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Kernelization

- Efficient pre-processing with guarantees for parameterized problems

∏ admits a kernel of size g(k).

If g(k) is a polynomial/exponential function, then ∏ admits a polynomial/exponential kernel.

 

Runs in 
polynomial 

time

I,k ∏

I’,k’ ∏

≡
|I’|, k’ ≤ g(k)
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Parameter: k

Question: Does G have a subtree with at least k leaves ?
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Observe: It is not a coincidence that each solution subtree is a spanning 
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What next?
•In essence, a kernelization algorithm returns the “hard part” of the input 

with a guarantee that the hard part is small.

•There are many NP-hard problems which do not admit polynomial kernels, 
and for which the hardness do lie in a small part of the input, but may not be 
in one small part but in multiple small parts.

•For example, consider the Maximum Clique problem parameterized by the 
vertex cover size of the input. This problem is denoted by Clique/VC. One 
can show that this does not admit a polynomial kernel using OR-composition.

•Clique/VC: Given a graph G and a vertex cover X of G of size at most k, 
find the size of a maximum clique in G. The parameter is k.

|X| ≤ k

G- X is an independent set.
Any clique uses at most 1 vertex of G-X.
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•We say Q has a polynomial Turing kernel if f(k) is a polynomial function.
•For Clique/VC, we produced O(n) instances, each of size k+1, such that each 
of them can be solved independently so give an output of the input instance.

•Generally speaking, one can produce instances such that the i-th instance 
depends on the Oracle’s answer to the previous (i-1) instances. Such kind of 
Turing kernels are known for k-Path on certain graph classes. 
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MLS admits a polynomial Turing kernel!


=>
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MLS on connected graphs admit a polynomial kernel - Proof


If there exists a vertex v such that |N(v)| ≥ k, then it is a Yes-instance.

If there exists a vertex v such that |N2(v)| ≥ k, then it is a Yes-instance.

If there exists a vertex v such that |N3(v)| ≥ k, then it is a Yes-instance.

Therefore, we know that for each vertex v, Nd(v) < k for each d.

Basic reduction rules:

Reduction rule for long degree-2 paths:
If there exists a path v1-v2-v3 such that degree of each vi is exactly 2 in G, then 
contract the edge v1-v2.
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Let Sv be a star with v and its neighbours in (the original graph G).
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in the resulting graph).

Reduction Rule: Suppose the above procedure runs for at least k steps, then report 
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Constructing a subtree from these stars (with at least k leaves): 

Join the red stars by adding arbitrary paths between the vi vertices. 

The resulting connected graph has at least r leaves.
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Procedure: Let us try to construct vertex disjoint stars in G.

Let v be a vertex of degree at least 3. 

Let Sv be a star with v and its neighbours in (the original graph G).

Remove N2(v) from G and repeat (as long as there is a vertex of degree at least 3 in 
the resulting graph).

Suppose the above procedure runs for r < k steps.

v1 v2 vr

N(v1)

N2(v1)

N(v2)

N2(v2)

|X| = O(k2)

Every vertex of G-X has degree at most 2.

G-X is a disjoint union of paths and cycles.

The green vertices are neighbours of X.

|N(X)| = O(k2)
The black vertices between two consecutive green 
vertices are degree 2 vertices in the entire graph.
Therefore, |V(G) \X| ≤ (|N(X)| +1)= O(k2)



Lower bound machinery for Turing kernels?

• How to show that a problem does not exhibit any Turing kernel?


• So far, no machinery exists that allows one to prove such statements.


• Rather, we developed some hardness theory based on conjectures like, 


Connected Vertex Cover does not admit a Turing kernel, or 


Steiner Tree does not admit a Turing kernel.


