11
:>0000 1 ¢ 5 6 7 878
3

Has a subtree with 4 leaves, no subtree with 5 leaves Has a subtree with 6 leaves

~

:03) do not admit poly kernel.

Eg. k-PATH, STEINER TREE, MAX LEAF SUBGRAPH (Exercise :
MAX LEAF SUBTREE
Input: A graph G, a positive integer k

Parameter: k
Question: Does G have a subtree with at least k leaves 2

2 9
"} 11
:>0000 1 ¢ 5 6 7 878
3

Has a subtree with 4 leaves, no subtree with 5 leaves Has a subtree with 6 leaves

Observe: It is not a coincidence that each solution subtree is a spanning

What next®

What next?

® In essence, a kernelization algorithm returns the “hard part” of the input
with a guarantee that the hard part is small.

What next?

® In essence, a kernelization algorithm returns the “hard part” of the input
with a guarantee that the hard part is small.

® There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

What next?

® In essence, a kernelization algorithm returns the “hard part” of the input
with a guarantee that the hard part is small.

® There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

® For example, consider the Maximum Clique problem parameterized by the
vertex cover size of the input. This problem is denoted by CLIQUE/VC. One

can show that this does not admit a polynomial kernel using OR-composition.

What next?

® In essence, a kernelization algorithm returns the “hard part” of the input
with a guarantee that the hard part is small.

® There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

® For example, consider the Maximum Clique problem parameterized by the
vertex cover size of the input. This problem is denoted by CLIQUE/VC. One

can show that this does not admit a polynomial kernel using OR-composition.

e CLIQUE/VC: Given a graph G and a vertex cover X of G of size at most k,
find the size of a maximum clique in G. The parameter is k.

What next?

® In essence, a kernelization algorithm returns the “hard part” of the input
with a guarantee that the hard part is small.

® There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

® For example, consider the Maximum Clique problem parameterized by the
vertex cover size of the input. This problem is denoted by CLIQUE/VC. One

can show that this does not admit a polynomial kernel using OR-composition.

e CLIQUE/VC: Given a graph G and a vertex cover X of G of size at most k,
find the size of a maximum clique in G. The parameter is k.

IX] <k

® O O O O O ©® ® ® ® O | G Xisanindependent set.

What next?

® In essence, a kernelization algorithm returns the “hard part” of the input
with a guarantee that the hard part is small.

® There are many NP-hard problems which do not admit polynomial kernels,
and for which the hardness do lie in a small part of the input, but may not be
in one small part but in multiple small parts.

® For example, consider the Maximum Clique problem parameterized by the
vertex cover size of the input. This problem is denoted by CLIQUE/VC. One

can show that this does not admit a polynomial kernel using OR-composition.

e CLIQUE/VC: Given a graph G and a vertex cover X of G of size at most k,
find the size of a maximum clique in G. The parameter is k.

IX] <k

® O O O O O ©® ® ® ® O | G Xisanindependent set.

Any clique uses at most 1 vertex of G-X.

Turing Kernelization

Definition (Turing Kernel)

Let () be a parameterized problem, and let f : N — N be a
computable function. A Turing Kernel for () of size f is an
algorithm that can decide if an instance of the problem is a YES
instance in polynomial time, given access to an Oracle that
solves instance of size f(k) in unit time.

Turing Kernelization

Definition (Turing Kernel)

Let () be a parameterized problem, and let f : N — N be a
computable function. A Turing Kernel for () of size f is an
algorithm that can decide if an instance of the problem is a YES
instance in polynomial time, given access to an Oracle that
solves instance of size f(k) in unit time.

Turing Kernelization

Definition (Turing Kernel)

Let () be a parameterized problem, and let f : N — N be a
computable function. A Turing Kernel for () of size f is an
algorithm that can decide if an instance of the problem is a YES
instance in polynomial time, given access to an Oracle that
solves instance of size f(k) in unit time.

* We say Q has a polynomial Turing kernel if f(k) is a polynomial function.

Turing Kernelization

Definition (Turing Kernel)

Let () be a parameterized problem, and let f : N — N be a
computable function. A Turing Kernel for () of size f is an
algorithm that can decide if an instance of the problem is a YES
instance in polynomial time, given access to an Oracle that
solves instance of size f(k) in unit time.

* We say Q has a polynomial Turing kernel if f(k) is a polynomial function.
e For CLIQUE/VC(, we produced O(n) instances, each of size k+1, such that each

of them can be solved independently so give an output of the input instance.

Turing Kernelization

Definition (Turing Kernel)

Let () be a parameterized problem, and let f : N — N be a
computable function. A Turing Kernel for () of size f is an
algorithm that can decide if an instance of the problem is a YES
instance in polynomial time, given access to an Oracle that
solves instance of size f(k) in unit time.

* We say Q has a polynomial Turing kernel if f(k) is a polynomial function.

e For CLIQUE/VC(, we produced O(n) instances, each of size k+1, such that each
of them can be solved independently so give an output of the input instance.

* Generally speaking, one can produce instances such that the i-th instance
depends on the Oracle’s answer to the previous (i-1) instances. Such kind of
Turing kernels are known for k-PATH on certain graph classes.

MAX LEAF SUBGRAPH (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

MAX LEAF SUBGRAPH (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

a) a e)
Gik Gok | Guk
\ \ \ \JA /)
4)
a) a) a)
G Go Gt (G.k)
_ Y, _ Y, _ Y,

MAX LEAF SUBGRAPH (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

a) a a)
G1.K Gok | Guk
_ _J _ J _)
~ ~
G Go g | (GK
_ y

The reduction essentially shows that MLS do not admit a polynomial kernel on disconnected
graphs with a “lot” of connected components.

MAX LEAF SUBGRAPH (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

a) a a)
G1 K Gok | Guk
_ _J _ J _)
~ ~
G Go g | (GK
_ y

The reduction essentially shows that MLS do not admit a polynomial kernel on disconnected
graphs with a “lot” of connected components.

What happens to MLS on connected graphs?

MAX LEAF SUBGRAPH (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

a) a a)
G1.K Gok | Guk
_ _J _ J _)
~ ~
G Go g | (GK
_ y

The reduction essentially shows that MLS do not admit a polynomial kernel on disconnected
graphs with a “lot” of connected components.

What happens to MLS on connected graphs?

MLS on connected graphs admit a polynomial kernel!

MAX LEAF SUBGRAPH (MLS) do not admit poly kernel (Exercise #03).
MLS OR-composes to itself.

a) a a)
G1 K Gok | Guk
_ _J _ J _)
~ ~
G Go g | (GK
_ y

The reduction essentially shows that MLS do not admit a polynomial kernel on disconnected
graphs with a “lot” of connected components.

What happens to MLS on connected graphs?

MLS on connected graphs admit a polynomial kernel!

Il
\'4

MLS admits a polynomial Turing kernell

MLS on connected graphs admit a polynomial kernel - Proof

Basic reduction rules:

If there exists a vertex v such that | N(v)| = k, then it is a Yes-instance.

MLS on connected graphs admit a polynomial kernel - Proof

Basic reduction rules:

If there exists a vertex v such that | N(v)| = k, then it is a Yes-instance.

If there exists a vertex v such that | N2(v)| =k, then it is a Yes-instance.

MLS on connected graphs admit a polynomial kernel - Proof

Basic reduction rules:

If there exists a vertex v such that | N(v)| = k, then it is a Yes-instance.

If there exists a vertex v such that | N2(v)| =k, then it is a Yes-instance.

If there exists a vertex v such that | N3(v)| =k, then it is a Yes-instance.

MLS on connected graphs admit a polynomial kernel - Proof

Basic reduction rules:

If there exists a vertex v such that | N(v)| = k, then it is a Yes-instance.

If there exists a vertex v such that | N2(v)| =k, then it is a Yes-instance.

If there exists a vertex v such that | N3(v)| =k, then it is a Yes-instance.

Therefore, we know that for each vertex v, Nd(v) < k for each d.

MLS on connected graphs admit a polynomial kernel - Proof

Basic reduction rules:

If there exists a vertex v such that | N(v)| = k, then it is a Yes-instance.

If there exists a vertex v such that | N2(v)| =k, then it is a Yes-instance.

If there exists a vertex v such that | N3(v)| =k, then it is a Yes-instance.

Therefore, we know that for each vertex v, Nd(v) < k for each d.

Reduction rule for long degree-2 paths:

If there exists a path vi-v2-v3 such that degree of each vi is exactly 2 in G, then
contract the edge v1-v2.

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

r=k

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

Vi r 2k

N(v1) A

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

..
Vi r 2k

N(v1) A

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

..
Vi r 2k

N(v1)

N2(v1)

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

Sv-l

r=k

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

r=k

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

r=k

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

Claim: The stars in the red boxes are disjoint. vi

MLS on connected graphs admit a polynomial kernel - Proof

Greedy: Let us try to greedily build a solution and see where we fail.

Procedure: Let us try to construct vertex disjoint stars in G.
Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3
in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report A
Yes-instance.

Claim: The stars in the red boxes are disjoint. v Vo v

AN AN AN

Constructing a subtree from these stars (with at least k leaves):
Join the red stars by adding arbitrary paths between the v; vertices.
The resulting connected graph has at least r leaves.

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.
Let Sy be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in

the resulting graph).

Suppose the above procedure runs for r < k steps.

Vr

V1 V2
N‘%\\ Mﬁ\ e
N2(v1) N2(v2) ¢

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.

the resulting graph).

Let Sy be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in

Suppose the above procedure runs for r < k steps.

V1 V2

N(v1) N(v2)

\

N2(v1) N2(v2) ¢

Vr

| X] = O(k?)

Every vertex of G-X has degree at most 2.
G-X is a disjoint union of paths and cycles.

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.

the resulting graph).

Let Sy be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in

Suppose the above procedure runs for r < k steps.

V1 V2

N(v1) N(v2)

\

N2(v1) N2(v2) ¢

Vr

A\ | X = ok

Every vertex of G-X has degree at most 2.
G-X is a disjoint union of paths and cycles.
The green vertices are neighbours of X.

IN(X)| = O(k?)

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.

Let Sy be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in
the resulting graph).

Suppose the above procedure runs for r < k steps.

- o A | 1X] = 0(k2)

\

N2(v1) N2(v2) ®
o o o o o o o Every vertex of G-X has degree at most 2.
o o 0 o 06 o o o o o o S ¢ G-X is a disjoint union of paths and cycles.
* ¢ | The green vertices are neighbours of X.
&9 9o 9o 00 o oo ! NP EEPNEEP S P IN(X)]| = O(k?)
o o0 o0 0 The black vertices between two consecutive green
© 060 000 vertices are degree 2 vertices in the entire graph.

MLS on connected graphs admit a polynomial kernel - Proof

Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3.

the resulting graph).

Let Sy be a star with v and its neighbours in (the original graph G).
Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in

Suppose the above procedure runs for r < k steps.

V1 V2

N(v1) N(v2)

\

N2(v1) N2(v2) ¢

Vr

A\ | X = ok

Every vertex of G-X has degree at most 2.

G-X is a disjoint union of paths and cycles.

The green vertices are neighbours of X.

IN(X)| = O(k?)

The black vertices between two consecutive green
vertices are degree 2 vertices in the entire graph.

Therefore, |V(G) \X| < (IN(X)| +1)= O(k?)

Lower bound machinery for Turing kernels?

e How to show that a problem does not exhibit any Turing kernel?
e So far, no machinery exists that allows one to prove such statements.

e Rather, we developed some hardness theory based on conjectures like,

CONNECTED VERTEX COVER does not admit a Turing kernel, or

STEINER TREE does not admit a Turing kernel.

