Important cuts

Dániel Marx

Lecture #10
January 11, 2020
Overview

Main message
Small cuts in graphs have interesting extremal properties that can be exploited in combinatorial and algorithmic results.

- Bounding the number of “important” cuts.
- Edge/vertex versions, directed/undirected versions, undeletable edges/vertices
- “directed edge” or “arc”
- Algorithmic applications: FPT algorithm for
 - Multiway cut
 - Directed Feedback Vertex Set
Definition: \(\delta(R) \) is the set of edges with exactly one endpoint in \(R \).

Definition: A set \(S \) of edges is a \textbf{minimal \((X, Y) \)-cut} if there is no \(X - Y \) path in \(G \setminus S \) and no proper subset of \(S \) breaks every \(X - Y \) path.

Observation: Every minimal \((X, Y) \)-cut \(S \) can be expressed as \(S = \delta(R) \) for some \(X \subseteq R \) and \(R \cap Y = \emptyset \).
Theorem

A minimum \((X, Y)\)-cut can be found in polynomial time.

Theorem

The size of a minimum \((X, Y)\)-cut equals the maximum size of a pairwise edge-disjoint collection of \(X - Y\) paths.
Finding minimum cuts

There is a long list of algorithms for finding disjoint paths and minimum cuts.

- Edmonds-Karp: $O(|V(G)| \cdot |E(G)|^2)$
- Dinitz: $O(|V(G)|^2 \cdot |E(G)|)$
- Push-relabel: $O(|V(G)|^3)$
- Orlin-King-Rao-Tarjan: $O(|V(G)| \cdot |E(G)|)$
- ...
- Liu-Sidford: $O(|E(G)|^{4/3} U^{1/3})$

But we need only the following result:

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.
Finding minimum cuts

Theorem

An \((X, Y)\)-cut of size at most \(k\) (if exists) can be found in time \(O(k \cdot (|V(G)| + |E(G)|))\).

We try to grow a collection \(\mathcal{P}\) of edge-disjoint \(X - Y\) paths.

Residual graph:
- not used by \(\mathcal{P}\): bidirected,
- used by \(\mathcal{P}\): directed in the opposite direction.

![Diagram](image)
Finding minimum cuts

Theorem

An \((X, Y)\)-cut of size at most \(k\) (if exists) can be found in time \(O(k \cdot (|V(G)| + |E(G)|))\).

We try to grow a collection \(\mathcal{P}\) of edge-disjoint \(X - Y\) paths.

Residual graph:

- not used by \(\mathcal{P}\): bidirected,
- used by \(\mathcal{P}\): directed in the opposite direction.

![Diagram of original and residual graph with nodes and edges highlighted]
Finding minimum cuts

Theorem

An \((X, Y)\)-cut of size at most \(k\) (if exists) can be found in time \(O(k \cdot (|V(G)| + |E(G)|))\).

We try to grow a collection \(\mathcal{P}\) of edge-disjoint \(X - Y\) paths.

Residual graph:
- not used by \(\mathcal{P}\): bidirected,
- used by \(\mathcal{P}\): directed in the opposite direction.
Finding minimum cuts

Theorem

An \((X, Y)\)-cut of size at most \(k\) (if exists) can be found in time \(O(k \cdot (|V(G)| + |E(G)|))\).

We try to grow a collection \(\mathcal{P}\) of edge-disjoint \(X - Y\) paths.

Residual graph:

- not used by \(\mathcal{P}\): bidirected,
- used by \(\mathcal{P}\): directed in the opposite direction.

If we cannot find an augmenting path, we can find a (minimum) cut of size \(|\mathcal{P}|\).
Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$|\delta(A)| + |\delta(B)| \geq |\delta(A \cap B)| + |\delta(A \cup B)|$$
Submodularity

Fact: The function δ is **submodular:** for arbitrary sets A, B,

$$|\delta(A)| + |\delta(B)| \geq |\delta(A \cap B)| + |\delta(A \cup B)|$$

Proof: Determine separately the contribution of the different types of edges.
Submodularity

Fact: The function δ is submodular: for arbitrary sets $A, B,$

$$|\delta(A)| + |\delta(B)| \geq |\delta(A \cap B)| + |\delta(A \cup B)|$$

Proof: Determine separately the contribution of the different types of edges.
Submodularity

Fact: The function δ is **submodular**: for arbitrary sets A, B,

$$|\delta(A)| + |\delta(B)| \geq |\delta(A \cap B)| + |\delta(A \cup B)|$$

Proof: Determine separately the contribution of the different types of edges.
Submodularity

Fact: The function δ is **submodular**: for arbitrary sets A, B,

$$|\delta(A)| + |\delta(B)| \geq |\delta(A \cap B)| + |\delta(A \cup B)| \quad 0 \quad 1 \quad 0 \quad 1$$

Proof: Determine separately the contribution of the different types of edges.
Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$|\delta(A)| + |\delta(B)| \geq |\delta(A \cap B)| + |\delta(A \cup B)|$$

Proof: Determine separately the contribution of the different types of edges.
Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$\frac{|\delta(A)|}{1} + \frac{|\delta(B)|}{1} \geq \frac{|\delta(A \cap B)|}{1} + \frac{|\delta(A \cup B)|}{1}$$

Proof: Determine separately the contribution of the different types of edges.
Submodularity

Fact: The function δ is submodular: for arbitrary sets A, B,

$$|\delta(A)| + |\delta(B)| \geq |\delta(A \cap B)| + |\delta(A \cup B)|$$

Proof: Determine separately the contribution of the different types of edges.
Submodularity

Lemma

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\text{max}} \supseteq X$ such that $\delta(R_{\text{max}})$ is an (X, Y)-cut of size λ.
Submodularity

Lemma

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\text{max}} \supseteq X$ such that $\delta(R_{\text{max}})$ is an (X, Y)-cut of size λ.

Proof: Let $R_1, R_2 \supseteq X$ be two sets such that $\delta(R_1), \delta(R_2)$ are (X, Y)-cuts of size λ.

$$|\delta(R_1)| + |\delta(R_2)| \geq |\delta(R_1 \cap R_2)| + |\delta(R_1 \cup R_2)|$$

$$\lambda \quad \lambda \quad \geq \lambda$$

$$\Rightarrow |\delta(R_1 \cup R_2)| \leq \lambda$$

Note: Analogous result holds for a unique minimal R_{min}.

Finding R_{min} and R_{max}

Lemma

Given a graph G and sets $X, Y \subseteq V(G)$, the sets R_{min} and R_{max} can be found in polynomial time.

Proof: Iteratively add vertices to X if they do not increase the minimum $X - Y$ cut size. When the process stops, $X = R_{\text{max}}$. Similar for R_{min}.

But we can do better!
Finding R_{min} and R_{max}

Lemma

Given a graph G and sets $X, Y \subseteq V(G)$, the sets R_{min} and R_{max} can be found in $O(\lambda \cdot (|V(G)| + |E(G)|))$ time, where λ is the minimum $X - Y$ cut size.

Proof: Look at the residual graph.

R_{min}: vertices reachable from X.

R_{max}: vertices from which Y is not reachable.
Important cuts

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R.

Definition: A set S of edges is a **minimal (X, Y)-cut** if there is no $X-Y$ path in $G \setminus S$ and no proper subset of S breaks every $X-Y$ path.

Observation: Every minimal (X, Y)-cut S can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

![Diagram showing a network with important cuts and minimal cuts](image-url)
Important cuts

Definition

A minimal \((X, Y)\)-cut \(\delta(R)\) is **important** if there is no \((X, Y)\)-cut \(\delta(R')\) with \(R \subset R'\) and \(|\delta(R')| \leq |\delta(R)|\).

Note: Can be checked in polynomial time if a cut is important.
Important cuts

Definition

A minimal \((X, Y)\)-cut \(\delta(R)\) is important if there is no \((X, Y)\)-cut \(\delta(R')\) with \(R \subset R'\) and \(|\delta(R')| \leq |\delta(R)|\).

Note: Can be checked in polynomial time if a cut is important.
Important cuts

Definition
A minimal \((X, Y)\)-cut \(\delta(R)\) is important if there is no \((X, Y)\)-cut \(\delta(R')\) with \(R \subset R'\) and \(|\delta(R')| \leq |\delta(R)|\).

Note: Can be checked in polynomial time if a cut is important.
Important cuts

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important.

Observation: There is a unique important (X, Y)-cut of minimum size: $\delta(R_{\text{max}})$.
Important cuts

The number of important cuts can be exponentially large.

Example:

This graph has $2^{k/2}$ important (X, Y)-cuts of size at most k.
Important cuts

The number of important cuts can be exponentially large.

Example:

This graph has $2^{k/2}$ important (X, Y)-cuts of size at most k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.
Important cuts

Theorem
There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\text{max}})$ be the unique important cut of size λ such that R_{max} is maximal.

(1) We show that $R_{\text{max}} \subseteq R$ for every important cut $\delta(R)$.

\[\lambda \geq \lambda \quad \Rightarrow \quad |\delta(R_{\text{max}} \cup R)| \leq |\delta(R)| \]

If $R \neq R_{\text{max}} \cup R$, then $\delta(R)$ is not important.
There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\text{max}})$ be the unique important cut of size λ such that R_{max} is maximal.

(1) We show that $R_{\text{max}} \subseteq R$ for every important cut $\delta(R)$.

By the submodularity of δ:

$$|\delta(R_{\text{max}})| + |\delta(R)| \geq |\delta(R_{\text{max}} \cap R)| + |\delta(R_{\text{max}} \cup R)| \geq \lambda \downarrow$$

$$|\delta(R_{\text{max}} \cup R)| \leq |\delta(R)| \downarrow$$

If $R \neq R_{\text{max}} \cup R$, then $\delta(R)$ is not important.
Important cuts

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\text{max}})$ be the unique important cut of size λ such that R_{max} is maximal.

(1) We show that $R_{\text{max}} \subseteq R$ for every important cut $\delta(R)$.

By the submodularity of δ:

$$|\delta(R_{\text{max}})| + |\delta(R)| \geq |\delta(R_{\text{max}} \cap R)| + |\delta(R_{\text{max}} \cup R)| \geq \lambda$$

\Downarrow

$$|\delta(R_{\text{max}} \cup R)| \leq |\delta(R)|$$

\Downarrow

If $R \neq R_{\text{max}} \cup R$, then $\delta(R)$ is not important.

Thus the important (X, Y)- and (R_{max}, Y)-cuts are the same.

\Rightarrow We can assume $X = R_{\text{max}}$.

12
(2) Search tree algorithm for enumerating all these cuts:
An (arbitrary) edge uv leaving $X = R_{\text{max}}$ is either in the cut or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most $k - 1$ in $G \setminus uv$.

$\Rightarrow k$ decreases by one, λ decreases by at most 1.

Branch 2: If $uv \not\in S$, then S is an important $(X \cup v, Y)$-cut of size at most k in G.

$\Rightarrow k$ remains the same, λ increases by 1.

The measure $2k - \lambda$ decreases in each step.

\Rightarrow Height of the search tree $\leq 2k \leq 2^2k = 4k$ important cuts of size at most k.
Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge \(uv\) leaving \(X = R_{\text{max}}\) is either in the cut or not.

Branch 1: If \(uv \in S\), then \(S \setminus uv\) is an important \((X, Y)\)-cut of size at most \(k - 1\) in \(G \setminus uv\).

Branch 2: If \(uv \notin S\), then \(S\) is an important \((X \cup v, Y)\)-cut of size at most \(k\) in \(G\).
Important cuts

(2) Search tree algorithm for enumerating all these cuts:
An (arbitrary) edge uv leaving $X = R_{\text{max}}$ is either in the cut or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most $k - 1$ in $G \setminus uv$.

\Rightarrow k decreases by one, λ decreases by at most 1.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$-cut of size at most k in G.

\Rightarrow k remains the same, λ increases by 1.
Important cuts

(2) Search tree algorithm for enumerating all these cuts:
An (arbitrary) edge uv leaving $X = R_{\text{max}}$ is either in the cut or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most $k - 1$ in $G \setminus uv$.

$\Rightarrow k$ decreases by one, λ decreases by at most 1.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$-cut of size at most k in G.

$\Rightarrow k$ remains the same, λ increases by 1.

The measure $2k - \lambda$ decreases in each step.

\Rightarrow Height of the search tree $\leq 2k$

$\Rightarrow \leq 2^{2k} = 4^k$ important cuts of size at most k.
There are at most 4^k important (X, Y)-cuts of size at most k and they can be enumerated in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|))$.

Algorithm for enumerating important cuts:

1. Handle trivial cases ($k = 0$, $\lambda = 0$, $k < \lambda$)
2. Find R_{max}.
3. Choose an edge uv of $\delta(R_{\text{max}})$.
 - Recurse on $(G - uv, R_{\text{max}}, Y, k - 1)$.
 - Recurse on $(G, R_{\text{max}} \cup v, Y, k)$.
4. Check if the returned cuts are important and throw away those that are not.
Important cuts

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.
Important cuts

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.
Important cuts

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.
Important cuts

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k. The number of subtrees with k leaves is the Catalan number

$$C_{k-1} = \frac{1}{k} \binom{2k - 2}{k - 1} \geq 4^k / \text{poly}(k).$$
Multiway Cut

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Multiway Cut

Input: Graph G, set T of vertices, integer k

Find: A multiway cut S of at most k edges.

Polynomial for $|T| = 2$, but NP-hard for any fixed $|T| \geq 3$.

\Rightarrow Cannot be FPT parameterized by $|T|$ assuming P \neq NP.
Multiway Cut

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Multiway Cut

Input: Graph G, set T of vertices, integer k

Find: A multiway cut S of at most k edges.

Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Theorem

Multiway Cut can be solved in time $4^k \cdot k^3 \cdot (|V(G)| + |E(G)|)$.
Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$-cut.
Multiway Cut

Intuition: Consider a \(t \in T \). A subset of the solution \(S \) is a \((t, T \setminus t)\)-cut.

There are many such cuts.
Multiway Cut

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$-cut.

There are many such cuts.
Multiway Cut

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$-cut.

There are many such cuts.

But a cut farther from t and closer to $T \setminus t$ seems to be more useful.
Multiway Cut and important cuts

Pushing Lemma

Let \(t \in T \). The *Multiway Cut* problem has a solution \(S \) that contains an important \((t, T \setminus t)\)-cut.

Proof: Let \(R \) be the vertices reachable from \(t \) in \(G \setminus S \) for a solution \(S \). If \(\delta(R) \) is not important, then there is an important cut \(\delta(R') \) with \(R \subset R' \) and \(|\delta(R')| \leq |\delta(R)|\). Replace \(S \) with \(S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S| \)

\(S' \) is a multiway cut: (1) There is no \(t \)-\(u \) path in \(G \setminus S' \) and (2) a \(u \)-\(v \) path in \(G \setminus S' \) implies a \(t \)-\(u \) path, a contradiction.
Multiway Cut and important cuts

Pushing Lemma
Let \(t \in T \). The Multiway Cut problem has a solution \(S \) that contains an important \((t, T \setminus t)\)-cut.

Proof: Let \(R \) be the vertices reachable from \(t \) in \(G \setminus S \) for a solution \(S \).
Multiway Cut and important cuts

Pushing Lemma

Let \(t \in T \). The Multiway Cut problem has a solution \(S \) that contains an important \((t, T \setminus t)\)-cut.

Proof: Let \(R \) be the vertices reachable from \(t \) in \(G \setminus S \) for a solution \(S \).

\(\delta(R) \) is not important, then there is an important cut \(\delta(R') \) with \(R \subset R' \) and \(|\delta(R')| \leq |\delta(R)| \). Replace \(S \) with \(S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S| \)
Multiway Cut and important cuts

Pushing Lemma

Let \(t \in T \). The Multiway Cut problem has a solution \(S \) that contains an important \((t, T \setminus t)\)-cut.

Proof: Let \(R \) be the vertices reachable from \(t \) in \(G \setminus S \) for a solution \(S \).

\[\delta(R) \] is not important, then there is an important cut \(\delta(R') \) with \(R \subset R' \) and \(|\delta(R')| \leq |\delta(R)|\). Replace \(S \) with \(S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S| \)

\(S' \) is a multiway cut: (1) There is no \(t-u \) path in \(G \setminus S' \) and (2) a \(u-v \) path in \(G \setminus S' \) implies a \(t-u \) path, a contradiction.
Multiway Cut and important cuts

Pushing Lemma

Let \(t \in T \). The Multiway Cut problem has a solution \(S \) that contains an important \((t, T \setminus t)\)-cut.

Proof: Let \(R \) be the vertices reachable from \(t \) in \(G \setminus S \) for a solution \(S \).

\(\delta(R) \) is not important, then there is an important cut \(\delta(R') \) with \(R \subset R' \) and \(|\delta(R')| \leq |\delta(R)| \). Replace \(S \) with \(S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S| \)

\(S' \) is a multiway cut: (1) There is no \(t-u \) path in \(G \setminus S' \) and (2) a \(u-v \) path in \(G \setminus S' \) implies a \(t-u \) path, a contradiction.
Algorithm for **Multiway Cut**

1. If every vertex of T is in a different component, then we are done.
2. Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
3. Enumerate every important $(t, T \setminus t)$ cut of size at most k and branch on choosing one such cut S.
4. Set $G := G \setminus S$ and $k := k - |S|$.
5. Go to step 1.

We branch into at most 4^k directions at most k times: $4^{k^2} \cdot n^{O(1)}$ running time.

Next: Better analysis gives 4^k bound on the size of the search tree.
A refined bound

We have seen: at most 4^k important cut of size at most k.

Better bound:

Lemma

If S is the set of all important (X, Y)-cuts, then $\sum_{S \in S} 4^{-|S|} \leq 1$ holds.
A refined bound

We have seen: at most 4^k important cut of size at most k.

Better bound:

Lemma

If S is the set of all important (X, Y)-cuts, then $\sum_{S \in S} 4^{-|S|} \leq 1$ holds.

Better algorithm:

Lemma

We can enumerate the set S_k of every important (X, Y)-cut of size at most k in time $O(|S_k| \cdot k^2 \cdot (|V(G)| + |E(G)|))$.
Refined analysis for **Multiway Cut**

Lemma

If S is the set of all important (X, Y)-cuts, then $\sum_{S \in S} 4^{-|S|} \leq 1$ holds.

Lemma

The search tree for the **Multiway Cut** algorithm has 4^k leaves.

Proof: Let L_k be the maximum number of leaves with parameter k. We prove $L_k \leq 4^k$ by induction. After enumerating the set S_k of important cuts of size $\leq k$, we branch into $|S_k|$ directions.

$$\sum_{S \in S_k} 4^{k - |S|} = 4^k \cdot \sum_{S \in S_k} 4^{-|S|} \leq 4^k$$
Algorithm for Multiway Cut

Theorem
Multiway Cut can be solved in time $O(4^k \cdot k^3 \cdot (|V(G)| + |E(G)|))$.

1. If every vertex of T is in a different component, then we are done.
2. Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
3. Enumerate every important $(t, T \setminus t)$ cut of size at most k and branch on choosing one such cut S.
4. Set $G := G \setminus S$ and $k := k - |S|$.
5. Go to step 1.
Multicut

Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of edges such that $G \setminus S$ has no s_i-t_i path for any i.

Theorem

Multicut can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).
Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of edges such that $G \setminus S$ has no s_i-t_i path for any i.

Theorem

Multicut can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Proof: The solution partitions $\{s_1, t_1, \ldots, s_\ell, t_\ell\}$ into components. Guess this partition, contract the vertices in a class, and solve **Multiway Cut**.

Theorem

Multicut is FPT parameterized by the size k of the solution.
Important cuts

Definition

A minimal \((X, Y)\)-cut \(\delta(R)\) is **important** if there is no \((X, Y)\)-cut \(\delta(R')\) with \(R \subset R'\) and \(|\delta(R')| \leq |\delta(R)|\).
Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-cut S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.
Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-cut S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.
Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-cut S can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.

The proof for the undirected case goes through for the directed case:

Theorem

There are at most 4^k important directed (X, Y)-cuts of size at most k.
Directed Multiway Cut

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let \(t \in T \). The Multiway Cut problem has a solution \(S \) that contains an important \((t, T \setminus t)\)-cut.

Directed counterexample:

![Diagram](image)

Unique solution with \(k = 1 \) edges, but it is not an important cut (boundary of \(\{s, a\} \), but the boundary of \(\{s, a, b\} \) has same size).
Directed Multiway Cut

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)
Let $t \in T$. The Multiway Cut problem has a solution S that contains an important $(t, T \setminus t)$-cut.

Directed counterexample:

Unique solution with $k = 1$ edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).
Directed Multiway Cut

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)
Let $t \in T$. The Multiway Cut problem has a solution S that contains an important $(t, T \setminus t)$-cut.

Directed counterexample:

Unique solution with $k = 1$ edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).
The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The **Multiway Cut** problem has a solution S that contains an important $(t, T \setminus t)$-cut.

Problem in the undirected proof:

Replacing R by R' cannot create a $t \rightarrow u$ path, but can create a $u \rightarrow t$ path.
Directed Multiway Cut

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let \(t \in T \). The **Multiway Cut** problem has a solution \(S \) that contains an important \((t, T \setminus t)\)-cut.

Using additional techniques, one can show:

Theorem

Directed Multiway Cut is FPT parameterized by the size \(k \) of the solution.
Directed Multicut

Directed Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any i.

Theorem

Directed Multicut with $\ell = 4$ is W[1]-hard parameterized by k.
Directed Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any i.

Theorem

Directed Multicut with $\ell = 4$ is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to **Directed Multiway Cut**:

![Diagram](https://via.placeholder.com/150)
Directed Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any i.

Theorem

Direct Multicut with $\ell = 4$ is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to Directed Multiway Cut:
Directed Multicut

Directed Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any i.

Theorem

Directed Multicut with $\ell = 4$ is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to **Directed Multiway Cut**:

![Diagram of Directed Multicut and Multiway Cut](image-url)
Directed Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of edges such that $G \setminus S$ has no $s_i \rightarrow t_i$ path for any i.

Theorem

Directed Multicut with $\ell = 4$ is W[1]-hard parameterized by k.

Corollary

Directed Multicut with $\ell = 2$ is FPT parameterized by the size k of the solution.

Open: Is **Directed Multicut** with $\ell = 3$ FPT?
Skew Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of k directed edges such that $G \setminus S$ contains no $s_i \to t_j$ path for any $i \geq j$.

![Diagram of Skew Multicut](image-url)
Skew Multicut

Skew Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of k directed edges such that $G \setminus S$ contains no $s_i \to t_j$ path for any $i \geq j$.

Pushing Lemma

Skew Multicut problem has a solution S that contains an important $(s_\ell, \{t_1, \ldots, t_\ell\})$-cut.
Skew Multicut

Input: Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k

Find: A set S of k directed edges such that $G \setminus S$ contains no $s_i \rightarrow t_j$ path for any $i \geq j$.

Theorem

Skew Multicut can be solved in time $4^k \cdot n^{O(1)}$.
Directed Feedback Vertex Set

Directed Feedback Vertex/Edge Set

Input: Directed graph G, integer k

Find: A set S of k vertices/edges such that $G \setminus S$ is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here.

Note: It is not a generalization of *(Undirected)* Feedback Vertex Set!

Theorem

Directed Feedback Edge Set is FPT parameterized by the size k of the solution.

Solution uses the technique of iterative compression.
The compression problem

Directed Feedback Edge Set Compression

Input: Directed graph G, integer k,
 a set W of $k + 1$ edges such that $G \setminus W$ is acyclic

Find: A set S of k edges such that $G \setminus S$ is acyclic.

Easier than the original problem, as the extra input W gives us useful structural
information about G.

Lemma

The compression problem is FPT parameterized by k.
The compression problem

Directed Feedback Edge Set Compression

Input: Directed graph G, integer k,

a set W of $k + 1$ vertices such that $G \setminus W$ is acyclic

Find: A set S of k edges such that $G \setminus S$ is acyclic.

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

A useful trick for edge deletion problems: we define the compression problem in a way that a solution of $k + 1$ vertices are given and we have to find a solution of k edges.
The compression problem

Proof: Let $W = \{w_1, \ldots, w_{k+1}\}$
Let us split each w_i into an edge t_is_i.

By guessing the order of $\{w_1, \ldots, w_{k+1}\}$ in the acyclic ordering of $G \setminus S$, we can assume that $w_1 < w_2 < \cdots < w_{k+1}$ in $G \setminus S \ [(k+1)! \text{ possibilities}].$
The compression problem

Proof: Let $W = \{w_1, \ldots, w_{k+1}\}$
Let us split each w_i into an edge t_is_i.

Claim:

$G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$

\Downarrow

S covers every $s_i \rightarrow t_j$ path for every $i \geq j$

\Downarrow

$G \setminus S$ is acyclic
The compression problem

Proof: Let $W = \{w_1, \ldots, w_{k+1}\}$
Let us split each w_i into an edge $t_i s_i$.

Claim:

$G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$

\Downarrow

S covers every $s_i \rightarrow t_j$ path for every $i \geq j$

\Downarrow

$G \setminus S$ is acyclic
The compression problem

Proof: Let \(W = \{w_1, \ldots, w_{k+1}\} \)
Let us split each \(w_i \) into an edge \(t_is_i \).

Claim:

\(G \setminus S \) is acyclic and has an ordering with \(w_1 < w_2 < \cdots < w_{k+1} \)
\(\Downarrow \)
\(S \) covers every \(s_i \rightarrow t_j \) path for every \(i \geq j \)
\(\Downarrow \)
\(G \setminus S \) is acyclic
Iterative compression

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

Directed Feedback Edge Set Compression

Input: Directed graph G, integer k, a set W of $k + 1$ vertices such that $G \setminus W$ is acyclic

Find: A set S of k edges such that $G \setminus S$ is acyclic.

Nice, but how do we get a solution W of size $k + 1$?
Iterative compression

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

Directed Feedback Edge Set Compression

Input: Directed graph G, integer k,
- a set W of $k + 1$ vertices such that $G \setminus W$ is acyclic

Find: A set S of k edges such that $G \setminus S$ is acyclic.

Nice, but how do we get a solution W of size $k + 1$?

We get it for free!

Powerful technique: *iterative compression.*
Iterative compression

Let v_1, \ldots, v_n be the vertices of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$. For every $i = 1, \ldots, n$, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.
Iterative compression

Let \(v_1, \ldots, v_n \) be the vertices of \(G \) and let \(G_i \) be the subgraph induced by \{\(v_1, \ldots, v_i \}\). For every \(i = 1, \ldots, n \), we find a set \(S_i \) of at most \(k \) edges such that \(G_i \setminus S_i \) is acyclic.

- For \(i = 1 \), we have the trivial solution \(S_i = \emptyset \).
Iterative compression

Let v_1, \ldots, v_n be the vertices of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$. For every $i = 1, \ldots, n$, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.

- For $i = 1$, we have the trivial solution $S_i = \emptyset$.
- Suppose we have a solution S_i for G_i. Let W_i contain the head of each edge in S_i. Then $W_i \cup \{v_{i+1}\}$ is a set of at most $k + 1$ vertices whose removal makes G_{i+1} acyclic.
Iterative compression

Let v_1, \ldots, v_n be the vertices of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$. For every $i = 1, \ldots, n$, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.

- For $i = 1$, we have the trivial solution $S_i = \emptyset$.
- Suppose we have a solution S_i for G_i. Let W_i contain the head of each edge in S_i. Then $W_i \cup \{v_{i+1}\}$ is a set of at most $k + 1$ vertices whose removal makes G_{i+1} acyclic.
- Use the compression algorithm for G_{i+1} with the set $W_i \cup \{v_{i+1}\}$.
 - If there is no solution of size k for G_{i+1}, then we can stop.
 - Otherwise the compression algorithm gives a solution S_{i+1} of size k for G_{i+1}.

Running time: We call the compression algorithm n times, everything else is polynomial.

Theorem

Directed Feedback Edge Set is FPT parameterized by the size k of the solution.
Iterative compression

Let v_1, \ldots, v_n be the vertices of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$. For every $i = 1, \ldots, n$, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.

- For $i = 1$, we have the trivial solution $S_i = \emptyset$.
- Suppose we have a solution S_i for G_i. Let W_i contain the head of each edge in S_i. Then $W_i \cup \{v_{i+1}\}$ is a set of at most $k + 1$ vertices whose removal makes G_{i+1} acyclic.
- Use the compression algorithm for G_{i+1} with the set $W_i \cup \{v_{i+1}\}$.
 - If there is no solution of size k for G_{i+1}, then we can stop.
 - Otherwise the compression algorithm gives a solution S_{i+1} of size k for G_{i+1}.

Running time: We call the compression algorithm n times, everything else is polynomial.

Theorem

Directed Feedback Edge Set is FPT parameterized by the size k of the solution.
Summary

- Definition of important cuts.
- Simple but essentially tight combinatorial bound on the number of important cuts.
- Pushing argument: we can assume that the solution contains an important cut. Solves Multiway Cut, Skew Multicut.
- Iterative compression reduces Directed Feedback Edge Set to Skew Multicut.