Treewidth

- Treewidth: a notion of “treelike” graphs.
- Some combinatorial properties.
- Algorithmic results.
 - Algorithms on graphs of bounded treewidth.
 - Applications for other problems.
The Party Problem

Party Problem

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

A tree with weights on the vertices.

Task: Find an independent set of maximum weight.
The Party Problem

Party Problem

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and their direct boss at the same time!

Input: A tree with weights on the vertices.
Task: Find an independent set of maximum weight.
The Party Problem

Party Problem

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and their direct boss at the same time!

Input: A tree with weights on the vertices.

Task: Find an independent set of maximum weight.
The Party Problem

Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun. Do not invite a colleague and their direct boss at the same time!

Input: A tree with weights on the vertices.
Task: Find an independent set of maximum weight.
Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

Subproblems:
- T_v: the subtree rooted at v.
- $A[v]$: max. weight of an independent set in T_v
- $B[v]$: max. weight of an independent set in T_v that does not contain v

Goal: determine $A[r]$ for the root r.
Solving the Party Problem

Subproblems:

- T_v: the subtree rooted at v.
- $B[v]$: max. weight of an independent set in T_v that does not contain v.

Recurrence:

Assume v_1, \ldots, v_k are the children of v. Use the recurrence relations:

\[
B[v] = \sum_{i=1}^{k} A[v_i]
\]

\[
A[v] = \max\{B[v], w(v) + \sum_{i=1}^{k} B[v_i]\}
\]

The values $A[v]$ and $B[v]$ can be calculated in a bottom-up order (the leaves are trivial).
Treewidth
Generalizing trees

How could we define that a graph is “treelike”?

1. Number of cycles is bounded.
2. Removing a bounded number of vertices makes it acyclic.
Generalizing trees

How could we define that a graph is “treelike”?

1. Number of cycles is bounded.
Generalizing trees

How could we define that a graph is “treelike”?

1. Number of cycles is bounded.

2. Removing a bounded number of vertices makes it acyclic.
Generalizing trees

How could we define that a graph is “treelike”?

1. Number of cycles is bounded.

2. Removing a bounded number of vertices makes it acyclic.

Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

Treewidth: width of the best decomposition.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If \(u \) and \(v \) are neighbors, then there is a bag containing both of them.
2. For every \(v \), the bags containing \(v \) form a connected subtree.

Width of the decomposition: largest bag size \(-1\).

treewidth: width of the best decomposition.

Each bag is a separator.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

A subtree communicates with the outside world only via the root of the subtree.
Treewidth

Fact: treewidth = 1 ⇐⇒ graph is a forest

![Tree decomposition example](image)

Exercise: A cycle cannot have a tree decomposition of width 1.
Finding tree decompositions

Hardness:

Theorem [Arnborg, Corneil, Proskurowski 1987]

It is NP-hard to determine the treewidth of a graph (given a graph G and an integer w, decide if the treewidth of G is at most w).

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a $2^{O(w^3)} \cdot n$ time algorithm that finds a tree decomposition of width w (if exists).

Consequence:

If we want an FPT algorithm parameterized by treewidth w of the input graph, then we can assume that a tree decomposition of width w is available.
Finding tree decompositions — approximately

Sometimes we can get better dependence on treewidth using approximation.

FPT approximation:

Theorem [Robertson and Seymour]

There is a $O(3^{3w} \cdot w \cdot n^2)$ time algorithm that finds a tree decomposition of width $4w + 1$, if the treewidth of the graph is at most w.

Polynomial-time approximation:

Theorem [Feige, Hajiaghayi, Lee 2008]

There is a polynomial-time algorithm that finds a tree decomposition of width $O(w \sqrt{\log w})$, if the treewidth of the graph is at most w.
Weighted Max Independent Set and treewidth

Theorem

Given a tree decomposition of width \(w \), **Weighted Max Independent Set** can be solved in time \(O(2^w \cdot w^{O(1)} \cdot n) \).

\(B_x \): vertices appearing in node \(x \).

\(V_x \): vertices appearing in the subtree rooted at \(x \).

Generalizing our solution for trees:

Instead of computing 2 values \(A[v], B[v] \) for each **vertex** of the graph, we compute \(2^{|B_x|} \leq 2^{w+1} \) values for each bag \(B_x \).

\(M[x, S] \):

the max. weight of an independent set \(I \subseteq V_x \) with \(I \cap B_x = S \).
Weighted Max Independent Set and treewidth

Theorem

Given a tree decomposition of width w, **Weighted Max Independent Set** can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

B_x: vertices appearing in node x.

V_x: vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values $A[v], B[v]$ for each vertex of the graph, we compute $2^{|B_x|} \leq 2^{w+1}$ values for each bag B_x.

$M[x, S]$: the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.

How to determine $M[x, S]$ if all the values are known for the children of x?
Nice tree decompositions

Definition

A rooted tree decomposition is nice if every node x is one of the following 4 types:

- **Leaf**: no children, $|B_x| = 1$
- **Introduce**: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
- **Forget**: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
- **Join**: 2 children y_1, y_2 with $B_x = B_{y_1} = B_{y_2}$
Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the following 4 types:

- **Leaf**: no children, $|B_x| = 1$
- **Introduce**: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
- **Forget**: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
- **Join**: 2 children y_1, y_2 with $B_x = B_{y_1} = B_{y_2}$

Theorem
A tree decomposition of width w and n nodes can be turned into a nice tree decomposition of width w and $O(wn)$ nodes in time $O(w^2 n)$.
Weighted Max Independent Set
and nice tree decompositions

- **Leaf**: no children, $|B_x| = 1$
 Trivial!

- **Introduce**: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v

\[
M[x, S] = \begin{cases}
M[y, S] & \text{if } v \notin S, \\
M[y, S \setminus \{v\}] + w(v) & \text{if } v \in S \text{ but } v \text{ has no neighbor in } S, \\
-\infty & \text{if } S \text{ contains } v \text{ and its neighbor.}
\end{cases}
\]

Forget Join Introduce Leaf

u, v, w

u, v, w

u, w

u, v, w

u, v, w

u, w

u, v, w
Weighted Max Independent Set
and nice tree decompositions

- **Forget**: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v

 $$M[x, S] = \max\{M[y, S], M[y, S \cup \{v\}]\}$$

- **Join**: 2 children y_1, y_2 with $B_x = B_{y_1} = B_{y_2}$

 $$M[x, S] = M[y_1, S] + M[y_2, S] - w(S)$$
Weighted Max Independent Set
and nice tree decompositions

- **Forget**: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v

 $$M[x, S] = \max\{M[y, S], M[y, S \cup \{v\}]\}$$

- **Join**: 2 children y_1, y_2 with $B_x = B_{y_1} = B_{y_2}$

 $$M[x, S] = M[y_1, S] + M[y_2, S] - w(S)$$

There are at most $2^{w+1} \cdot n$ subproblems $M[x, S]$ and each subproblem can be solved in $w^{O(1)}$ time

(assuming the children are already solved).

\[\Downarrow \]

Running time is $O(2^w \cdot w^{O(1)} \cdot n)$. 13
Theorem

Given a tree decomposition of width w, 3-Coloring can be solved in $O(3^w \cdot w^{O(1)} \cdot n)$.

B_x: vertices appearing in node x.
V_x: vertices appearing in the subtree rooted at x.

For every node x and coloring $c : B_x \rightarrow \{1, 2, 3\}$, we compute the Boolean value $E[x, c]$, which is true if and only if c can be extended to a proper 3-coloring of V_x.
3-Coloring and tree decompositions

Theorem

Given a tree decomposition of width w, 3-Coloring can be solved in $O(3^w \cdot w^{O(1)} \cdot n)$.

B_x: vertices appearing in node x.
V_x: vertices appearing in the subtree rooted at x.

For every node x and coloring $c : B_x \rightarrow \{1, 2, 3\}$, we compute the Boolean value $E[x, c]$, which is true if and only if c can be extended to a proper 3-coloring of V_x.

How to determine $E[x, c]$ if all the values are known for the children of x?
3-Coloring and nice tree decompositions

- **Leaf**: no children, $|B_x| = 1$
 Trivial!
3-COLORING and nice tree decompositions

- **Leaf:** no children, $|B_x| = 1$

 - **Trivial**!

- **Introduce:** 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
 If $c(v) \neq c(u)$ for every neighbor u of v, then $E[x, c] = E[y, c']$, where c' is c restricted to B_y.

Leaf: v

Introduce: u, v, w

Forget: u, w

Join: u, v, w
3-COLORING and nice tree decompositions

- **Leaf:** no children, $|B_x| = 1$
 - Trivial!

- **Introduce:** 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
 - If $c(v) \neq c(u)$ for every neighbor u of v, then $E[x, c] = E[y, c']$, where c' is c restricted to B_y.

- **Forget:** 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
 - $E[x, c]$ is true if $E[y, c']$ is true for one of the 3 extensions of c to B_y.

Diagram:

- **Leaf:** v
- **Introduce:** u, v, w (with u, w)
- **Forget:** u, w
- **Join:** u, v, w (with u, v, w)

3-COLORING and nice tree decompositions

- **Leaf**: no children, $|B_x| = 1$
 Trivial!

- **Introduce**: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
 If $c(v) \neq c(u)$ for every neighbor u of v, then $E[x, c] = E[y, c']$, where c' is c restricted to B_y.

- **Forget**: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
 $E[x, c]$ is true if $E[y, c']$ is true for one of the 3 extensions of c to B_y.

- **Join**: 2 children y_1, y_2 with $B_x = B_{y_1} = B_{y_2}$
 $E[x, c] = E[y_1, c] \land E[y_2, c]$

Leaf: v

Introduce: u, v, w

Forget: u, w

Join: u, v, w
3-COLORING and nice tree decompositions

- **Leaf**: no children, \(|B_x| = 1 \)
 Trivial!
- **Introduce**: 1 child \(y \) with \(B_x = B_y \cup \{v\} \) for some vertex \(v \)
 If \(c(v) \neq c(u) \) for every neighbor \(u \) of \(v \), then \(E[x, c] = E[y, c'] \), where \(c' \) is \(c \) restricted to \(B_y \).
- **Forget**: 1 child \(y \) with \(B_x = B_y \setminus \{v\} \) for some vertex \(v \)
 \(E[x, c] \) is true if \(E[y, c'] \) is true for one of the 3 extensions of \(c \) to \(B_y \).
- **Join**: 2 children \(y_1, y_2 \) with \(B_x = B_{y_1} = B_{y_2} \)
 \(E[x, c] = E[y_1, c] \land E[y_2, c] \)

There are at most \(3^{w+1} \cdot n \) subproblems \(E[x, c] \) and each subproblem can be solved in \(w^{O(1)} \) time (assuming the children are already solved).

\[\Rightarrow \] Running time is \(O(3^w \cdot w^{O(1)} \cdot n) \).

\[\Rightarrow \] **3-COLORING** is FPT parameterized by treewidth.
Vertex coloring

More generally:

Theorem

Given a tree decomposition of width w, c-\text{Coloring} can be solved in time $c^w \cdot n^{O(1)}$.

Exercise: Every graph of treewidth at most w can be colored with $w + 1$ colors.

Theorem

Given a tree decomposition of width w, \text{Vertex Coloring} can be solved in time $O^*(w^w)$.

\Rightarrow \text{Vertex Coloring} is FPT parameterized by treewidth.
Dominating Set and treewidth

Dominating Set: Given G and k, find a set S of k vertices such that every vertex of G is in S or has a neighbor in S.

B_x: vertices appearing in node x.

V_x: vertices appearing in the subtree rooted at x.

What would be the subproblems for **Dominating Set** at node x?
Dominating Set and treewidth

Dominating Set: Given G and k, find a set S of k vertices such that every vertex of G is in S or has a neighbor in S.

B_x: vertices appearing in node x.
V_x: vertices appearing in the subtree rooted at x.

What would be the subproblems for **Dominating Set** at node x?

First try:

$M[x, S]$: size of the smallest set $D \subseteq V_x$ such that
- Every vertex in V_x is dominated by D.
- $D \cap B_x = S$.
Dominating Set and treewidth

Dominating Set: Given G and k, find a set S of k vertices such that every vertex of G is in S or has a neighbor in S.

B_x: vertices appearing in node x.
V_x: vertices appearing in the subtree rooted at x.

What would be the subproblems for Dominating Set at node x?

First try:

$M[x, S]$: size of the smallest set $D \subseteq V_x$ such that
- Every vertex in V_x is dominated by D.
- $D \cap B_x = S$.

Problem: vertices in B_x can be dominated by vertices outside V_x.

![Diagram of a tree with vertices labeled a, b, c, d, e, f, g, h, and nodes c, d, f, b, c, f, d, f, g, and g, h.](image)
Dominating Set and treewidth

Dominating Set: Given G and k, find a set S of k vertices such that every vertex of G is in S or has a neighbor in S.

B_x: vertices appearing in node x.

V_x: vertices appearing in the subtree rooted at x.

What would be the subproblems for **Dominating Set** at node x?

Second try:

$M[x, S_1, S_2]$: size of the smallest set $D \subseteq V_x$ such that

- $D \cap B_x = S_1$.
- D dominates every vertex of S_2.
- Every vertex in $V_x \setminus B_x$ is dominated by D.

$\Rightarrow 3^{w+1}$ subproblems at each node x.
Dominating Set and treewidth

\[M[x, S_1, S_2] \]: size of the smallest set \(D \subseteq V_x \) such that

- \(S \cap B_x = S_1 \).
- \(D \) dominates every vertex of \(S_2 \).
- Every vertex in \(V_x \setminus B_x \) is dominated by \(D \).

How can we solve subproblem \(M[x, S_1, S_2] \) when \(x \) is a join node?
Dominating Set and treewidth

\(M[x, S_1, S_2] \): size of the smallest set \(D \subseteq V_x \) such that
- \(S \cap B_x = S_1 \).
- \(D \) dominates every vertex of \(S_2 \).
- Every vertex in \(V_x \setminus B_x \) is dominated by \(D \).

How can we solve subproblem \(M[x, S_1, S_2] \) when \(x \) is a join node?
- Consider \(3^{|S_2|} \) cases: each vertex of \(S_2 \) is dominated from the left child, right child, or both \(\Rightarrow O(9^w \cdot n) \) time.

Consider 5 subproblems: in the solution/not dominated/dominated from left/dominated from right/dominated from both \(\Rightarrow O(5^w \cdot n) \) time.

Renaming “not dominated” to “don’t care” can improve to \(O(4^w \cdot n) \) time.

Fast subset convolution: \(O(3^w \cdot n) \) time.
Dominating Set and treewidth

$M[x, S_1, S_2]$: size of the smallest set $D \subseteq V_x$ such that

- $S \cap B_x = S_1$.
- D dominates every vertex of S_2.
- Every vertex in $V_x \setminus B_x$ is dominated by D.

How can we solve subproblem $M[x, S_1, S_2]$ when x is a join node?

- Consider $3^{|S_2|}$ cases: each vertex of S_2 is dominated from the left child, right child, or both $\Rightarrow O(9^w \cdot n)$ time.

- Consider $5^{|B_x|}$ subproblems: in the solution/not dominated/dominated from left/dominated from right/dominated from both $\Rightarrow O(5^w \cdot n)$ time.
Dominating Set and treewidth

\(M[x, S_1, S_2] \): size of the smallest set \(D \subseteq V_x \) such that

- \(S \cap B_x = S_1 \).
- \(D \) dominates every vertex of \(S_2 \).
- Every vertex in \(V_x \setminus B_x \) is dominated by \(D \).

How can we solve subproblem \(M[x, S_1, S_2] \) when \(x \) is a join node?

- Consider \(3^{|S_2|} \) cases: each vertex of \(S_2 \) is dominated from the left child, right child, or both \(\Rightarrow O(9^w \cdot n) \) time.
- Consider \(5^{|B_x|} \) subproblems: in the solution/not dominated/dominated from left/dominated from right/dominated from both \(\Rightarrow O(5^w \cdot n) \) time.
- Renaming “not dominated” to “don’t care” can improve to \(O(4^w \cdot n) \) time.
Dominating Set and treewidth

\[M[x, S_1, S_2] : \text{size of the smallest set } D \subseteq V_x \text{ such that } \]
- \(S \cap B_x = S_1. \)
- \(D \) dominates every vertex of \(S_2. \)
- Every vertex in \(V_x \setminus B_x \) is dominated by \(D. \)

How can we solve subproblem \(M[x, S_1, S_2] \) when \(x \) is a join node?

- Consider \(3^{|S_2|} \) cases: each vertex of \(S_2 \) is dominated from the left child, right child, or both \(\Rightarrow O(9^w \cdot n) \) time.
- Consider \(5^{|B_x|} \) subproblems: in the solution/not dominated/dominated from left/dominated from right/dominated from both \(\Rightarrow O(5^w \cdot n) \) time.
- Renaming “not dominated” to “don’t care” can improve to \(O(4^w \cdot n) \) time.
- Fast subset convolution: \(O(3^w \cdot n) \) time.
Theorem

Given a tree decomposition of width w, Hamiltonian cycle can be solved in time $w^{O(w)} \cdot n$.

B_x: vertices appearing in node x.
V_x: vertices appearing in the subtree rooted at x.

If H is a Hamiltonian cycle, then the subgraph $H[V_x]$ is a set of paths with endpoints in B_x.

What are the important properties of $H[V_x]$ “seen from outside”?
Hamiltonian cycle and treewidth

Theorem

Given a tree decomposition of width w, **Hamiltonian cycle** can be solved in time $w^{O(w)} \cdot n$.

B_x: vertices appearing in node x.

V_x: vertices appearing in the subtree rooted at x.

If H is a Hamiltonian cycle, then the subgraph $H[V_x]$ is a set of paths with endpoints in B_x.

What are the important properties of $H[V_x]$ "seen from outside"?

- The subsets B^0_x, B^1_x, B^2_x of B_x having degree 0, 1, and 2.

- The matching M of B^1_x.

No. of subproblems (B^0_x, B^1_x, B^2_x, M) for node x: at most $3^w \cdot w^w$.

For each subproblem, we have to determine if there is a set of paths with this pattern.
Other problems

There are other problems where the natural DP needs to keep track of \(w^{O(w)} \) possibilities of a partition.

Theorem

Given a tree decomposition of width \(w \), there are \(w^{O(w)} \cdot n \) time algorithms for

- **Hamiltonian cycle**
- **Steiner Tree**
- **Cycle Packing**
- \(\ldots \)
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.
Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- Logical connectives \land, \lor, \to, \neg, \equiv, \neq
- Quantifiers \forall, \exists over vertex/edge variables
- Predicate $\text{adj}(u, v)$: vertices u and v are adjacent
- Predicate $\text{inc}(e, v)$: edge e is incident to vertex v
- Quantifiers \forall, \exists over vertex/edge set variables
- \in, \subseteq for vertex/edge sets

Example:
The formula
\[
\exists C \subseteq V \left(\exists v \in V \land \forall v \in C \exists u_1, u_2 \in C (u_1 \neq u_2 \land \text{adj}(u_1, v) \land \text{adj}(u_2, v)) \right)
\]
is true on graph G if and only if ...
Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- Logical connectives \land, \lor, \rightarrow, \neg, $=$, \neq
- Quantifiers \forall, \exists over vertex/edge variables
- Predicate $\text{adj}(u, v)$: vertices u and v are adjacent
- Predicate $\text{inc}(e, v)$: edge e is incident to vertex v
- Quantifiers \forall, \exists over vertex/edge set variables
- \in, \subseteq for vertex/edge sets

Example:
The formula

$$\exists C \subseteq V (\exists v \in V \land \forall v \in C \exists u_1, u_2 \in C (u_1 \neq u_2 \land \text{adj}(u_1, v) \land \text{adj}(u_2, v)))$$

is true on graph G if and only if G has a cycle.
Courcelle’s Theorem

If a graph property can be expressed in EMSO, then for every fixed $w \geq 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w. Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.
Courcelle’s Theorem

There exists an algorithm that, given a width-w tree decomposition of an n-vertex graph G and an EMSO formula ϕ, decides whether G satisfies ϕ in time $f(w, |\phi|) \cdot n$. If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth w of the input graph.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.
Courcelle’s Theorem

There exists an algorithm that, given a width-\(w\) tree decomposition of an \(n\)-vertex graph \(G\) and an EMSO formula \(\phi\), decides whether \(G\) satisfies \(\phi\) in time \(f(w, |\phi|) \cdot n\).

If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth \(w\) of the input graph.

Note: The constant depending on \(w\) can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.
Using Courcelle’s Theorem

Can we express 3-COLORING and HAMILTONIAN CYCLE in EMSO?
Using Courcelle’s Theorem

Can we express **3-Coloring** and **Hamiltonian Cycle** in EMSO?

3-Coloring

$$\exists C_1, C_2, C_3 \subseteq V \ (\forall v \in V \ (v \in C_1 \lor v \in C_2 \lor v \in C_3)) \land (\forall u, v \in V \ \text{adj}(u, v) \rightarrow (\neg (u \in C_1 \land v \in C_1) \land \neg (u \in C_2 \land v \in C_2) \land \neg (u \in C_3 \land v \in C_3)))$$
Using Courcelle’s Theorem

Can we express **3-Coloring** and **Hamiltonian Cycle** in EMSO?

3-Coloring

$$\exists C_1, C_2, C_3 \subseteq V \left(\forall v \in V \left(v \in C_1 \lor v \in C_2 \lor v \in C_3 \right) \right) \land \left(\forall u, v \in V \ \text{adj}(u, v) \rightarrow \neg(u \in C_1 \land v \in C_1) \land \neg(u \in C_2 \land v \in C_2) \land \neg(u \in C_3 \land v \in C_3) \right)$$

Hamiltonian Cycle

$$\exists H \subseteq E \left(\text{spanning-connected}(H) \land \left(\forall v \in V \ \text{degree2}(H, v) \right) \right)$$

$\text{degree2}(H, v) := \exists e_1, e_2 \in H \left((e_1 \neq e_2) \land \text{inc}(e_1, v) \land \text{inc}(e_2, v) \land \left(\forall e_3 \in H \ \text{inc}(e_3, v) \rightarrow (e_1 = e_3 \lor e_2 = e_3) \right) \right)$

$\text{spanning-connected}(H) := \forall Z \subseteq V \left(\left(\exists v \in V : v \in Z \right) \land \left(\exists v \in V : v \notin Z \right) \right) \rightarrow \left(\exists e \in H \ \exists x \in V \ \exists y \in V : (x \in Z) \land (y \notin Z) \land \text{inc}(e, x) \land \text{inc}(e, y) \right)$
Using Courcelle’s Theorem

Three ways of using Courcelle’s Theorem:

1. The problem can be described by a single formula (e.g., 3-Coloring, Hamiltonian Cycle).

 ⇒ Problem can be solved in time $f(w) \cdot n$ for graphs of treewidth at most w, i.e., FPT parameterized by treewidth.
Using Courcelle’s Theorem

Three ways of using Courcelle’s Theorem:

1. The problem can be described by a single formula (e.g., 3-COLORING, HAMILTONIAN CYCLE).

 ⇒ Problem can be solved in time $f(w) \cdot n$ for graphs of treewidth at most w, i.e., FPT parameterized by treewidth.

2. The problem can be described by a formula for each value of the parameter k.

 Example: For each k, having a cycle of length exactly k can be expressed as

 $$\exists v_1, \ldots, v_k \in V ((v_1 \neq v_2) \land (v_1 \neq v_3) \land \ldots (v_{k-1} \neq v_k))$$
 $$\land (\text{adj}(v_1, v_2) \land \text{adj}(v_2, v_3) \land \ldots \land \text{adj}(v_{k-1}, v_k) \land \text{adj}(v_k, v_1)).$$

 ⇒ Problem can be solved in time $f(k, w) \cdot n$ for graphs of treewidth w, i.e., FPT parameterized with combined parameter k and treewidth w.
Using Courcelle’s Theorem

Three ways of using Courcelle’s Theorem:

1. The problem can be described by a single formula (e.g., **3-Coloring**, **Hamiltonian Cycle**).

 \[\Rightarrow \text{Problem can be solved in time } f(w) \cdot n \text{ for graphs of treewidth at most } w, \text{ i.e., FPT parameterized by treewidth.} \]

2. The problem can be described by a formula for each value of the parameter \(k \).

 Example: For each \(k \), having a cycle of length exactly \(k \) can be expressed as

 \[
 \exists v_1, \ldots, v_k \in V \left((v_1 \neq v_2) \land (v_1 \neq v_3) \land \ldots (v_{k-1} \neq v_k) \right) \\
 \land \left(\text{adj}(v_1, v_2) \land \text{adj}(v_2, v_3) \land \cdots \land \text{adj}(v_{k-1}, v_k) \land \text{adj}(v_k, v_1) \right).
 \]

 \[\Rightarrow \text{Problem can be solved in time } f(k, w) \cdot n \text{ for graphs of treewidth } w, \text{ i.e., FPT parameterized with combined parameter } k \text{ and treewidth } w. \]

3. Optimization version: find largest set \(X \) such that...
Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph of G isomorphic to H.
Subgraph Isomorphism

Input: graphs H and G

Find: a subgraph of G isomorphic to H.

For each H, we can construct a formula ϕ_H that expresses “G has a subgraph isomorphic to H” (similarly to the k-cycle on the previous slide).

⇒ By Courcelle’s Theorem, **Subgraph Isomorphism** can be solved in time $f(H, w) \cdot n$ if G has treewidth at most w.
Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph of G isomorphic to H.

As there is only a finite number of simple k-vertex graphs, Subgraph Isomorphism can be solved in time $f(k, w) \cdot n$ if H has k vertices and G has treewidth at most w.

Theorem

Subgraph Isomorphism is FPT parameterized by combined parameter $k := |V(H)|$ and the treewidth w of G.
MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language $L \subseteq \Sigma^*$ can be defined by an MSO formula ϕ using the relation $<$, then L is regular.

Example: a^*bc^* is defined by

$$\exists x : P_b(x) \land (\forall y : (y < x) \rightarrow P_a(y)) \land (\forall y : (x < y) \rightarrow P_c(y)).$$
MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]
If a language $L \subseteq \Sigma^*$ can be defined by an MSO formula ϕ using the relation $<$, then L is regular.

Example: a^*bc^* is defined by

$$\exists x : P_b(x) \land (\forall y : (y < x) \rightarrow P_a(y)) \land (\forall y : (x < y) \rightarrow P_c(y)).$$

We prove a more general statement for formulas $\phi(w, X_1, \ldots, X_k)$ and words over $\Sigma \cup \{0, 1\}^k$, where X_i is a subset of positions of w.

Induction over the structure of ϕ:

- FSM for $\neg \phi(w)$, given FSM for $\phi(w)$.
- FSM for $\phi_1(w) \land \phi_2(w)$, given FSMs for $\phi_1(w)$ and $\phi_2(w)$.
- FSM for $\exists X \phi(w, X)$, given FSM for $\phi(w, X)$.
- etc.
Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language $L \subseteq \Sigma^*$ can be defined by an MSO formula ϕ using the relation $<$, then L is regular.

Proving Courcelle’s Theorem:

- Generalize from words to trees.
- A width-w tree decomposition can be interpreted as a tree over an alphabet of size $f(w)$.
- Formula \Rightarrow tree automata.
Depth-first search (DFS)

Fact: Finding a cycle of length at least k in a graph is FPT parameterized by k.

Let us start a depth-first search from an arbitrary vertex v. There are two types of edges: tree edges and back edges.

- If there is a back edge whose endpoints differ by at least $k - 1$ levels \Rightarrow there is a cycle of length at least k.
- Otherwise, the graph has treewidth at most $k - 2$ and we can solve the problem by applying Courcelle's Theorem.
Depth-first search (DFS)

Fact: Finding a cycle of length at least k in a graph is FPT parameterized by k.

Let us start a depth-first search from an arbitrary vertex v. There are two types of edges: tree edges and back edges.

- If there is a back edge whose endpoints differ by at least $k - 1$ levels \Rightarrow there is a cycle of length at least k.
- Otherwise, the graph has treewidth at most $k - 2$ and we can solve the problem by applying Courcelle’s Theorem.

In the second case, a tree decomposition can be easily found: the decomposition has the same structure as the DFS spanning tree and each bag contains the vertex and its $k - 2$ ancestors.
Running times

We have seen:

- **Independent Set**: 2^w
- **Vertex Cover**: 2^w
- **Dominating Set**: 3^w
- **3-Coloring**: 3^w
- **Vertex Coloring**: $2^{O(w \log w)}$
- **Hamiltonian Cycle**: $2^{O(w \log w)}$

Can we improve on any of these running times?
Running times

We have seen:

- **INDEPENDENT SET**: 2^w
- **VERTEX COVER**: 2^w
- **DOMINATING SET**: 3^w
- **3-COLORING**: 3^w
- **VERTEX COLORING**: $2^{O(w \log w)}$
- **HAMILTONIAN CYCLE**: $2^{O(w \log w)}$

Can we improve on any of these running times?

HAMILTONIAN CYCLE can be improved to $2^{O(w)}$, but lower bounds show that the other algorithms are essentially optimal.
Algorithms — overview

- Algorithms exploit the fact that a subtree communicates with the rest of the graph via a single bag.
- Key point: defining the subproblems.
- Courcelle’s Theorem makes this process automatic for many problems.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.