Treewidth: Vol. 2

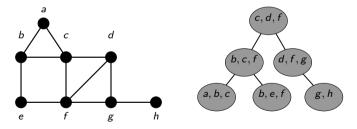
Dániel Marx

Lecture #12 January 25, 2022

1

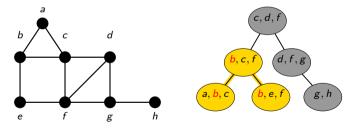
Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- **1** If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.



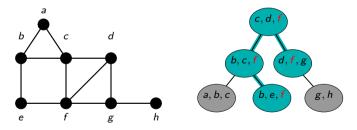
Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- **1** If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.



Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- **1** If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

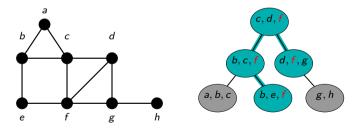


Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- **(**) If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

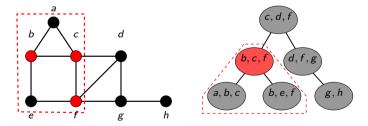


Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- **1** If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.



WEIGHTED MAX INDEPENDENT SET and treewidth

Theorem

Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

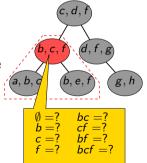
 B_{x} : vertices appearing in node x.

 V_{x} : vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each **vertex** of the graph, we compute $2^{|B_x|} \le 2^{w+1}$ values for each bag B_x .

M[x, S]: the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.



WEIGHTED MAX INDEPENDENT SET and treewidth

Theorem

Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

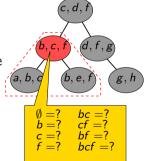
 B_{x} : vertices appearing in node x.

 V_{x} : vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each **vertex** of the graph, we compute $2^{|B_x|} \le 2^{w+1}$ values for each bag B_x .

M[x, S]: the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.



How to determine M[x, S] if all the values are known for the children of x?

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- Logical connectives $\land,\,\lor,\,\rightarrow,\,\neg,\,=,\,\neq$
- quantifiers \forall , \exists over vertex/edge variables
- predicate adj(u, v): vertices u and v are adjacent
- predicate inc(e, v): edge e is incident to vertex v
- quantifiers \forall , \exists over vertex/edge set variables
- $\bullet \ \in, \ \subseteq \ for \ vertex/edge \ sets$

Example:

The formula

 $\exists C \subseteq V \forall v \in C \; \exists u_1, u_2 \in C(u_1 \neq u_2 \land \mathsf{adj}(u_1, v) \land \mathsf{adj}(u_2, v))$

is true on graph G if and only if G has a cycle.

Courcelle's Theorem

Courcelle's Theorem

There exists an algorithm that, given a width-w tree decomposition of an *n*-vertex graph *G* and an EMSO formula ϕ , decides whether *G* satisfies ϕ in time $f(w, |\phi|) \cdot n$.

If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth w of the input graph.

- \Rightarrow The following problem are FPT parameterized by treewidth:
 - *c*-Coloring
 - HAMILTONIAN CYCLE
 - Partition into Triangles
 - ...

Running time

Lots of research on this topic:

Many of the hard algorithmic problems on graphs can be solved in time $f(w) \cdot n^{O(1)}$ if a tree decomposition of width w is given.

In other words: these problems are **fixed-parameter tractable (FPT)** parameterized by treewidth.

Running time

Lots of research on this topic:

Many of the hard algorithmic problems on graphs can be solved in time $f(w) \cdot n^{O(1)}$ if a tree decomposition of width w is given.

In other words: these problems are **fixed-parameter tractable (FPT)** parameterized by treewidth.

```
What does the f(w) depend on?
```

- The number of subproblems at each node. (often depends on the number of states of each vertex)
- 2 The time needed to handle a join node.

Running time

Lots of research on this topic:

Many of the hard algorithmic problems on graphs can be solved in time $f(w) \cdot n^{O(1)}$ if a tree decomposition of width w is given.

In other words: these problems are **fixed-parameter tractable (FPT)** parameterized by treewidth.

```
What does the f(w) depend on?
```

- The number of subproblems at each node. (often depends on the number of states of each vertex)
- 2 The time needed to handle a join node.

Can we prove lower bounds on the best possible f(w) for a problem?

Exponential Time Hypothesis (ETH)

3CNF: ϕ is a conjuction of clauses, where each clause is a disjunction of at most 3 literals (= a variable or its negation), e.g., $(x_1 \lor x_3 \lor \bar{x}_4) \land (\bar{x}_2 \lor \bar{x}_3) \lor (x_1 \lor x_2 \lor x_4)$.

3SAT: given a 3CNF formula ϕ with *n* variables and *m* clauses, decide whether ϕ is satisfiable.

- Current best algorithm is 1.30704ⁿ [Hertli 2011].
- Can we do **significantly** better, e.g, $2^{O(n/\log n)}$?

Exponential Time Hypothesis (ETH)

3CNF: ϕ is a conjuction of clauses, where each clause is a disjunction of at most 3 literals (= a variable or its negation), e.g., $(x_1 \lor x_3 \lor \bar{x}_4) \land (\bar{x}_2 \lor \bar{x}_3) \lor (x_1 \lor x_2 \lor x_4)$.

3SAT: given a 3CNF formula ϕ with *n* variables and *m* clauses, decide whether ϕ is satisfiable.

- Current best algorithm is 1.30704ⁿ [Hertli 2011].
- Can we do **significantly** better, e.g, $2^{O(n/\log n)}$?

Hypothesis introduced by Impagliazzo, Paturi, and Zane in 2001:

Exponential Time Hypothesis (ETH) [consequence of] There is no $2^{o(n)}$ -time algorithm for *n*-variable 3SAT.

Exponential Time Hypothesis (ETH)

3CNF: ϕ is a conjuction of clauses, where each clause is a disjunction of at most 3 literals (= a variable or its negation), e.g., $(x_1 \lor x_3 \lor \bar{x}_4) \land (\bar{x}_2 \lor \bar{x}_3) \lor (x_1 \lor x_2 \lor x_4)$.

3SAT: given a 3CNF formula ϕ with *n* variables and *m* clauses, decide whether ϕ is satisfiable.

- Current best algorithm is 1.30704ⁿ [Hertli 2011].
- Can we do **significantly** better, e.g, $2^{O(n/\log n)}$?

Hypothesis introduced by Impagliazzo, Paturi, and Zane in 2001:

Exponential Time Hypothesis (ETH) [real statement]

There is a constant $\delta > 0$ such that there is no $O(2^{\delta n})$ time algorithm for 3SAT.

Sparsification

Exponential Time Hypothesis (ETH) [consequence of]

There is no $2^{o(n)}$ -time algorithm for *n*-variable 3SAT.

Observe: an *n*-variable 3SAT formula can have $m = \Omega(n^3)$ clauses.

Are there algorithms that are subexponential in the size n + m of the 3SAT formula?

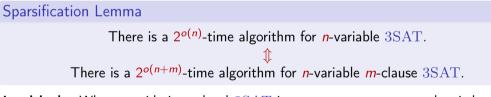
Sparsification

Exponential Time Hypothesis (ETH) [consequence of]

There is no $2^{o(n)}$ -time algorithm for *n*-variable 3SAT.

Observe: an *n*-variable 3SAT formula can have $m = \Omega(n^3)$ clauses.

Are there algorithms that are subexponential in the size n + m of the 3SAT formula?



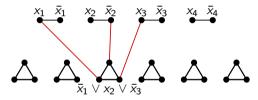
Intuitively: When considering a hard 3SAT instance, we can assume that it has m = O(n) clauses.

Exponential Time Hypothesis (ETH) + Sparsification Lemma There is no $2^{o(n+m)}$ -time algorithm for *n*-variable *m*-clause 3SAT.

The textbook reduction from 3SAT to INDEPENDENT SET:

Exponential Time Hypothesis (ETH) + Sparsification Lemma There is no $2^{o(n+m)}$ -time algorithm for *n*-variable *m*-clause 3SAT.

The textbook reduction from 3SAT to INDEPENDENT SET:

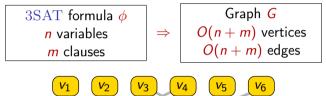


formula is satisfiable \Leftrightarrow there is an independent set of size n + 2m

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no $2^{o(n+m)}$ -time algorithm for *n*-variable *m*-clause 3SAT.

 C_1



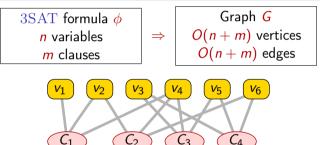
 C_3

 C_4

 C_2

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no $2^{o(n+m)}$ -time algorithm for *n*-variable *m*-clause 3SAT.

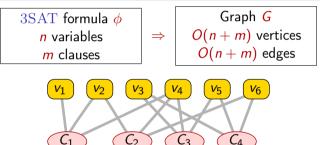


Corollary

Assuming ETH, there is no $2^{o(n)}$ algorithm for INDEPENDENT SET on an *n*-vertex graph.

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no $2^{o(n+m)}$ -time algorithm for *n*-variable *m*-clause 3SAT.



Corollary

Assuming ETH, there is no $2^{o(w)} \cdot n^{O(1)}$ algorithm for INDEPENDENT SET on graphs of treewidth w.

Lower bounds for treewidth

Similarly, assuming ETH, there is no $2^{o(w)} \cdot n^{O(1)}$ time algorithm for

- INDEPENDENT SET
- Dominating Set
- Odd Cycle Transversal
- ...

Are there other problems where some other form of running time is optimal?

Hamiltonian cycle and treewidth

Theorem

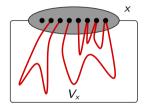
Given a tree decomposition of width w, HAMILTONIAN CYCLE can be solved in time $w^{O(w)} \cdot n$.

 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

If *H* is a Hamiltonian cycle, then the subgraph $H[V_x]$ is a set of paths with endpoints in B_x .

What are the important properties of $H[V_x]$ "seen from outside"?



Hamiltonian cycle and treewidth

Theorem

Given a tree decomposition of width w, HAMILTONIAN CYCLE can be solved in time $w^{O(w)} \cdot n$.

 B_x : vertices appearing in node x.

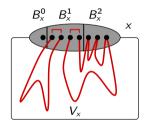
 V_{x} : vertices appearing in the subtree rooted at x.

If *H* is a Hamiltonian cycle, then the subgraph $H[V_x]$ is a set of paths with endpoints in B_x .

What are the important properties of $H[V_x]$ "seen from outside"?

- The subsets B_x^0 , B_x^1 , B_x^2 of B_x having degree 0, 1, and 2.
- The matching M of B_{χ}^1 .

No. of subproblems (B_x^0, B_x^1, B_x^2, M) for node x: at most $3^w \cdot w^w$. For each subproblem, we have to determine if there is a set of paths with this pattern.



Cut and count

A very powerful technique for many problems on graphs of bounded-treewidth. **Classical result:**

Theorem

Given a tree decomposition of width w, HAMILTONIAN CYCLE can be solved in time $w^{O(w)} \cdot n^{O(1)} = 2^{O(w \log w)} \cdot n^{O(1)}$.

Seems like best possible, but...

Cut and count

A very powerful technique for many problems on graphs of bounded-treewidth. **Classical result:**

Theorem

Given a tree decomposition of width w, HAMILTONIAN CYCLE can be solved in time $w^{O(w)} \cdot n^{O(1)} = 2^{O(w \log w)} \cdot n^{O(1)}$.

Seems like best possible, but...

Improved algorithms:

Given a tree decomposition of width w, HAMILTONIAN CYCLE can be solved in time $4^{w} \cdot n^{O(1)}$.

The first technique achieving this was Cut & Count.

Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]

Let \mathcal{F} be a nonempty family of subsets of U and assign a weight $w(u) \in [N]$ to each $u \in U$ uniformly and independently at random. The probability that there is a **unique** $S \in \mathcal{F}$ having minimum weight is at least

 $1-\frac{|U|}{N}$.

- Def: $x \in U$ is singular in a weight assignment if there are minimum weight sets $A, B \in \mathcal{F}$ with $x \in A$ and $x \notin B$.
- Claim $1:x \in U$ is singular in a random w with probability $\leq 1/N$.

Set w randomly except w(x) = 0. If a (resp. b) is the min. weight of a set containing x (resp. not containing x), then x becomes singular only if we set w(x) = b - a.

• Claim 2: If there is no singular $x \in U$, then there is a unique minimum weight set.

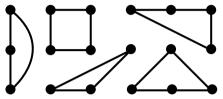
Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]

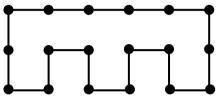
Let \mathcal{F} be a nonempty family of subsets of U and assign a weight $w(u) \in [N]$ to each $u \in U$ uniformly and independently at random. The probability that there is a **unique** $S \in \mathcal{F}$ having minimum weight is at least

 $1 - \frac{|U|}{N}$. Let U = E(G) and \mathcal{F} be the set of all Hamiltonian cycles.

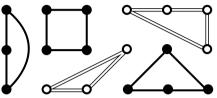
- By setting $N := |V(G)|^{O(1)}$, we can assume that there is a unique minimum weight Hamiltonian cycle.
- If N is polynomial in the input size, we can guess this minimum weight.
- So we are looking for a Hamiltonian cycle of weight **exactly** *C*, under the assumption that there is a **unique** such cycle.



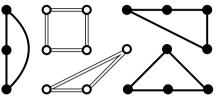
• Cycle cover: A subgraph having degree exactly two at each vertex.



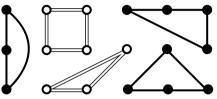
• A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.



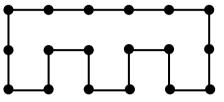
- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.



- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.



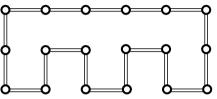
- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.
- A cycle cover with k components gives rise to 2^k colored cycle covers.
 - If there is no weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 0 mod 4.
 - If there is a unique weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 2 mod 4.



- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.
- A cycle cover with k components gives rise to 2^k colored cycle covers.
 - If there is no weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 0 mod 4.
 - If there is a unique weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 2 mod 4.

Cycle covers

• Cycle cover: A subgraph having degree exactly two at each vertex.

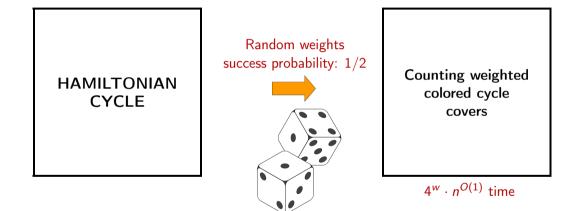


- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.
- A cycle cover with k components gives rise to 2^k colored cycle covers.
 - If there is no weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 0 mod 4.
 - If there is a unique weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 2 mod 4.

Cut and Count

- Assign random weights $\leq 2|E(G)|$ to the edges.
- If there is a Hamiltonian cycle, then with probability 1/2, there is a *C* such that there is a **unique** weight-*C* Hamiltionian cycle.
- Try all possible C.
- Count the number of weight-*C* colored cycle covers: can be done in time $4^{w} \cdot n^{O(1)}$ if a tree decomposition of width *w* is given.
- Answer YES if this number is 2 mod 4.

Cut and Count



Optimal algorithms for tree decompositions

Assuming ETH, these running times are best possible:

Maximum Independent Set Dominating Set	2 ^{0(w)}
HAMILTONIAN CYCLE	$2^{O(w \log w)}$
Cut & Count	$2^{O(w)}$
CHROMATIC NUMBER	$2^{O(w \log w)}$
Cycle Packing	$2^{O(w \log w)}$
HITTING CANDY GRAPHS $H_{c}: \underbrace{1}_{c}$	2 ^{0(w^c)}
3-Choosability	$2^{2^{O(w)}}$
3-Choosability Deletion	$2^{2^{2^{O(w)}}}$

Best possible bases

Algorithms given a tree decomposition of width w:

INDEPENDENT SET	2 ^w
Dominating Set	3 ^w
<i>c</i> -Coloring	CW
Odd Cycle Transversal	3 ^w
PARTITION INTO TRIANGLES	2 ^w
Max Cut	2 ^w
#Perfect Matching	2 ^w

Are these constants best possible? Can we improve 2 to 1.99?

Best possible bases

Algorithms given a tree decomposition of width w:

INDEPENDENT SET	2 ^w
Dominating Set	3 ^w
<i>c</i> -Coloring	c ^w
Odd Cycle Transversal	3 ^w
PARTITION INTO TRIANGLES	2 ^w
Max Cut	2 ^w
#Perfect Matching	2 ^w

ETH seems to be too weak for this: 2^{w} vs. 4^{w} is just a polynomial difference!

ETH and SETH

Exponential Time Hypothesis (ETH)

There is a constant $\delta > 0$ such that there is no $O(2^{\delta n})$ time algorithm for 3SAT.

Let $s_d = \inf\{c : d\text{-SAT has a } 2^{cn} \text{ algorithm}\}$ Let $s_{\infty} = \lim_{d \to \infty} s_d$. ETH: $s_3 > 0$ SETH: $s_{\infty} = 1$.

ETH and SETH

Exponential Time Hypothesis (ETH)

There is a constant $\delta > 0$ such that there is no $O(2^{\delta n})$ time algorithm for 3SAT.

Let
$$s_d = \inf\{c : d\text{-SAT has a } 2^{cn} \text{ algorithm}\}$$

Let $s_{\infty} = \lim_{d \to \infty} s_d$.
ETH: $s_3 > 0$ SETH: $s_{\infty} = 1$.

In other words:

Strong Exponential-Time Hypothesis (SETH)

There is no $\epsilon > 0$ such that d-SAT for every d can be solved in time $O((2 - \epsilon)^n)$.

ETH and SETH

Exponential Time Hypothesis (ETH)

There is a constant $\delta > 0$ such that there is no $O(2^{\delta n})$ time algorithm for 3SAT.

Let
$$s_d = \inf\{c : d\text{-SAT} \text{ has a } 2^{cn} \text{ algorithm}\}$$

Let $s_{\infty} = \lim_{d \to \infty} s_d$.
ETH: $s_3 > 0$ SETH: $s_{\infty} = 1$.

In other words:

Strong Exponential-Time Hypothesis (SETH)

There is no $\epsilon > 0$ such that d-SAT for every d can be solved in time $O((2 - \epsilon)^n)$.

Consequence of SETH

There is no $(2 - \epsilon)^n \cdot m^{O(1)}$ time algorithm for SAT (with clauses of aribtrary length).

Strong Exponential-Time Hypothesis (SETH)

There is no $\epsilon > 0$ such that d-SAT for every d can be solved in time $O((2 - \epsilon)^n)$.

The textbook reduction from 3SAT to INDEPENDENT SET:

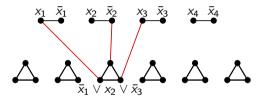
$$\overset{x_1 \ \overline{x}_1}{\bullet} \overset{x_2 \ \overline{x}_2}{\bullet} \overset{x_3 \ \overline{x}_3}{\bullet} \overset{x_4 \ \overline{x}_4}{\bullet}$$

$\bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup$

Strong Exponential-Time Hypothesis (SETH)

There is no $\epsilon > 0$ such that d-SAT for every d can be solved in time $O((2 - \epsilon)^n)$.

The textbook reduction from 3SAT to INDEPENDENT SET:

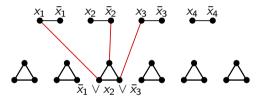


formula is satisfiable \Leftrightarrow there is an independent set of size n + m

Strong Exponential-Time Hypothesis (SETH)

There is no $\epsilon > 0$ such that d-SAT for every d can be solved in time $O((2 - \epsilon)^n)$.

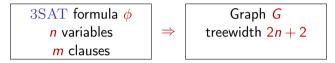
The textbook reduction from 3SAT to INDEPENDENT SET:



Treewidth of the constructed graph is at most 2n + 2.

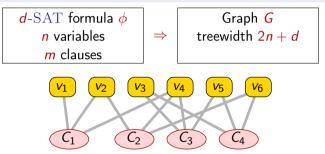
Strong Exponential-Time Hypothesis (SETH)

There is no $\epsilon > 0$ such that d-SAT for every d can be solved in time $O((2 - \epsilon)^n)$.



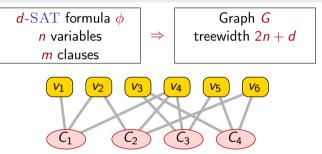
Strong Exponential-Time Hypothesis (SETH)

There is no $\epsilon > 0$ such that d-SAT for every d can be solved in time $O((2 - \epsilon)^n)$.



Strong Exponential-Time Hypothesis (SETH)

There is no $\epsilon > 0$ such that d-SAT for every d can be solved in time $O((2 - \epsilon)^n)$.

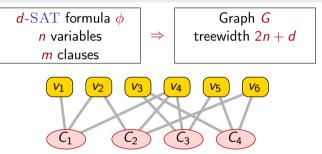


Corollary

Assuming SETH, there is no $(2 - \epsilon)^{w/2} \cdot n^{O(1)}$ algorithm for INDEPENDENT SET for any $\epsilon > 0$.

Strong Exponential-Time Hypothesis (SETH)

There is no $\epsilon > 0$ such that d-SAT for every d can be solved in time $O((2 - \epsilon)^n)$.



Corollary

Assuming SETH, there is no $(1.41 - \epsilon)^{w} \cdot n^{O(1)}$ algorithm for INDEPENDENT SET for any $\epsilon > 0$.

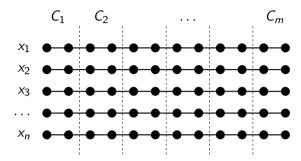
We need a reduction of the following form for every d:

$$\begin{array}{c|c} d\text{-SAT formula } \phi \\ n \text{ variables} \\ m \text{ clauses} \end{array} \Rightarrow \begin{array}{c} \text{Graph } G \\ \text{treewidth } n + O_d(1) \end{array}$$

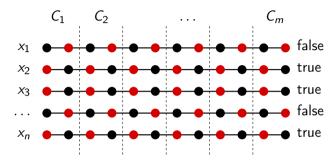
This would show:

Theorem Assuming SETH, there is no $(2 - \epsilon)^{w} \cdot n^{O(1)}$ algorithm for INDEPENDENT SET for any $\epsilon > 0$.

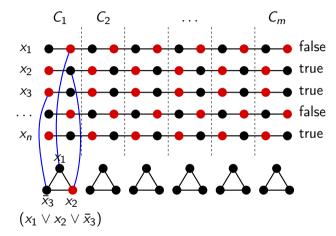
d-SAT with *n* variables and *m* clauses \Rightarrow *n* paths of 2*m* vertices.



d-SAT with *n* variables and *m* clauses \Rightarrow *n* paths of 2*m* vertices.

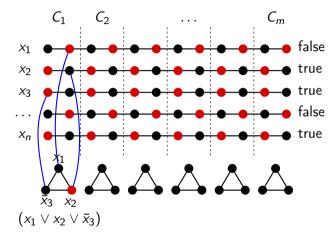


d-SAT with *n* variables and *m* clauses \Rightarrow *n* paths of 2*m* vertices.



Independent set of size $nm + m \iff$ formula is satisfiable

d-SAT with *n* variables and *m* clauses \Rightarrow *n* paths of 2*m* vertices.

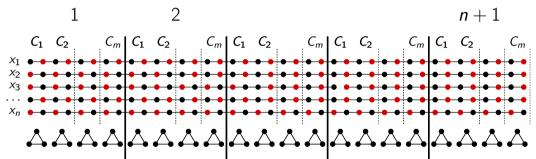


Not difficult to show: treewidth is at most n + d

A problem

A path may start as "true" and switch to "false".

Simple solution: repeat the instance n + 1 times.

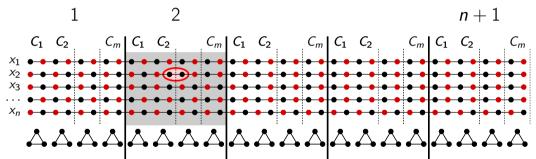


By the Pigeonhole Principle, there is a repetition where no switch occurs.

A problem

A path may start as "true" and switch to "false".

Simple solution: repeat the instance n + 1 times.

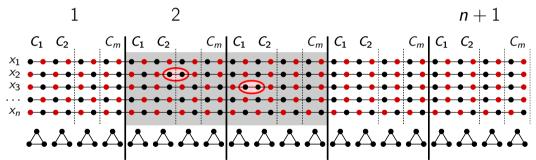


By the Pigeonhole Principle, there is a repetition where no switch occurs.

A problem

A path may start as "true" and switch to "false".

Simple solution: repeat the instance n + 1 times.



By the Pigeonhole Principle, there is a repetition where no switch occurs.

Lower bound for $\ensuremath{\operatorname{INDEPENDENT}}$ Set

We have shown: Reduction from *n*-variable *d*-SAT to INDEPENDENT SET in a graph with treewidth w = n + d.

$$(2 - \epsilon)^w \cdot n^{O(1)}$$
 algorithm for INDEPENDENT SET
 \downarrow
 $(2 - \epsilon)^n \cdot n^{O(1)}$ algorithm for *d*-SAT

As this is true for any d, having such an algorithm for INDEPENDENT SET would violate SETH.

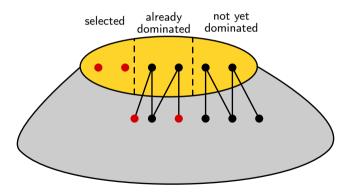
Theorem

Assuming SETH, there is no $(2 - \epsilon)^{w} \cdot n^{O(1)}$ algorithm for INDEPENDENT SET for any $\epsilon > 0$.

$\operatorname{DOMINATING}\,\operatorname{SET}$ and treewidth

DOMINATING SET: Given G and k, find a set S of k vertices such that every vertex of G is in S or has a neighbor in S.

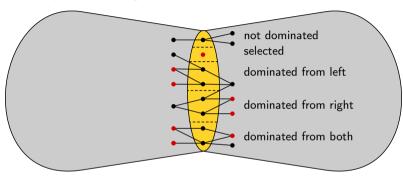
Each vertex has three possible states in a bag:



 \Rightarrow 3^{w+1} different subproblems at each node.

$\operatorname{DOMINATING}\,\operatorname{SET}$ and treewidth

How to solve a subproblem at a join node?



- Natural approach: $9^{w} \cdot n^{O(1)}$ [Telle and Proskurowski 1993]
- Considering the 5 possibilities: $5^{w} \cdot n^{O(1)}$
- More efficiently: $4^{w} \cdot n^{O(1)}$ [Alber et al. 2002]
- Fast subset convolution: $3^{w} \cdot n^{O(1)}$ [Björkund et al. 2007], [Rooij et al. 2009]

Lower bound for $\operatorname{DOMINATING}\,\operatorname{Set}$

Theorem

Assuming SETH, there is no $(3 - \epsilon)^{w} \cdot n^{O(1)}$ algorithm for DOMINATING SET for any $\epsilon > 0$.

We need a reduction of the following form for every d:



Then

$$(3-\epsilon)^w \leq (3-\epsilon)^{n/\log_2 3} \cdot 3^{O_d(1)} = O_d((2-\epsilon')^n)$$

Lower bound for $\operatorname{DOMINATING}\,\operatorname{Set}$

Theorem

Assuming SETH, there is no $(3 - \epsilon)^{w} \cdot n^{O(1)}$ algorithm for DOMINATING SET for any $\epsilon > 0$.

We need a reduction of the following form for every d:

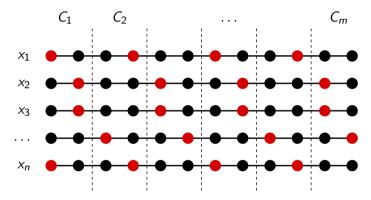
Then

$$(3-\epsilon)^w \leq (3-\epsilon)^{n/\log_2 3} \cdot 3^{O_d(1)} = O_d((2-\epsilon')^n)$$

How to increase treewidth by only $1/\log_2 3 = 0.6309$ for every variable?

Lower bound for $\operatorname{DOMINATING}\,\operatorname{SET}$

Each path has now 3 different states.



A group of g variables can be described by $\approx \log_3 2^g = g/\log_2 3 = 0.6309g$ paths.

Best possible bases

Assuming SETH...

INDEPENDENT SET	no $(2-\epsilon)^w$
Dominating Set	no $(3-\epsilon)^w$
<i>c</i> -Coloring	no $(c-\epsilon)^w$
Odd Cycle Transversal	no $(3-\epsilon)^w$
PARTITION INTO TRIANGLES	no $(2-\epsilon)^w$
Max Cut	no $(2-\epsilon)^w$
#Perfect Matching	no $(2-\epsilon)^w$

Distance-*d* versions

d-SCATTERED SET: find a set S of k vertices with pairwise distance $\geq d$.

Theorem

If there is an $\epsilon > 0$ and an algorithm solving d-SCATTERED SET in time $(d - \epsilon)^w \cdot n^{O(1)}$ on a tree decomposition of width w, then the SETH fails.

d states: selected; unselected at distance $1, 2, \ldots, \geq d-1$ from a selected.

Distance-*d* versions

d-SCATTERED SET: find a set S of k vertices with pairwise distance $\geq d$.

Theorem

If there is an $\epsilon > 0$ and an algorithm solving d-SCATTERED SET in time $(d - \epsilon)^w \cdot n^{O(1)}$ on a tree decomposition of width w, then the SETH fails.

d states: selected; unselected at distance $1, 2, \ldots, \geq d-1$ from a selected.

(k, d)-CENTER: find a set S of k vertices such that every vertex is at most distance d from S.

Theorem

If there is an $\epsilon > 0$ and an algorithm solving (k, d)-CENTER in time $(2d + 1 - \epsilon)^w \cdot n^{O(1)}$ on a tree decomposition of width w, then the SETH fails.

2d + 1 states: selected; at distance $1, 2, \dots, d$ from a selected vertex going up/down.

Connected problems

CONNECTED (k, d)-CENTER: find a set S of k vertices such that every vertex is at most distance d from S and G[S] is connected.

- Handling connectivity in a standard way gives a $2^{O(w \log w)} \cdot n^{O(1)}$ algorithm.
- $2^{O(w)} \cdot n^{O(1)}$ running time requires the *Cut & Count* technique.

Theorem

- Given a tree decomposition of width w, CONNECTED (k, d)-CENTER can be solved in time $(2d + 2)^w \cdot n^{O(1)}$.
- If there is an $\epsilon > 0$ and an algorithm solving CONNECTED (k, d)-CENTER in time $(2d + 2 \epsilon)^w \cdot n^{O(1)}$ on a tree decomposition of width w, then the SETH fails.

LIST COLORING

LIST COLORING is a generalization of ordinary vertex coloring: given a

- graph G,
- a set of colors C, and
- a list $L(v) \subseteq C$ for each vertex v,

the task is to find a coloring c where $c(v) \in L(v)$ for every v.

Theorem

VERTEX COLORING is FPT parameterized by treewidth.

However, list coloring is more difficult:

Theorem

LIST COLORING is W[1]-hard parameterized by treewidth.

Parameterized reductions

Definition

Parameterized reduction from problem *A* to problem *B*: a function ϕ with the following properties:

- $\phi(x)$ is a yes-instance of $B \iff x$ is a yes-instance of A,
- $\phi(x)$ can be computed in time $f(k) \cdot |x|^{O(1)}$, where k is the parameter of x,
- If k is the parameter of x and k' is the parameter of φ(x), then k' ≤ g(k) for some function g.

Parameterized reductions

Definition

Parameterized reduction from problem *A* to problem *B*: a function ϕ with the following properties:

- $\phi(x)$ is a yes-instance of $B \iff x$ is a yes-instance of A,
- $\phi(x)$ can be computed in time $f(k) \cdot |x|^{O(1)}$, where k is the parameter of x,
- If k is the parameter of x and k' is the parameter of φ(x), then k' ≤ g(k) for some function g.

Theorem

If there is a parameterized reduction from problem A to problem B and B is FPT, then A is also FPT.

Intuitively: Reduction $A \rightarrow B$ + algorithm for *B* gives an algorithm for *A*.

W[1]-hard: CLIQUE can be reduced to it.

LIST COLORING

Theorem

LIST COLORING is W[1]-hard parameterized by treewidth.

Proof: By reduction from MULTICOLORED INDEPENDENT SET.

- Let G be a graph with color classes V_1, \ldots, V_k .
- Set C of colors: the set of vertices of G.
- The colors appearing on vertices u_1, \ldots, u_k correspond to the k vertices of the clique, hence we set $L(u_i) = V_i$.

$$u_2 : V_2$$

 $u_1 : V_1 \bullet \bullet u_3 : V_3$

 $u_5: V_5^{\bullet}$ $u_4: V_4$

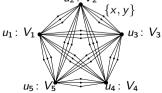
LIST COLORING

Theorem

LIST COLORING is W[1]-hard parameterized by treewidth.

Proof: By reduction from MULTICOLORED INDEPENDENT SET.

- Let G be a graph with color classes V_1, \ldots, V_k .
- Set C of colors: the set of vertices of G.
- The colors appearing on vertices u_1, \ldots, u_k correspond to the k vertices of the clique, hence we set $L(u_i) = V_i$.
- If $x \in V_i$ and $y \in V_j$ are adjacent in G, then we need to ensure that $c(u_i) = x$ and $c(u_j) = y$ are not true at the same time \Rightarrow we add a vertex adjacent to u_i and u_j whose list is $\{x, y\}$.



Treewidth and complexity

- Many natural problems are FPT parameterized by treewidth but not all (e.g., LIST COLORING).
- The ETH can be used to prove tight lower bounds on the f(k) in the running time $f(k)n^{O(1)}$.
- The SETH can be used to prove tight lower bounds on c in the running time $c^k \cdot n^{O(1)}$.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- **(**) If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

