
Kernelization lower bounds

Kernelization lower bounds 1

Showing no polynomial kernels

How do we show that there is no polynomial kernel for a problem?

No answer until 2008.

Kernelization lower bounds 2

Showing no polynomial kernels

How do we show that there is no polynomial kernel for a problem?

No answer until 2008.

Kernelization lower bounds 2

Decision problems as languages

Un-parameterized problems can be viewed as languages for a finite
alphabet Σ.
A language L over Σ is a subset of strings in Σ∗.
A Parameterized problem is a set of pairs (x , k), where x ∈ Σ∗ and k
is a non-negative integer.
In the unparameterized version of a parameterized problem k is
appended at the end of input in unary.

Kernelization algorithm for a language L
This is a polynomial time algorithm that takes as input (x , k) and outputs
(x ′, k ′) such that

(x , k) ∈ L if and only if (x ′, k ′) ∈ L, and
|x ′|+ k ′ ≤ f (k)

Kernelization lower bounds 3

Decision problems as languages

Un-parameterized problems can be viewed as languages for a finite
alphabet Σ.
A language L over Σ is a subset of strings in Σ∗.
A Parameterized problem is a set of pairs (x , k), where x ∈ Σ∗ and k
is a non-negative integer.
In the unparameterized version of a parameterized problem k is
appended at the end of input in unary.

Kernelization algorithm for a language L
This is a polynomial time algorithm that takes as input (x , k) and outputs
(x ′, k ′) such that

(x , k) ∈ L if and only if (x ′, k ′) ∈ L, and
|x ′|+ k ′ ≤ f (k)

Kernelization lower bounds 3

Decision problems as languages

Un-parameterized problems can be viewed as languages for a finite
alphabet Σ.
A language L over Σ is a subset of strings in Σ∗.
A Parameterized problem is a set of pairs (x , k), where x ∈ Σ∗ and k
is a non-negative integer.
In the unparameterized version of a parameterized problem k is
appended at the end of input in unary.

Kernelization algorithm for a language L
This is a polynomial time algorithm that takes as input (x , k) and outputs
(x ′, k ′) such that

(x , k) ∈ L if and only if (x ′, k ′) ∈ L, and
|x ′|+ k ′ ≤ f (k)

Kernelization lower bounds 3

Decision problems as languages

Un-parameterized problems can be viewed as languages for a finite
alphabet Σ.
A language L over Σ is a subset of strings in Σ∗.
A Parameterized problem is a set of pairs (x , k), where x ∈ Σ∗ and k
is a non-negative integer.
In the unparameterized version of a parameterized problem k is
appended at the end of input in unary.

Kernelization algorithm for a language L
This is a polynomial time algorithm that takes as input (x , k) and outputs
(x ′, k ′) such that

(x , k) ∈ L if and only if (x ′, k ′) ∈ L, and
|x ′|+ k ′ ≤ f (k)

Kernelization lower bounds 3

Polynomial Compression

Let L,R be parameterized problems.

Polynomial compression from L to R
This is a polynomial time algorithm that takes as input (x , k) and outputs
(x ′, k ′) such that

(x , k) ∈ L if and only if (x ′, k ′) ∈ R , and
|x ′|+ k ′ ≤ f (k)

We say L has no polynomial compression if L has no polynomial
compression to any problem R .
We assume nothing about the problem R .
If R ∈ NP and L is NP-hard, then a polynomial compression from L
to R implies a polynomial kernel for L.

Kernelization lower bounds 4

Polynomial Compression

Let L,R be parameterized problems.

Polynomial compression from L to R
This is a polynomial time algorithm that takes as input (x , k) and outputs
(x ′, k ′) such that

(x , k) ∈ L if and only if (x ′, k ′) ∈ R , and
|x ′|+ k ′ ≤ f (k)

We say L has no polynomial compression if L has no polynomial
compression to any problem R .
We assume nothing about the problem R .
If R ∈ NP and L is NP-hard, then a polynomial compression from L
to R implies a polynomial kernel for L.

Kernelization lower bounds 4

Polynomial Compression

Let L,R be parameterized problems.

Polynomial compression from L to R
This is a polynomial time algorithm that takes as input (x , k) and outputs
(x ′, k ′) such that

(x , k) ∈ L if and only if (x ′, k ′) ∈ R , and
|x ′|+ k ′ ≤ f (k)

We say L has no polynomial compression if L has no polynomial
compression to any problem R .
We assume nothing about the problem R .
If R ∈ NP and L is NP-hard, then a polynomial compression from L
to R implies a polynomial kernel for L.

Kernelization lower bounds 4

Polynomial Compression

Let L,R be parameterized problems.

Polynomial compression from L to R
This is a polynomial time algorithm that takes as input (x , k) and outputs
(x ′, k ′) such that

(x , k) ∈ L if and only if (x ′, k ′) ∈ R , and
|x ′|+ k ′ ≤ f (k)

We say L has no polynomial compression if L has no polynomial
compression to any problem R .
We assume nothing about the problem R .
If R ∈ NP and L is NP-hard, then a polynomial compression from L
to R implies a polynomial kernel for L.

Kernelization lower bounds 4

Intuition (with example)

k-Path
Input: A graph G and a positive integer k
Question: Does there exist a path of length k in G?

Suppose (for the sake of contradiction) k-Path admits a polynomial
kernel, say with k3 vertices.

Let (G1, k), (G2, k), . . . , (Gt , k) be t = k7 instances of k-Path.
Create another instance (H, k) of k-Path where H is the disjoint
union of the graphs G1, . . . ,Gt .
H has a path of length k if and only if Gi has a path of length k for
some i ∈ {1, . . . , t} (“ H is an OR of Gis”).
Kernelize (H, k) and get (H ′, k ′) where |V (H ′)| ≤ k3. Bit size of the
reduced instance (H ′, k ′) is ≈ k6.

The bit size of the reduced instance is strictly less than the number of
instances (t) that we started with!

Kernelization lower bounds 5

Intuition (with example)

k-Path
Input: A graph G and a positive integer k
Question: Does there exist a path of length k in G?

Suppose (for the sake of contradiction) k-Path admits a polynomial
kernel, say with k3 vertices.

Let (G1, k), (G2, k), . . . , (Gt , k) be t = k7 instances of k-Path.
Create another instance (H, k) of k-Path where H is the disjoint
union of the graphs G1, . . . ,Gt .
H has a path of length k if and only if Gi has a path of length k for
some i ∈ {1, . . . , t} (“ H is an OR of Gis”).
Kernelize (H, k) and get (H ′, k ′) where |V (H ′)| ≤ k3. Bit size of the
reduced instance (H ′, k ′) is ≈ k6.

The bit size of the reduced instance is strictly less than the number of
instances (t) that we started with!

Kernelization lower bounds 5

Intuition (with example)

k-Path
Input: A graph G and a positive integer k
Question: Does there exist a path of length k in G?

Suppose (for the sake of contradiction) k-Path admits a polynomial
kernel, say with k3 vertices.

Let (G1, k), (G2, k), . . . , (Gt , k) be t = k7 instances of k-Path.
Create another instance (H, k) of k-Path where H is the disjoint
union of the graphs G1, . . . ,Gt .
H has a path of length k if and only if Gi has a path of length k for
some i ∈ {1, . . . , t} (“ H is an OR of Gis”).
Kernelize (H, k) and get (H ′, k ′) where |V (H ′)| ≤ k3. Bit size of the
reduced instance (H ′, k ′) is ≈ k6.

The bit size of the reduced instance is strictly less than the number of
instances (t) that we started with!

Kernelization lower bounds 5

Intuition (with example)

k-Path
Input: A graph G and a positive integer k
Question: Does there exist a path of length k in G?

Suppose (for the sake of contradiction) k-Path admits a polynomial
kernel, say with k3 vertices.

Let (G1, k), (G2, k), . . . , (Gt , k) be t = k7 instances of k-Path.
Create another instance (H, k) of k-Path where H is the disjoint
union of the graphs G1, . . . ,Gt .
H has a path of length k if and only if Gi has a path of length k for
some i ∈ {1, . . . , t} (“ H is an OR of Gis”).
Kernelize (H, k) and get (H ′, k ′) where |V (H ′)| ≤ k3. Bit size of the
reduced instance (H ′, k ′) is ≈ k6.

The bit size of the reduced instance is strictly less than the number of
instances (t) that we started with!

Kernelization lower bounds 5

Intuition (with example)

k-Path
Input: A graph G and a positive integer k
Question: Does there exist a path of length k in G?

Suppose (for the sake of contradiction) k-Path admits a polynomial
kernel, say with k3 vertices.

Let (G1, k), (G2, k), . . . , (Gt , k) be t = k7 instances of k-Path.
Create another instance (H, k) of k-Path where H is the disjoint
union of the graphs G1, . . . ,Gt .
H has a path of length k if and only if Gi has a path of length k for
some i ∈ {1, . . . , t} (“ H is an OR of Gis”).
Kernelize (H, k) and get (H ′, k ′) where |V (H ′)| ≤ k3. Bit size of the
reduced instance (H ′, k ′) is ≈ k6.

The bit size of the reduced instance is strictly less than the number of
instances (t) that we started with!

Kernelization lower bounds 5

Intuition (with example)

k-Path
Input: A graph G and a positive integer k
Question: Does there exist a path of length k in G?

Suppose (for the sake of contradiction) k-Path admits a polynomial
kernel, say with k3 vertices.

Let (G1, k), (G2, k), . . . , (Gt , k) be t = k7 instances of k-Path.
Create another instance (H, k) of k-Path where H is the disjoint
union of the graphs G1, . . . ,Gt .
H has a path of length k if and only if Gi has a path of length k for
some i ∈ {1, . . . , t} (“ H is an OR of Gis”).
Kernelize (H, k) and get (H ′, k ′) where |V (H ′)| ≤ k3. Bit size of the
reduced instance (H ′, k ′) is ≈ k6.

The bit size of the reduced instance is strictly less than the number of
instances (t) that we started with!

Kernelization lower bounds 5

No accountability for the loss of information!

Loss of important information
In polynomial time, we completely forgot about some of the (t) input
instances.
How did this polynomial time algorithm knew that they could be discarded
(that they did not have k-paths)? This is unlikely to have happened for
any NP-hard problem!

Kernelization lower bounds 6

OR-distillation

Let L,R be un-parameterized languages.

OR-distillation of L into R
Input: Strings x1, . . . , xt each of length at most n.
Output: A string y such that:

y ∈ R if and only if xi ∈ L for some i ∈ {1, . . . , t}, and
|y | = poly(max |xi |).

Time: polynomial in the input, that is poly(
∑t

i=1 |xi |).

Figure:

Kernelization lower bounds 7

OR-distillation

Let L,R be un-parameterized languages.

OR-distillation of L into R
Input: Strings x1, . . . , xt each of length at most n.
Output: A string y such that:

y ∈ R if and only if xi ∈ L for some i ∈ {1, . . . , t}, and
|y | = poly(max |xi |).

Time: polynomial in the input, that is poly(
∑t

i=1 |xi |).

Figure:

Kernelization lower bounds 7

OR-distillation

Define another language, OR-L = {x1# . . .#xt : xi ∈ L for some i}.
OR-distillation from L into R is a polynomial compression from
OR-L/max|xi | to R .

Kernelization lower bounds 8

The main theorem (without proof)

OR-distillation theorem [Fortnow, Santhanam 2008]
No NP-hard problem admits an OR-distillation into any language R , unless
NP⊆coNP/poly.

Intuitive meaning of NP⊆coNP/poly: Verifying proofs in polynomial
time cannot be turned into verifying counterexamples in polynomial
time, even if we allow polynomial advice.
Implication of NP⊆coNP/poly: PH=ΣP

3 , that is the polynomial
hierarchy collapses to the third level.
This is believed to be highly unlikely (not as unlikely as P=NP but
still highly unlikely).

Kernelization lower bounds 9

The main theorem (without proof)

OR-distillation theorem [Fortnow, Santhanam 2008]
No NP-hard problem admits an OR-distillation into any language R , unless
NP⊆coNP/poly.

Intuitive meaning of NP⊆coNP/poly: Verifying proofs in polynomial
time cannot be turned into verifying counterexamples in polynomial
time, even if we allow polynomial advice.
Implication of NP⊆coNP/poly: PH=ΣP

3 , that is the polynomial
hierarchy collapses to the third level.
This is believed to be highly unlikely (not as unlikely as P=NP but
still highly unlikely).

Kernelization lower bounds 9

The main theorem (without proof)

OR-distillation theorem [Fortnow, Santhanam 2008]
No NP-hard problem admits an OR-distillation into any language R , unless
NP⊆coNP/poly.

Intuitive meaning of NP⊆coNP/poly: Verifying proofs in polynomial
time cannot be turned into verifying counterexamples in polynomial
time, even if we allow polynomial advice.
Implication of NP⊆coNP/poly: PH=ΣP

3 , that is the polynomial
hierarchy collapses to the third level.
This is believed to be highly unlikely (not as unlikely as P=NP but
still highly unlikely).

Kernelization lower bounds 9

OR-composition

Let L be a parameterized problem.

OR-composition for L
Input: (x1, k), . . . , (xt , k) such that xi ∈ Σ∗ and k is a non-negative
integer.
Output: (y , k∗) such that

(y , k∗) ∈ L if and only if (xi , k) ∈ L for some i , and
k∗ = poly(k).

Time: polynomial in the input, that is poly(
∑t

i=1 |xi |+ k).

Figure:

Kernelization lower bounds 10

OR-composition theorem

OR-composition theorem
If there exists an OR-composition for a parameterized problem L such that
the un-parameterized version of L is NP-hard, then L does not admit a
polynomial kernel unless NP⊆coNP/poly.

Proof:

Kernelization lower bounds 11

OR-composition theorem: Proof

Figure:
Kernelization lower bounds 12

OR-composition theorem: Proof

Figure:
Kernelization lower bounds 13

OR-composition theorem: Proof

Figure:
Kernelization lower bounds 14

OR-composition theorem: Proof

Figure:
Kernelization lower bounds 15

OR-composition theorem: Proof

Figure:
Kernelization lower bounds 16

OR-composition theorem: Proof

Figure:
Kernelization lower bounds 17

Application of the OR-composition theorem

Theorem
k-Path does not admit a polynomial kernel, unless NP⊆coNP/poly.

Since k-Path is an NP-hard problem, for the proof of the theorem it is
enough to give an OR-composition for k-Path.
OR-composition for k-Path: Given (G1, k), . . . , (Gt , k), output
(H = (G1] . . .] Gt), k).
Correctness follows because a graph has a path of length k if and only if at
least one of its connected components has it.

Show that k-Cycle does not admit a polynomial kernel, unless
NP⊆coNP/poly.

Kernelization lower bounds 18

Application of the OR-composition theorem

Theorem
k-Path does not admit a polynomial kernel, unless NP⊆coNP/poly.

Since k-Path is an NP-hard problem, for the proof of the theorem it is
enough to give an OR-composition for k-Path.
OR-composition for k-Path: Given (G1, k), . . . , (Gt , k), output
(H = (G1] . . .] Gt), k).
Correctness follows because a graph has a path of length k if and only if at
least one of its connected components has it.

Show that k-Cycle does not admit a polynomial kernel, unless
NP⊆coNP/poly.

Kernelization lower bounds 18

Application of the OR-composition theorem

Theorem
k-Path does not admit a polynomial kernel, unless NP⊆coNP/poly.

Since k-Path is an NP-hard problem, for the proof of the theorem it is
enough to give an OR-composition for k-Path.
OR-composition for k-Path: Given (G1, k), . . . , (Gt , k), output
(H = (G1] . . .] Gt), k).
Correctness follows because a graph has a path of length k if and only if at
least one of its connected components has it.

Show that k-Cycle does not admit a polynomial kernel, unless
NP⊆coNP/poly.

Kernelization lower bounds 18

Application of the OR-composition theorem

Theorem
k-Path does not admit a polynomial kernel, unless NP⊆coNP/poly.

Since k-Path is an NP-hard problem, for the proof of the theorem it is
enough to give an OR-composition for k-Path.
OR-composition for k-Path: Given (G1, k), . . . , (Gt , k), output
(H = (G1] . . .] Gt), k).
Correctness follows because a graph has a path of length k if and only if at
least one of its connected components has it.

Show that k-Cycle does not admit a polynomial kernel, unless
NP⊆coNP/poly.

Kernelization lower bounds 18

AND-composition

Let L be a parameterized problem.

AND-composition for L
Input: (x1, k), . . . , (xt , k) such that xi ∈ Σ∗ and k is a non-negative
integer.
Output: (y , k∗) such that

(y , k∗) ∈ L if and only if (xi , k) ∈ L for all i , and
k∗ = poly(k).

Time: polynomial in the input, that is poly(
∑t

i=1 |xi |+ k).

AND-composition theorem
If there exists an AND-composition for a parameterized problem L such
that the un-parameterized version of L is NP-hard, then L does not admit
a polynomial kernel unless NP⊆coNP/poly.

Kernelization lower bounds 19

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

Enhancing the framework for compositionality

We have an OR-composition for an NP-hard problem L (from L to L).
1 Can we show that L has no polynomial compression to any language

R?
Yes.

2 What happens if we give an OR-composition from Q to L (instead of
L to L)? Can we still say no polynomial compression for L?

Yes, as long as Q is an NP-hard problem.
3 Can we do more refined bucketting? Eg. Can we ensure that there

are same number of vertices in all the graphs of the same bucket?
Yes, as long as number of buckets is polynomial.

4 Can we say k∗ = poly(k +max |xi |)?
Yes.

5 How large can t be?
If t > Σn+1, where n = max |xi |, then we can remove the duplicate
input instances.
Therefore, log t = O(n).
Therefore, we can allow k∗ = poly(k +max |xi |+ log t).

Kernelization lower bounds 20

OR-cross composition [Bodlaender, Jansen, Kratsch 2011]

Polynomial equivalence relation
A polynomial equivalence relation is an equivalence relation ≡ defined over
strings in Σ∗ such that:

for any two strings x , y ∈ Σ∗, one can check whether x ≡ y in
poly(|x |+ |y |) time, and
the number of equivalence classes of words of length at most n is
poly(n).

Some common examples of polynomial equivalence relations include:
partitioning the words/graphs such that each equivalence class has
words/graphs of same length/number of vertices, or
... with same number of vertices, and edges, and size of maximum
matching, and budget.

Kernelization lower bounds 21

OR-cross composition [Bodlaender, Jansen, Kratsch 2011]

Polynomial equivalence relation
A polynomial equivalence relation is an equivalence relation ≡ defined over
strings in Σ∗ such that:

for any two strings x , y ∈ Σ∗, one can check whether x ≡ y in
poly(|x |+ |y |) time, and
the number of equivalence classes of words of length at most n is
poly(n).

Some common examples of polynomial equivalence relations include:
partitioning the words/graphs such that each equivalence class has
words/graphs of same length/number of vertices, or
... with same number of vertices, and edges, and size of maximum
matching, and budget.

Kernelization lower bounds 21

OR-cross composition [Bodlaender, Jansen, Kratsch 2011]

Let Q be an unparameterized problem and L be a parameterized problem

OR-cross composition from Q to L
Input: x1, . . . , xt , such that there exists a polynomial equivalence relation
≡ where x1, . . . , xt belong to the same equivalence class of ≡.
Output: (y , k∗) such that:

k∗ = poly(log t +maxt
i=1 |xi |), and

(y , k∗) ∈ L if and only if xi ∈ Q for some i .
Time: poly(

∑t
i=1 |xi |).

OR-cross composition theorem
If there is a OR-cross composition from Q to L and Q is NP-hard, then L
has no polynomial compression, unless NP⊆coNP/poly.

Remark: This notion is particularly useful in refuting polynomial kernels with
structural parameterizations, for example, Clique/vertex cover.

Kernelization lower bounds 22

OR-cross composition [Bodlaender, Jansen, Kratsch 2011]

Let Q be an unparameterized problem and L be a parameterized problem

OR-cross composition from Q to L
Input: x1, . . . , xt , such that there exists a polynomial equivalence relation
≡ where x1, . . . , xt belong to the same equivalence class of ≡.
Output: (y , k∗) such that:

k∗ = poly(log t +maxt
i=1 |xi |), and

(y , k∗) ∈ L if and only if xi ∈ Q for some i .
Time: poly(

∑t
i=1 |xi |).

OR-cross composition theorem
If there is a OR-cross composition from Q to L and Q is NP-hard, then L
has no polynomial compression, unless NP⊆coNP/poly.

Remark: This notion is particularly useful in refuting polynomial kernels with
structural parameterizations, for example, Clique/vertex cover.

Kernelization lower bounds 22

OR-cross composition [Bodlaender, Jansen, Kratsch 2011]

Let Q be an unparameterized problem and L be a parameterized problem

OR-cross composition from Q to L
Input: x1, . . . , xt , such that there exists a polynomial equivalence relation
≡ where x1, . . . , xt belong to the same equivalence class of ≡.
Output: (y , k∗) such that:

k∗ = poly(log t +maxt
i=1 |xi |), and

(y , k∗) ∈ L if and only if xi ∈ Q for some i .
Time: poly(

∑t
i=1 |xi |).

OR-cross composition theorem
If there is a OR-cross composition from Q to L and Q is NP-hard, then L
has no polynomial compression, unless NP⊆coNP/poly.

Remark: This notion is particularly useful in refuting polynomial kernels with
structural parameterizations, for example, Clique/vertex cover.

Kernelization lower bounds 22

k-Path Packing

k-Path Packing
Input: A graph G and an integer k
Question: Does there exist a collection of k mutually vertex disjoint paths
of length k each?
Parameter: k

Does k-Path Packing admit a polynomial kernel/compression?

Give a reduction from k-Path (G, k) to k-Path Packing (H, k) as
follows: H is the disjoint union of G and k − 1 vertex disjoint paths of
length k each.
G has a path of length k if and only if H has a k-path packing.
If k-Path Packing admits a polynomial kernel/compression then so
does k-path.

Kernelization lower bounds 23

k-Path Packing

k-Path Packing
Input: A graph G and an integer k
Question: Does there exist a collection of k mutually vertex disjoint paths
of length k each?
Parameter: k

Does k-Path Packing admit a polynomial kernel/compression?

Give a reduction from k-Path (G, k) to k-Path Packing (H, k) as
follows: H is the disjoint union of G and k − 1 vertex disjoint paths of
length k each.
G has a path of length k if and only if H has a k-path packing.
If k-Path Packing admits a polynomial kernel/compression then so
does k-path.

Kernelization lower bounds 23

k-Path Packing

k-Path Packing
Input: A graph G and an integer k
Question: Does there exist a collection of k mutually vertex disjoint paths
of length k each?
Parameter: k

Does k-Path Packing admit a polynomial kernel/compression?

Give a reduction from k-Path (G, k) to k-Path Packing (H, k) as
follows: H is the disjoint union of G and k − 1 vertex disjoint paths of
length k each.
G has a path of length k if and only if H has a k-path packing.
If k-Path Packing admits a polynomial kernel/compression then so
does k-path.

Kernelization lower bounds 23

k-Path Packing

k-Path Packing
Input: A graph G and an integer k
Question: Does there exist a collection of k mutually vertex disjoint paths
of length k each?
Parameter: k

Does k-Path Packing admit a polynomial kernel/compression?

Give a reduction from k-Path (G, k) to k-Path Packing (H, k) as
follows: H is the disjoint union of G and k − 1 vertex disjoint paths of
length k each.
G has a path of length k if and only if H has a k-path packing.
If k-Path Packing admits a polynomial kernel/compression then so
does k-path.

Kernelization lower bounds 23

Polynomial parameter transformations (PPT)

Let L,R be parameterized problems.

Polynomial parameter transforamtions from L to R
We say there is a polynomial parameter transformation from L to R if
there exists a polynomial time algorithm that takes as input (x , k) and
outputs (y , k ′) such that:

(x , k) ∈ L if and only if (y , k ′) ∈ R , and
k ′ = poly(k).

PPT Theorem
If there exists a PPT from L to R and L has no polynomial compresssion,
then R has no polynomial compression.

Kernelization lower bounds 24

Polynomial parameter transformations (PPT)

Let L,R be parameterized problems.

Polynomial parameter transforamtions from L to R
We say there is a polynomial parameter transformation from L to R if
there exists a polynomial time algorithm that takes as input (x , k) and
outputs (y , k ′) such that:

(x , k) ∈ L if and only if (y , k ′) ∈ R , and
k ′ = poly(k).

PPT Theorem
If there exists a PPT from L to R and L has no polynomial compresssion,
then R has no polynomial compression.

Kernelization lower bounds 24

Application: Steiner Tree

Steiner Tree
Input: A graph G, a set of terminals K ⊆ V (G), a positive integer k.
Question: Does there exist a connected subgraph (tree) of G on size at
most k vertices that contains all the terminal vertices?
Parameter: k

Figure:

Kernelization lower bounds 25

Colorful Graph Motif

Colorful Graph Motif (CGM)
Input: A graph G, a coloring function c : V (G) → {1, . . . , k}.
Question: Does there exist a connected subgraph of G that contains
exactly one vertex of each color?
Parameter: k
CGM is NP-hard even on trees.

Figure:

Kernelization lower bounds 26

Colorful Graph Motif

Colorful Graph Motif (CGM)
Input: A graph G, a coloring function c : V (G) → {1, . . . , k}.
Question: Does there exist a connected subgraph of G that contains
exactly one vertex of each color?
Parameter: k

OR-composition for Colorful Graph Motif: Given
(G1, c1, k), . . . , (Gt , ct , k), output (H = G1] . . .] Gt , c = c1 ∪ . . . ∪ ct , k).

Theorem
Colorful Graph Motif does not admit a polynomial
kernel/compression unless NP⊆coNP/poly.

Kernelization lower bounds 27

Colorful Graph Motif

Colorful Graph Motif (CGM)
Input: A graph G, a coloring function c : V (G) → {1, . . . , k}.
Question: Does there exist a connected subgraph of G that contains
exactly one vertex of each color?
Parameter: k

OR-composition for Colorful Graph Motif: Given
(G1, c1, k), . . . , (Gt , ct , k), output (H = G1] . . .] Gt , c = c1 ∪ . . . ∪ ct , k).

Theorem
Colorful Graph Motif does not admit a polynomial
kernel/compression unless NP⊆coNP/poly.

Kernelization lower bounds 27

PPT from CGM to Steiner Tree

Let (G, c, k) be an instance of Colorful Graph Motif.
Construct H from G by adding a new terminal vertex for each color class
and making it adjacent to the respective color class.

Figure:

Kernelization lower bounds 28

PPT from CGM to Steiner Tree

Let (G, c, k) be an instance of Colorful Graph Motif.
Construct H from G by adding a new terminal vertex for each color class
and making it adjacent to the respective color class.

Claim
(G, c, k) is a Yes-instance of Colorful Graph Motif if and only if
(H,K = {tred , tgreen, tyellow , tblue , ..}, 2k) is a Yes-instance of Steiner
Tree.

Theorem
Steiner Tree does not admit a polynomial kernel/compression
parameterized by k, unless NP⊆coNP/poly.

Kernelization lower bounds 29

PPT from CGM to Steiner Tree

Let (G, c, k) be an instance of Colorful Graph Motif.
Construct H from G by adding a new terminal vertex for each color class
and making it adjacent to the respective color class.

Claim
(G, c, k) is a Yes-instance of Colorful Graph Motif if and only if
(H,K = {tred , tgreen, tyellow , tblue , ..}, 2k) is a Yes-instance of Steiner
Tree.

Theorem
Steiner Tree does not admit a polynomial kernel/compression
parameterized by k, unless NP⊆coNP/poly.

Kernelization lower bounds 29

Weak compositions and stronger lower bounds

One can further refine the notion of OR-cross compositions to define weak
compositions which give tight polynomial lower bounds for kernel sizes.
For example, they can be used to show the following:

Vertex Cover does not admit a polynomial compression with bit
size O(k2−ε), unless NP⊆coNP/poly.
Feedback Vertex Set does not admit a polynomial compression
with bit size O(k2−ε), unless NP⊆coNP/poly.
d-Hitting Set and d-Set Packing parameterized by |U| does not
admit a polynomial compression with bit size O(|U|d−ε), unless
NP⊆coNP/poly.
...

Kernelization lower bounds 30

Weak compositions and stronger lower bounds

One can further refine the notion of OR-cross compositions to define weak
compositions which give tight polynomial lower bounds for kernel sizes.
For example, they can be used to show the following:

Vertex Cover does not admit a polynomial compression with bit
size O(k2−ε), unless NP⊆coNP/poly.
Feedback Vertex Set does not admit a polynomial compression
with bit size O(k2−ε), unless NP⊆coNP/poly.
d-Hitting Set and d-Set Packing parameterized by |U| does not
admit a polynomial compression with bit size O(|U|d−ε), unless
NP⊆coNP/poly.
...

Kernelization lower bounds 30

