Important cuts

Daniel Marx

Lecture #10
January 11, 2020

Overview

Main message

Small cuts in graphs have interesting extremal properties that can be exploited in
combinatorial and algorithmic results.

@ Bounding the number of “important” cuts.
o Edge/vertex versions, directed/undirected versions, undeletable edges/vertices
o “directed edge” or “arc”

@ Algorithmic applications: FPT algorithm for

o MULTIWAY CcUT
o DIRECTED FEEDBACK VERTEX SET

Minimum cuts

Definition: d(R) is the set of edges with exactly one endpoint in R.

Definition: A set S of edges is a minimal (X, Y)-cut if there is no X — Y pathin G\ S
and no proper subset of S breaks every X — Y path.

Observation: Every minimal (X, Y)-cut S can be expressed as S = §(R) for some
XCRand RNY =1.

Minimum cuts

Theorem
A minimum (X, Y)-cut can be found in polynomial time.

Theorem

The size of a minimum (X, Y)-cut equals the maximum size of a pairwise edge-disjoint
collection of X — Y paths.

Finding minimum cuts

There is a long list of algorithms for finding disjoint paths and minimum cuts.
e Edmonds-Karp: O(|V(G)| - |E(G)|?)

Dinitzz O(|V(G)|? - |E(G)|)

Push-relabel: O(|V(G)[?)

Orlin-King-Rao-Tarjan: O(|V(G)|- |E(G)|)

Liu-Sidford: O(|E(G)[*/3U/3)

But we need only the following result:

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time
O(k - (IV(G)[+ [E(G)])-

Finding minimum cuts

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time
O(k - (IV(6)[+ [E(G)]).

We try to grow a collection P of edge-disjoint X — Y paths.

Residual graph:
@ not used by P: bidirected,

@ used by P: directed in the opp05|te direction.
original graph residual graph

ESEes: | iseiass

Finding minimum cuts

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time
O(k - (IV(6)[+ [E(G)]).

We try to grow a collection P of edge-disjoint X — Y paths.

Residual graph:
@ not used by P: bidirected,

@ used by P: directed in the opp05|te direction.
original graph residual graph

ESEes: | seiitss

Finding minimum cuts

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time
O(k - (IV(6)[+ [E(G)]).

We try to grow a collection P of edge-disjoint X — Y paths.

Residual graph:
@ not used by P: bidirected,

@ used by P: directed in the opp05|te direction.
original graph residual graph

P BEHA

Finding minimum cuts

Theorem
An (X, Y)-cut of size at most k (if exists) can be found in time

O(k - (IV(G)| + E(G)D))-

We try to grow a collection P of edge-disjoint X — Y paths.

Residual graph:
@ not used by P: bidirected,

@ used by P: directed in the opposite direction.
orlgmal graph residual graph

If we cannot find an augmenting path, we can find a (minimum) cut of size |P|.

Submodularity

Fact: The function 0 is submodular: for arbitrary sets A, B,

AL+ [o(B) = [6(ANB)] + [6(AUB)|

Submodularity

Fact: The function 0 is submodular: for arbitrary sets A, B,

AL+ [o(B) = [6(ANB)] + [6(AUB)|

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function 0 is submodular: for arbitrary sets A, B,

A+ [6(B) = [6(ANB)] + [6(AUB)|
0 1 1 0

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function 0 is submodular: for arbitrary sets A, B,

(A + [6(B) = [6(ANB)] + [6(AUB)|
1 0 1 0

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function 0 is submodular: for arbitrary sets A, B,

A+ [6(B) = [6(ANB)] + [6(AUB)|
0 1 0 1

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function 0 is submodular: for arbitrary sets A, B,

(A + [6(B) = [6(ANB)] + [6(AUB)|
1 0 0 1

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function 0 is submodular: for arbitrary sets A, B,

(A + [o(B) = [6(ANB)] + [6(AUB)|
1 1 1 1

Proof: Determine separately the contribution of the different types of edges.

Submodularity

Fact: The function 0 is submodular: for arbitrary sets A, B,

(A + [6(B) = [6(ANB)] + [6(AUB)|
1 1 0 0

Proof: Determine separately the contribution of the different types of edges.

/\
@

Submodularity

Lemma

Let A be the minimum (X, Y)-cut size. There is a unique maximal Ryax 2 X such that
0(Rmax) is an (X, Y)-cut of size A.

Submodularity

Lemma

Let A be the minimum (X, Y)-cut size. There is a unique maximal Ryax 2 X such that
0(Rmax) is an (X, Y)-cut of size A.

Proof: Let Ry, R> O X be two sets such that §(R1),d(Rz) are (X, Y)-cuts of size .

@
P

= |(5(R1 U Rz)‘ <A
a

Note: Analogous result holds for a unique minimal Ry,.

[0(R1)| + |0(R2)| > |0(R1 N R2)| + |6(R1 U Ry)|
A A > A

Finding Rmnin and Riax

Lemma
Given a graph G and sets X, Y C V/(G), the sets Rmin and Rmax can be found in
polynomial time.

Proof: lteratively add vertices to X if they do not increase the minimum X — Y cut
size. When the process stops, X = Rmnax. Similar for Rmin.

But we can do better!

Finding Rmnin and Riax

Lemma

Given a graph G and sets X, Y C V/(G), the sets Rmin and Rmax can be found in
O(A- (|V(G)| + |E(G)|)) time, where X is the minimum X — Y cut size.

Proof: Look at the residual graph.

original graph residual graph

Rmin Rmax Rmin Rmax

Rmin: vertices reachable from X.
max. vertices from which Y is not reachable.

By

Important cuts

Definition: d(R) is the set of edges with exactly one endpoint in R.

Definition: A set S of edges is a minimal (X, Y)-cut if there is no X — Y pathin G\ S
and no proper subset of S breaks every X — Y path.

Observation: Every minimal (X, Y)-cut S can be expressed as S = §(R) for some
XCRand RNY =1.

10

Important cuts

Definition
A minimal (X, Y)-cut §(R) is important if there is no (X, Y)-cut 6(R’) with R C R’
and [5(R")| < |6(R)|.

Note: Can be checked in polynomial time if a cut is important.

10

Important cuts

Definition
A minimal (X, Y)-cut §(R) is important if there is no (X, Y)-cut 6(R’) with R C R’
and [5(R")| < |6(R)|.

Note: Can be checked in polynomial time if a cut is important.

A

R/

10

Important cuts

Definition
A minimal (X, Y)-cut §(R) is important if there is no (X, Y)-cut 6(R’) with R C R’
and [5(R")| < |6(R)|.

Note: Can be checked in polynomial time if a cut is important.

10

Important cuts

Definition
A minimal (X, Y)-cut §(R) is important if there is no (X, Y)-cut 6(R’) with R C R’
and [5(R")| < |6(R)|.

Note: Can be checked in polynomial time if a cut is important.

5(Rmax)

o —

Rmax

Observation: There is a unique important (X, Y')-cut of minimum size: 0(Rmax)-

Important cuts

The number of important cuts can be exponentially large.

Example:

This graph has 24/2 important (X, Y)-cuts of size at most k.

11

Important cuts

The number of important cuts can be exponentially large.

Example:

This graph has 24/2 important (X, Y)-cuts of size at most k.

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

11

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Proof: Let A\ be the minimum (X, Y)-cut size and let 0(Rmax) be the unique important
cut of size \ such that Rmpax is maximal.

(1) We show that Rynax C R for every important cut §(R).

12

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Proof: Let \ be the minimum (X, Y)-cut size and let 5(Rmax) be the unique important
cut of size \ such that Rmpax is maximal.
(1) We show that Rynax C R for every important cut §(R).
By the submodularity of §:

[0(Rmax)| + [6(R) = [6(Rmax N R)[+ [6(Rmax U R)|

A > A
4
[6(Rmax U R)| < [6(R)]

J
If R # Rmax U R, then 6(R) is not important.

12

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Proof: Let A\ be the minimum (X, Y)-cut size and let 0(Rmax) be the unique important
cut of size \ such that Rmpax is maximal.

(1) We show that Rynax C R for every important cut §(R).
By the submodularity of §:
A > A
I
[6(Rmax U R)| < [6(R)]
I
If R # Rmax U R, then §(R) is not important.

Thus the important (X, Y)- and (Rmax, Y)-cuts are the same.
= We can assume X = Rpax.

Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rnax is either in the cut or not.

4

‘ X = Rmax#

13

Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rnax is either in the cut or not.

e

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of size at most kK — 1
in G\ uv.

Branch 2: If uv ¢ S, then S is an important
(X U v, Y)-cut of size at most k in G.

Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rnax is either in the cut or not.

onadh

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of size at most kK — 1
in G\ uv.

= k decreases by one, \ decreases by at most 1.

Branch 2: If uv ¢ S, then S is an important
(X U v, Y)-cut of size at most k in G.

= k remains the same, \ increases by 1.

13

Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rnax is either in the cut or not.

onadh

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of size at most kK — 1
in G\ uv.

= k decreases by one, \ decreases by at most 1.

Branch 2: If uv ¢ S, then S is an important
(X U v, Y)-cut of size at most k in G.

= k remains the same, \ increases by 1.

The measure 2k — \ decreases in each step.
= Height of the search tree < 2k
= < 2%k = 4K important cuts of size at most k.

13

Important cuts — algorithm

Theorem
There are at most 4% important (X, Y)-cuts of size at most k and they can be
enumerated in time O(4% - k - (|V(G)| + |E(G)])).
Algorithm for enumerating important cuts:
@ Handle trivial cases (k =0, A =0, k < \)
@ Find Rmax.
© Choose an edge uv of §(Rmax)-

e Recurse on (G — uv, Ryax, Y, k —1).
e Recurse on (G, Rmax U v, Y, k).

@ Check if the returned cuts are important and throw away those that are not.

14

Important cuts
Theorem
There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4% is essentially tight.
X

(dededededeidnideide]Y

15

Important cuts
Theorem
There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4% is essentially tight.
X

(dededededeidnideide]Y

Any subtree with k leaves gives an important (X, Y)-cut of size k.

15

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4% is essentially tight.

(dededededeidnideide]Y

Any subtree with k leaves gives an important (X, Y)-cut of size k.

15

Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4% is essentially tight.

(dededededeidnideide]Y

Any subtree with k leaves gives an important (X, Y)-cut of size k.
The number of subtrees with k leaves is the Catalan number

12k —2 .
1= — > 4 | .
C1 k<k1>_ /poly(k)

15

MuLTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set S of edges such that each

component of G \ S contains at most one vertex of T.

Murriway CUT
Input: Graph G, set T of vertices, integer k

Find: A multiway cut S of at most k edges.

Polynomial for | T| = 2, but NP-hard for any fixed | T| > 3.
= Cannot be FPT parameterized by | T| assuming P # NP.

16

MuLTIWAY CUT
Definition: A multiway cut of a set of terminals T is a set S of edges such that each

component of G \ S contains at most one vertex of T.

t1 to
[] A []
, VN
Murriway CuUT NN
Input: Graph G, set T of vertices, integer k 7\ S 75
Find: A multiway cut S of at most k edges. N ~ @
AVAY N\ |
[/ S N B 71
o 11 []

Trivial to solve in polynomial time for fixed k (in time n©(k)).

Theorem
MULTIWAY CUT can be solved in time 4% - k3. (|V(G)| + |E(G))).

16

MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution Sis a (¢, T \ t)-cut.

o~

17

MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution Sis a (¢, T \ t)-cut.

o~

L~

There are many such cuts.

17

MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution Sis a (¢, T \ t)-cut.

o~

There are many such cuts.

17

MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution Sis a (¢, T \ t)-cut.

o o
t ~ ®
° N
[J
[J [J

There are many such cuts.

But a cut farther from ¢ and closer to T \ t seems to be more useful.

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MurLTiwAYy CUT problem has a solution S that contains an important
(t, T\ t)-cut.

18

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MULTIWAY CUT problem has a solution S that contains an important
(t, T\ t)-cut.

Proof: Let R be the vertices reachable from t in G\ S for a solution S.

t o
[]

R

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MULTIWAY CUT problem has a solution S that contains an important
(t, T\ t)-cut.

Proof: Let R be the vertices reachable from t in G\ S for a solution S.

J(R) is not important, then there is an important cut 6(R’) with R C R’ and
|0(R")| < [0(R)|. Replace S with §":= (S\ d(R))US(R") = |S'| < |S]

18

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MULTIWAY CUT problem has a solution S that contains an important
(t, T\ t)-cut.

Proof: Let R be the vertices reachable from t in G\ S for a solution S.

J(R) is not important, then there is an important cut 6(R’) with R C R’ and

[0(R")| < |0(R)|. Replace S with S" := (S\ §(R))Ud(R') = |S| <|S|

S’ is a multiway cut: (1) There is no t-u path in G\ S" and (2) a u-v pathin G\ S’
implies a t-u path, a contradiction.

18

MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MULTIWAY CUT problem has a solution S that contains an important
(t, T\ t)-cut.

Proof: Let R be the vertices reachable from t in G\ S for a solution S.

J(R) is not important, then there is an important cut 6(R’) with R C R’ and

[0(R")| < |0(R)|. Replace S with S" := (S\ §(R))Ud(R') = |S| <|S|

S’ is a multiway cut: (1) There is no t-u path in G\ S" and (2) a u-v pathin G\ S’
implies a t-u path, a contradiction.

18

Algorithm for MULTIWAY CUT

Q |If every vertex of T is in a different component, then we are done.
@ Let t € T be a vertex that is not separated from every T \ t.

© Enumerate every imporant (t, T \ t) cut of size at most k and branch on choosing
one such cut S.

Q Set G:=G\ Sand k:=k—|S|.
© Go to step 1.

We branch into at most 4% directions at most k times: 4%° . nO(1)

running time.

Next: Better analysis gives 4 bound on the size of the search tree.

19

A refined bound

We have seen: at most 4% important cut of size at most k.

Better bound:

Lemma

If S is the set of all important (X, Y)-cuts, then > s_5471°/ <1 holds.

20

A refined bound

We have seen: at most 4% important cut of size at most k.
Better bound:
Lemma

If S is the set of all important (X, Y)-cuts, then > ¢ s 4-151 < 1 holds.
Better algorithm:

Lemma

We can enumerate the set Sy of every important (X, Y')-cut of size at most k in time

O(ISk| - K* - (IV(G)] + |E(G)])).

20

Refined analysis for MULTIWAY CUT

Lemma
If S is the set of all important (X, Y)-cuts, then > ¢ s 4-151 < 1 holds.

Lemma

The search tree for the MuLTIWAY CUT algorithm has 4% leaves.

Proof: Let L, be the maximum number of leaves with parameter k. We prove L, < 4%
by induction. After enumerating the set Sy of important cuts of size < k, we branch

into |Sk| directions.
Z 4k=IS1 — gk . Z 47151 < 4k
SeSk SeSk

21

Algorithm for MULTIWAY CUT

Theorem
MurLTiwAy CUT can be solved in time O(4% - k3 - (|V(G)| + |E(G)))).

Q |If every vertex of T is in a different component, then we are done.
@ Let t € T be a vertex that is not separated from every T \ t.

© Enumerate every imporant (t, T \ t) cut of size at most k and branch on choosing
one such cut S.

Q Set G:=G\ Sand k:=k—|S|.
© Go to step 1.

22

MUuULTICUT

MuLTICUT
Input: Graph G, pairs (s1,t1), ..., (s¢, ty), integer k
Find: A set S of edges such that G \ S has no s;-t; path for any /.

Theorem

MULTICUT can be solved in time f(k, ¢) - n®®) (FPT parameterized by combined
parameters k and /).

23

MUuULTICUT

MuLTICUT
Input: Graph G, pairs (s1,t1), ..., (s¢, ty), integer k

Find: A set S of edges such that G \ S has no s;-t; path for any /.

Theorem

MULTICUT can be solved in time f(k, ¢) - n®®) (FPT parameterized by combined
parameters k and /).

Proof: The solution partitions {s1, t1,..., sy, t;} into components. Guess this partition,
contract the vertices in a class, and solve MuLTIWAY CUT.

Theorem
MuLTicUT is FPT parameterized by the size k of the solution.

23

Important cuts

Definition
A minimal (X, Y)-cut 6(R) is important if there is no (X, Y)-cut 6(R’') with R C R’
and [6(R)| < |6(R)|.

A

Rl

24

Directed graphs

-

Definition: d(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y')-cut S can be expressed as

-

S =06(R) forsome X CRand RNY = ().

-

Definition: A minimal (X, Y)-cut 6(R) is important if there is no (X, Y)-cut 6(R’)
with R C R" and [0(R")| < [6(R).

-

25

Directed graphs

-

Definition: d(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y')-cut S can be expressed as

-

S =06(R) forsome X CRand RNY = ().

-

Definition: A minimal (X, Y)-cut 6(R) is important if there is no (X, Y)-cut 6(R’)
with R C R" and [0(R")| < [6(R).

-

\

25

Directed graphs

Definition: §(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y')-cut S can be expressed as

—

S =06(R) forsome X CRand RNY = ().
Definition: A minimal (X, Y)-cut 6(R) is important if there is no (X, Y)-cut 6(R’)
with R C R" and [0(R")| < [6(R).

The proof for the undirected case goes through for the directed case:

Theorem
There are at most 4% important directed (X, Y)-cuts of size at most k.

25

DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let t € T. The MurLTiwAay CUT problem has a solution S that contains an important
(t, T\ t)-cut.

Directed counterexample:

@
Unique solution with k = 1 edges, but it is not an important cut (boundary of {s, a},
but the boundary of {s, a, b} has same size).

26

DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let t € T. The MurLTiwAay CUT problem has a solution S that contains an important
(t, T\ t)-cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of {s, a},
but the boundary of {s, a, b} has same size).

26

DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let t € T. The MurLTiwAay CUT problem has a solution S that contains an important
(t, T\ t)-cut.

Directed counterexample:

<>

Unique solution with k = 1 edges, but it is not an important cut (boundary of {s, a},
but the boundary of {s, a, b} has same size).

26

DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let t € T. The MurLTiwAay CUT problem has a solution S that contains an important
(t, T\ t)-cut.

Problem in the undirected proof:

<o

Rl
Replacing R by R’ cannot create a t — u path, but can create a v — t path.

26

DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let t € T. The MurLTiwAay CUT problem has a solution S that contains an important
(t, T\ t)-cut.

Using additional techniques, one can show:

Theorem
DIRECTED MULTIWAY CUT is FPT parameterized by the size k of the solution.

26

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (s¢, ty), integer k

Find: A set S of edges such that G\ S has no s; — t; path for any /.

Theorem
DIRECTED MULTICUT with ¢ = 4 is W[1]-hard parameterized by k.

27

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (s¢, ty), integer k

Find: A set S of edges such that G\ S has no s; — t; path for any /.

Theorem
DIRECTED MULTICUT with ¢ = 4 is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

o o
S1 t
? [J

2 2

27

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (s¢, ty), integer k

Find: A set S of edges such that G\ S has no s; — t; path for any /.

Theorem
DIRECTED MULTICUT with ¢ = 4 is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

27

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (s¢, ty), integer k

Find: A set S of edges such that G\ S has no s; — t; path for any /.

Theorem
DIRECTED MULTICUT with ¢ = 4 is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

27

DIRECTED MULTICUT

DIRECTED MULTICUT
Input: Graph G, pairs (s1,t1), ..., (s¢, ty), integer k
Find: A set S of edges such that G\ S has no s; — t; path for any /.

Theorem
DIRECTED MULTICUT with ¢ = 4 is W[1]-hard parameterized by k.

Corollary

DIRECTED MULTICUT with £ = 2 is FPT parameterized by the size k of the solution.

? Open: Is DIRECTED MULTICUT with / =3 FPT?

27

SKEW MULTICUT

SKEW MuLTICUT
Input: Graph G, pairs (s1,t1), ..., (sp, t), integer k

Find:

path for any / > j.

A set S of k directed edges such that G\ S contains no s; — t;

s1 ."""""'""\. t1
.
S .l.......hu...‘. to
¢‘--‘ “‘

s3 .r!‘...,“.....‘.‘._.\‘.. t3

54 “--------------. t4

28

SKEW MULTICUT

SKEW MuLTICUT
Input: Graph G, pairs (s1,t1), ..., (sp, t), integer k

Find: path for any / > j.

A set S of k directed edges such that G\ S contains no s; — t;

S]. .------------l--w tl

So .I------.':-a---‘. t2

et -‘\
‘O ‘1 ‘

s3 .r!‘...,“...:.c..\‘.. t3

‘ (34 \
\d ws®
¢‘:"“‘ y

54 "----------,---. t4

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an important
(Sg7 {tl, cey tg})—cut.

28

SKEW MULTICUT

SKEW MuLTICUT
Input: Graph G, pairs (s1,t1), ..., (sp, t), integer k

Find: A set S of k directed edges such that G\ S contains no s; — t;
" path for any i > j.

S]. .------------l--w tl

So .I------.':-a---‘. t2

et -‘\
‘O ‘1 ‘

s3 .r!‘...,“...:.c..\‘.. t3

o)

54 "----------,---. t4

Theorem

SKEW MULTICUT can be solved in time 4% . n9(1).

DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET
Input: Directed graph G, integer k
Find: A set S of k vertices/edges such that G \ S is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here.

Note: It is not a generalization of (UNDIRECTED) FEEDBACK VERTEX SET!

Theorem
DIRECTED FEEDBACK EDGE SET is FPT parameterized by the size k of the solution.

Solution uses the technique of Iterative compression.

29

The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k + 1 edges such that G\ W is acyclic
Find: A set S of k edges such that G \ S is acyclic.

Easier than the original problem, as the extra input W gives us useful structural
information about G.

Lemma
The compression problem is FPT parameterized by k.

30

The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,
a set W of k4 1 vertices such that G \ W is acyclic
Find: A set S of k edges such that G \ S is acyclic.

Easier than the original problem, as the extra input W gives us useful structural
information about G.

Lemma
The compression problem is FPT parameterized by k.

A useful trick for edge deletion problems: we define the compression problem in a way
that a solution of k + 1 vertices are given and we have to find a solution of k edges.

30

The compression problem

Proof: Let W = {w1,... . wis1}
Let us split each w; into an edge t;s;.

\/\\l//
TARRNGY,

t1 s1 tr S t3 S3 ta S4

@ By guessing the order of {wy, ..., wiy1} in the acyclic ordering of G \ S, we can
assume that wi < wo < -+ < wyq1in G\ S [(k + 1)! possibilities].

31

The compression problem

Proof: Let W = {w1,... . wis1}
Let us split each w; into an edge t;s;.

\/\\l//
TARRNGY,

t1 s1 tr S t3 S3 ta S4

Claim:

G \ S is acyclic and has an ordering with wy < wp < -+ < w41

4

S covers every s; — t; path for every i > j

4
G\ S is acyclic
31

The compression problem

Proof: Let W = {w1,... . wis1}
Let us split each w; into an edge t;s;.

3
t1 s1 tr S t3 S3 ta S4

Claim:

G\ S is acyclic and has an ordering with wy < wp < -+ < w41

4

S covers every s; — t; path for every i > j

4
G\ S is acyclic
31

The compression problem

Proof: Let W = {w1,... . wis1}
Let us split each w; into an edge t;s;.

3
t1 s1 tr S t3 S3 ta S4

Claim:

G\ S is acyclic and has an ordering with wy < wp < -+ < w41

4

S covers every s; — t; path for every i > j

4
G\ S is acyclic
31

Iterative compression

We have given a f(k)n®®) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,
a set W of k4 1 vertices such that G\ W is acyclic
Find: A set S of k edges such that G\ S is acyclic.

Nice, but how do we get a solution W of size k + 17

32

Iterative compression

We have given a f(k)n®®) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,
a set W of k4 1 vertices such that G\ W is acyclic
Find: A set S of k edges such that G\ S is acyclic.

Nice, but how do we get a solution W of size k + 17
We get it for free!

Powerful technique: 1terative compression.

32

Iterative compression

Let vi, ..., v, be the vertices of G and let G; be the subgraph induced by {vi,...,v;}.

For every i =1,...,n, we find a set S; of at most k edges such that G; \ S; is acyclic.

33

Iterative compression

Let vi, ..., v, be the vertices of G and let G; be the subgraph induced by {vi,...,v;}.

For every i =1,...,n, we find a set S; of at most k edges such that G; \ S; is acyclic.
e For i =1, we have the trivial solution S; = 0.

33

Iterative compression

Let vi, ..., v, be the vertices of G and let G; be the subgraph induced by {vi,...,v;}.

For every i =1,...,n, we find a set S; of at most k edges such that G; \ S; is acyclic.
e For i =1, we have the trivial solution S; = 0.

@ Suppose we have a solution S; for G;. Let W; contain the head of each edge in S;.
Then W; U {v;;1} is a set of at most k + 1 vertices whose removal makes G;,1
acyclic.

33

Iterative compression
Let vi, ..., v, be the vertices of G and let G; be the subgraph induced by {vi,...,v;}.

For every i =1,...,n, we find a set S; of at most k edges such that G; \ S; is acyclic.

e For i =1, we have the trivial solution S; = 0.

@ Suppose we have a solution S; for G;. Let W; contain the head of each edge in S;.
Then W; U {v;;1} is a set of at most k + 1 vertices whose removal makes G;,1
acyclic.

@ Use the compression algorithm for G; 1 with the set W; U {v;1}.

o If there is no solution of size k for G; .1, then we can stop.
o Otherwise the compression algorithm gives a solution S;;1 of size k for G; 1.

33

Iterative compression

Let vi, ..., v, be the vertices of G and let G; be the subgraph induced by {vi,...,v;}.
For every i =1,...,n, we find a set S; of at most k edges such that G; \ S; is acyclic.
e For i =1, we have the trivial solution S; = 0.

@ Suppose we have a solution S; for G;. Let W; contain the head of each edge in S;.
Then W; U {v;;1} is a set of at most k + 1 vertices whose removal makes G;,1
acyclic.

@ Use the compression algorithm for G; 1 with the set W; U {v;1}.

o If there is no solution of size k for G; .1, then we can stop.
o Otherwise the compression algorithm gives a solution S;;1 of size k for G; 1.

Running time: We call the compression algorithm n times, everything else is
polynomial.

Theorem
DIRECTED FEEDBACK EDGE SET is FPT parameterized by the size k of the solution.

33

Summary

Definition of important cuts.

Simple but essentially tight combinatorial bound on the number of important cuts.

Pushing argument: we can assume that the solution contains an important cut.
Solves MuLTIWAY CUT, SKEW MULTICUT.

Iterative compression reduces DIRECTED FEEDBACK EDGE SET to SKEW
MULTICUT.

34

