
Treewidth: Vol. 2

Dániel Marx

Lecture #12
January 25, 2022

1

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

2

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

b, e, f

b, c, f

a, b, c

c, d , f

d , f , g

g , h

A subtree communicates with the outside world
only via the root of the subtree.

2

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

A subtree communicates with the outside world
only via the root of the subtree.

2

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

A subtree communicates with the outside world
only via the root of the subtree.

2

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

2

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max Independent Set can be
solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each vertex of the
graph, we compute 2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set I ⊆ Vx with I∩Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S] if all the values are known for the children of x?

3

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max Independent Set can be
solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each vertex of the
graph, we compute 2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set I ⊆ Vx with I∩Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S] if all the values are known for the children of x?
3

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if G has a cycle.

4

Courcelle’s Theorem

Courcelle’s Theorem
There exists an algorithm that, given a width-w tree decomposition of an n-vertex
graph G and an EMSO formula φ, decides whether G satisfies φ in time f (w , |φ|) · n.

If we can express a property in EMSO, then we immediately get that testing this
property is FPT parameterized by the treewidth w of the input graph.

⇒ The following problem are FPT parameterized by treewidth:
c-Coloring

Hamiltonian Cycle

Partition into Triangles

. . .

5

Running time
Lots of research on this topic:

Many of the hard algorithmic problems on graphs can be solved in time f (w) · nO(1) if a
tree decomposition of width w is given.

In other words: these problems are fixed-parameter tractable (FPT) parameterized
by treewidth.

What does the f (w) depend on?

1 The number of subproblems at each node.
(often depends on the number of states of each vertex)

2 The time needed to handle a join node.

Can we prove lower bounds on the best possible f (w) for a problem?

6

Running time
Lots of research on this topic:

Many of the hard algorithmic problems on graphs can be solved in time f (w) · nO(1) if a
tree decomposition of width w is given.

In other words: these problems are fixed-parameter tractable (FPT) parameterized
by treewidth.

What does the f (w) depend on?

1 The number of subproblems at each node.
(often depends on the number of states of each vertex)

2 The time needed to handle a join node.

Can we prove lower bounds on the best possible f (w) for a problem?

6

Running time
Lots of research on this topic:

Many of the hard algorithmic problems on graphs can be solved in time f (w) · nO(1) if a
tree decomposition of width w is given.

In other words: these problems are fixed-parameter tractable (FPT) parameterized
by treewidth.

What does the f (w) depend on?

1 The number of subproblems at each node.
(often depends on the number of states of each vertex)

2 The time needed to handle a join node.

Can we prove lower bounds on the best possible f (w) for a problem?

6

Exponential Time Hypothesis (ETH)
3CNF: φ is a conjuction of clauses, where each clause is a disjunction of at most 3
literals (= a variable or its negation), e.g., (x1 ∨ x3 ∨ x̄4) ∧ (x̄2 ∨ x̄3) ∨ (x1 ∨ x2 ∨ x4).

3SAT: given a 3CNF formula φ with n variables and m clauses, decide whether φ is
satisfiable.

Current best algorithm is 1.30704n [Hertli 2011].
Can we do significantly better, e.g, 2O(n/ log n)?

Hypothesis introduced by Impagliazzo, Paturi, and Zane in 2001:

7

Exponential Time Hypothesis (ETH)
3CNF: φ is a conjuction of clauses, where each clause is a disjunction of at most 3
literals (= a variable or its negation), e.g., (x1 ∨ x3 ∨ x̄4) ∧ (x̄2 ∨ x̄3) ∨ (x1 ∨ x2 ∨ x4).

3SAT: given a 3CNF formula φ with n variables and m clauses, decide whether φ is
satisfiable.

Current best algorithm is 1.30704n [Hertli 2011].
Can we do significantly better, e.g, 2O(n/ log n)?

Hypothesis introduced by Impagliazzo, Paturi, and Zane in 2001:

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

7

Exponential Time Hypothesis (ETH)
3CNF: φ is a conjuction of clauses, where each clause is a disjunction of at most 3
literals (= a variable or its negation), e.g., (x1 ∨ x3 ∨ x̄4) ∧ (x̄2 ∨ x̄3) ∨ (x1 ∨ x2 ∨ x4).

3SAT: given a 3CNF formula φ with n variables and m clauses, decide whether φ is
satisfiable.

Current best algorithm is 1.30704n [Hertli 2011].
Can we do significantly better, e.g, 2O(n/ log n)?

Hypothesis introduced by Impagliazzo, Paturi, and Zane in 2001:

Exponential Time Hypothesis (ETH) [real statement]

There is a constant δ > 0 such that there is no O(2δn) time algorithm for 3SAT.

7

Sparsification

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

Observe: an n-variable 3SAT formula can have m = Ω(n3) clauses.

Are there algorithms that are subexponential in the size n + m of the 3SAT formula?

Sparsification Lemma

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Intuitively: When considering a hard 3SAT instance, we can assume that it has
m = O(n) clauses.

8

Sparsification

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

Observe: an n-variable 3SAT formula can have m = Ω(n3) clauses.

Are there algorithms that are subexponential in the size n + m of the 3SAT formula?

Sparsification Lemma

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Intuitively: When considering a hard 3SAT instance, we can assume that it has
m = O(n) clauses.

8

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

9

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

x̄1 ∨ x2 ∨ x̄3

formula is satisfiable ⇔ there is an independent set of size n + 2m

9

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

9

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(n) algorithm for Independent Set on an n-vertex
graph.

9

Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(w) · nO(1) algorithm for Independent Set on graphs
of treewidth w .

9

Lower bounds for treewidth

Similarly, assuming ETH, there is no 2o(w) · nO(1) time algorithm for
Independent Set

Dominating Set

Odd Cycle Transversal

. . .

Are there other problems where some other form of running time is optimal?

10

Hamiltonian cycle and treewidth
Theorem
Given a tree decomposition of width w , Hamiltonian cycle can be solved in time
wO(w) · n.
Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .
If H is a Hamiltonian cycle, then the subgraph H[Vx] is a
set of paths with endpoints in Bx .

What are the important properties of H[Vx] “seen from
outside”?

The subsets B0
x , B

1
x , B

2
x of Bx having degree 0, 1,

and 2.
The matching M of B1

x .

x

Vx

No. of subproblems (B0
x ,B

1
x ,B

2
x ,M) for node x : at most 3w · ww .

For each subproblem, we have to determine if there is a set of paths with this pattern.

11

Hamiltonian cycle and treewidth
Theorem
Given a tree decomposition of width w , Hamiltonian cycle can be solved in time
wO(w) · n.
Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .
If H is a Hamiltonian cycle, then the subgraph H[Vx] is a
set of paths with endpoints in Bx .

What are the important properties of H[Vx] “seen from
outside”?

The subsets B0
x , B

1
x , B

2
x of Bx having degree 0, 1,

and 2.
The matching M of B1

x .

B0
x B1

x B2
x

x

Vx

No. of subproblems (B0
x ,B

1
x ,B

2
x ,M) for node x : at most 3w · ww .

For each subproblem, we have to determine if there is a set of paths with this pattern.
11

Cut and count

A very powerful technique for many problems on graphs of bounded-treewidth.

Classical result:

Theorem
Given a tree decomposition of width w , Hamiltonian Cycle can be solved in time
wO(w) · nO(1) = 2O(w logw) · nO(1).

Seems like best possible, but. . .

Improved algorithms:

Given a tree decomposition of width w , Hamiltonian Cycle can be solved in time
4w · nO(1).

The first technique achieving this was Cut & Count.

12

Cut and count

A very powerful technique for many problems on graphs of bounded-treewidth.

Classical result:

Theorem
Given a tree decomposition of width w , Hamiltonian Cycle can be solved in time
wO(w) · nO(1) = 2O(w logw) · nO(1).

Seems like best possible, but. . .

Improved algorithms:

Given a tree decomposition of width w , Hamiltonian Cycle can be solved in time
4w · nO(1).

The first technique achieving this was Cut & Count.

12

Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]
Let F be a nonempty family of subsets of U and assign a weight w(u) ∈ [N] to each
u ∈ U uniformly and independently at random. The probability that there is a unique
S ∈ F having minimum weight is at least

1− |U|
N
.

Proof:
Def: x ∈ U is singular in a weight assignment if there are minimum weight sets
A,B ∈ F with x ∈ A and x 6∈ B .
Claim 1:x ∈ U is singular in a random w with probability ≤ 1/N.
Set w randomly except w(x) = 0. If a (resp. b) is the min. weight of a set containing x
(resp. not containing x), then x becomes singular only if we set w(x) = b − a.

Claim 2: If there is no singular x ∈ U, then there is a unique minimum weight set.
13

Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]
Let F be a nonempty family of subsets of U and assign a weight w(u) ∈ [N] to each
u ∈ U uniformly and independently at random. The probability that there is a unique
S ∈ F having minimum weight is at least

1− |U|
N
.

Let U = E (G) and F be the set of all Hamiltonian cycles.
By setting N := |V (G)|O(1), we can assume that there is a unique minimum
weight Hamiltonian cycle.
If N is polynomial in the input size, we can guess this minimum weight.
So we are looking for a Hamiltonian cycle of weight exactly C , under the
assumption that there is a unique such cycle.

13

Cycle covers
Cycle cover: A subgraph having degree exactly two at each vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one
component.
Colored cycle cover: each component is colored black or white.
A cycle cover with k components gives rise to 2k colored cycle covers.

If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle
covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored
cycle covers is 2 mod 4.

14

Cycle covers
Cycle cover: A subgraph having degree exactly two at each vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one
component.

Colored cycle cover: each component is colored black or white.
A cycle cover with k components gives rise to 2k colored cycle covers.

If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle
covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored
cycle covers is 2 mod 4.

14

Cycle covers
Cycle cover: A subgraph having degree exactly two at each vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one
component.
Colored cycle cover: each component is colored black or white.

A cycle cover with k components gives rise to 2k colored cycle covers.
If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle
covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored
cycle covers is 2 mod 4.

14

Cycle covers
Cycle cover: A subgraph having degree exactly two at each vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one
component.
Colored cycle cover: each component is colored black or white.

A cycle cover with k components gives rise to 2k colored cycle covers.
If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle
covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored
cycle covers is 2 mod 4.

14

Cycle covers
Cycle cover: A subgraph having degree exactly two at each vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one
component.
Colored cycle cover: each component is colored black or white.
A cycle cover with k components gives rise to 2k colored cycle covers.

If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle
covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored
cycle covers is 2 mod 4.

14

Cycle covers
Cycle cover: A subgraph having degree exactly two at each vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one
component.
Colored cycle cover: each component is colored black or white.
A cycle cover with k components gives rise to 2k colored cycle covers.

If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle
covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored
cycle covers is 2 mod 4.

14

Cycle covers
Cycle cover: A subgraph having degree exactly two at each vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one
component.
Colored cycle cover: each component is colored black or white.
A cycle cover with k components gives rise to 2k colored cycle covers.

If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle
covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored
cycle covers is 2 mod 4.

14

Cut and Count

Assign random weights ≤ 2|E (G)| to the edges.
If there is a Hamiltonian cycle, then with probability 1/2, there is a C such that
there is a unique weight-C Hamiltionian cycle.
Try all possible C .
Count the number of weight-C colored cycle covers: can be done in time
4w · nO(1) if a tree decomposition of width w is given.
Answer YES if this number is 2 mod 4.

15

Cut and Count

HAMILTONIAN
CYCLE

Random weights
success probability: 1/2

Counting weighted
colored cycle

covers

4w · nO(1) time

16

Optimal algorithms for tree decompositions
Assuming ETH, these running times are best possible:

Maximum Independent Set 2O(w)
Dominating Set

Hamiltonian Cycle 2O(w logw)

Cut & Count 2O(w)

Chromatic Number 2O(w logw)

Cycle Packing 2O(w logw)

Hitting Candy Graphs

2O(w c)
Hc :

1
2

c

3-Choosability 22
O(w)

3-Choosability Deletion 22
2O(w)

17

Best possible bases

Algorithms given a tree decomposition of width w :

Independent Set 2w

Dominating Set 3w

c-Coloring cw

Odd Cycle Transversal 3w

Partition into Triangles 2w

Max Cut 2w

#Perfect Matching 2w

Are these constants best possible?

Can we improve 2 to 1.99?

18

Best possible bases

Algorithms given a tree decomposition of width w :

Independent Set 2w

Dominating Set 3w

c-Coloring cw

Odd Cycle Transversal 3w

Partition into Triangles 2w

Max Cut 2w

#Perfect Matching 2w

ETH seems to be too weak for this:
2w vs. 4w is just a polynomial difference!

18

ETH and SETH
Exponential Time Hypothesis (ETH)

There is a constant δ > 0 such that there is no O(2δn) time algorithm for 3SAT.

Let sd = inf{c : d-SAT has a 2cn algorithm}
Let s∞ = limd→∞ sd .

ETH: s3 > 0 SETH: s∞ = 1.

In other words:

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

Consequence of SETH

There is no (2− ε)n ·mO(1) time algorithm for SAT (with clauses of aribtrary length).

19

ETH and SETH
Exponential Time Hypothesis (ETH)

There is a constant δ > 0 such that there is no O(2δn) time algorithm for 3SAT.

Let sd = inf{c : d-SAT has a 2cn algorithm}
Let s∞ = limd→∞ sd .

ETH: s3 > 0 SETH: s∞ = 1.
In other words:

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

Consequence of SETH

There is no (2− ε)n ·mO(1) time algorithm for SAT (with clauses of aribtrary length).

19

ETH and SETH
Exponential Time Hypothesis (ETH)

There is a constant δ > 0 such that there is no O(2δn) time algorithm for 3SAT.

Let sd = inf{c : d-SAT has a 2cn algorithm}
Let s∞ = limd→∞ sd .

ETH: s3 > 0 SETH: s∞ = 1.
In other words:

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

Consequence of SETH

There is no (2− ε)n ·mO(1) time algorithm for SAT (with clauses of aribtrary length).

19

Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

20

Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

x̄1 ∨ x2 ∨ x̄3

formula is satisfiable ⇔ there is an independent set of size n + m

20

Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

x̄1 ∨ x2 ∨ x̄3

Treewidth of the constructed graph is at most 2n + 2.

20

Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

3SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + 2

20

Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + d

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

20

Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + d

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming SETH, there is no (2− ε)w/2 · nO(1) algorithm for Independent Set for
any ε > 0.

20

Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + d

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming SETH, there is no (1.41− ε)w · nO(1) algorithm for Independent Set for
any ε > 0.

20

Better lower bound

We need a reduction of the following form for every d :

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth n + Od(1)

This would show:

Theorem
Assuming SETH, there is no (2− ε)w · nO(1) algorithm for Independent Set for any
ε > 0.

21

Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

22

Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

false

true
false

true

true

22

Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

false

true
false

true

true

x1

x2x̄3

(x1 ∨ x2 ∨ x̄3)

Independent set of size nm + m ⇐⇒ formula is satisfiable

22

Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

false

true
false

true

true

x1

x2x̄3

(x1 ∨ x2 ∨ x̄3)

Not difficult to show: treewidth is at most n + d

22

A problem

A path may start as “true” and switch to “false”.
Simple solution: repeat the instance n + 1 times.

x1
x2
x3
. . .
xn

C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2

1 2 n + 1

By the Pigeonhole Principle, there is a repetition where no switch occurs.

23

A problem

A path may start as “true” and switch to “false”.
Simple solution: repeat the instance n + 1 times.

x1
x2
x3
. . .
xn

C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2

1 2 n + 1

By the Pigeonhole Principle, there is a repetition where no switch occurs.

23

A problem

A path may start as “true” and switch to “false”.
Simple solution: repeat the instance n + 1 times.

x1
x2
x3
. . .
xn

C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2

1 2 n + 1

By the Pigeonhole Principle, there is a repetition where no switch occurs.

23

Lower bound for Independent Set

We have shown: Reduction from n-variable d-SAT to Independent Set in a
graph with treewidth w = n + d .

(2− ε)w · nO(1) algorithm for Independent Set
⇓

(2− ε)n · nO(1) algorithm for d-SAT

As this is true for any d , having such an algorithm for Independent Set would
violate SETH.

Theorem
Assuming SETH, there is no (2− ε)w · nO(1) algorithm for Independent Set for any
ε > 0.

24

Dominating Set and treewidth
Dominating Set: Given G and k , find a set S of k vertices such
that every vertex of G is in S or has a neighbor in S .

Each vertex has three possible states in a bag:

selected already
dominated

not yet
dominated

⇒ 3w+1 different subproblems at each node.
25

Dominating Set and treewidth
How to solve a subproblem at a join node?

selected

dominated from left

dominated from right

dominated from both

not dominated

Natural approach: 9w · nO(1) [Telle and Proskurowski 1993]

Considering the 5 possibilities: 5w · nO(1)

More efficiently: 4w · nO(1) [Alber et al. 2002]

Fast subset convolution: 3w · nO(1) [Björkund et al. 2007], [Rooij et al. 2009]

26

Lower bound for Dominating Set

Theorem
Assuming SETH, there is no (3− ε)w · nO(1) algorithm for Dominating Set for any
ε > 0.

We need a reduction of the following form for every d :

d-SAT formula φ
n variables
m clauses

⇒

Graph G
treewidth

n/ log2 3 + Od(1)

Then
(3− ε)w ≤ (3− ε)n/ log2 3 · 3Od (1) = Od((2− ε′)n)

How to increase treewidth by only 1/ log2 3 = 0.6309 for every variable?

27

Lower bound for Dominating Set

Theorem
Assuming SETH, there is no (3− ε)w · nO(1) algorithm for Dominating Set for any
ε > 0.

We need a reduction of the following form for every d :

d-SAT formula φ
n variables
m clauses

⇒

Graph G
treewidth

n/ log2 3 + Od(1)

Then
(3− ε)w ≤ (3− ε)n/ log2 3 · 3Od (1) = Od((2− ε′)n)

How to increase treewidth by only 1/ log2 3 = 0.6309 for every variable?

27

Lower bound for Dominating Set

Each path has now 3 different states.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

A group of g variables can be described by ≈ log3 2g = g/ log2 3 = 0.6309g paths.

28

Best possible bases

Assuming SETH. . .

Independent Set no (2− ε)w
Dominating Set no (3− ε)w
c-Coloring no (c − ε)w
Odd Cycle Transversal no (3− ε)w
Partition into Triangles no (2− ε)w
Max Cut no (2− ε)w
#Perfect Matching no (2− ε)w

29

Distance-d versions
d-Scattered Set: find a set S of k vertices with pairwise distance ≥ d .

Theorem
If there is an ε > 0 and an algorithm solving d-Scattered Set in time
(d − ε)w · nO(1) on a tree decomposition of width w , then the SETH fails.

d states: selected; unselected at distance 1, 2, . . . ,≥ d − 1 from a selected.

(k , d)-center: find a set S of k vertices such that every vertex is at most distance d
from S .

Theorem
If there is an ε > 0 and an algorithm solving (k, d)-center in time
(2d + 1− ε)w · nO(1) on a tree decomposition of width w , then the SETH fails.

2d + 1 states: selected; at distance 1, 2, . . . , d from a selected vertex going up/down.

30

Distance-d versions
d-Scattered Set: find a set S of k vertices with pairwise distance ≥ d .

Theorem
If there is an ε > 0 and an algorithm solving d-Scattered Set in time
(d − ε)w · nO(1) on a tree decomposition of width w , then the SETH fails.

d states: selected; unselected at distance 1, 2, . . . ,≥ d − 1 from a selected.

(k , d)-center: find a set S of k vertices such that every vertex is at most distance d
from S .

Theorem
If there is an ε > 0 and an algorithm solving (k, d)-center in time
(2d + 1− ε)w · nO(1) on a tree decomposition of width w , then the SETH fails.

2d + 1 states: selected; at distance 1, 2, . . . , d from a selected vertex going up/down.
30

Connected problems

Connected (k, d)-center: find a set S of k vertices such that every vertex is at
most distance d from S and G [S] is connected.

Handling connectivity in a standard way gives a 2O(w logw) · nO(1) algorithm.
2O(w) · nO(1) running time requires the Cut & Count technique.

Theorem
Given a tree decomposition of width w , Connected (k , d)-center can be
solved in time (2d + 2)w · nO(1).
If there is an ε > 0 and an algorithm solving Connected (k , d)-center in time
(2d + 2− ε)w · nO(1) on a tree decomposition of width w , then the SETH fails.

31

List Coloring
List Coloring is a generalization of ordinary vertex coloring: given a

graph G ,
a set of colors C , and
a list L(v) ⊆ C for each vertex v ,

the task is to find a coloring c where c(v) ∈ L(v) for every v .

Theorem
Vertex Coloring is FPT parameterized by treewidth.

However, list coloring is more difficult:

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

32

Parameterized reductions

Definition
Parameterized reduction from problem A to problem B : a function φ with the
following properties:

φ(x) is a yes-instance of B ⇐⇒ x is a yes-instance of A,
φ(x) can be computed in time f (k) · |x |O(1), where k is the parameter of x ,
If k is the parameter of x and k ′ is the parameter of φ(x), then k ′ ≤ g(k) for
some function g .

Theorem
If there is a parameterized reduction from problem A to problem B and B is FPT, then
A is also FPT.

Intuitively: Reduction A→ B + algorithm for B gives an algorithm for A.

W[1]-hard: Clique can be reduced to it.

33

Parameterized reductions

Definition
Parameterized reduction from problem A to problem B : a function φ with the
following properties:

φ(x) is a yes-instance of B ⇐⇒ x is a yes-instance of A,
φ(x) can be computed in time f (k) · |x |O(1), where k is the parameter of x ,
If k is the parameter of x and k ′ is the parameter of φ(x), then k ′ ≤ g(k) for
some function g .

Theorem
If there is a parameterized reduction from problem A to problem B and B is FPT, then
A is also FPT.

Intuitively: Reduction A→ B + algorithm for B gives an algorithm for A.

W[1]-hard: Clique can be reduced to it.
33

List Coloring

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

Proof: By reduction from Multicolored Independent Set.
Let G be a graph with color classes V1, . . . , Vk .
Set C of colors: the set of vertices of G .
The colors appearing on vertices u1, . . . , uk correspond to the k vertices of the
clique, hence we set L(ui) = Vi .

If x ∈ Vi and y ∈ Vj are adjacent in G , then we need to ensure that c(ui) = x and
c(uj) = y are not true at the same time ⇒ we add a vertex adjacent to ui and uj
whose list is {x , y}.

u1 : V1 u3 : V3

u2 : V2

u4 : V4u5 : V5 34

List Coloring

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

Proof: By reduction from Multicolored Independent Set.
Let G be a graph with color classes V1, . . . , Vk .
Set C of colors: the set of vertices of G .
The colors appearing on vertices u1, . . . , uk correspond to the k vertices of the
clique, hence we set L(ui) = Vi .
If x ∈ Vi and y ∈ Vj are adjacent in G , then we need to ensure that c(ui) = x and
c(uj) = y are not true at the same time ⇒ we add a vertex adjacent to ui and uj
whose list is {x , y}.

u1 : V1 u3 : V3

u2 : V2

u4 : V4u5 : V5

{x , y}

34

Treewidth and complexity

Many natural problems are FPT parameterized by treewidth — but not all (e.g.,
List Coloring).
The ETH can be used to prove tight lower bounds on the f (k) in the running time
f (k)nO(1).
The SETH can be used to prove tight lower bounds on c in the running time
ck · nO(1).

35

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

36

	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Treewidth — a measure of ``tree-likeness''
	Weighted Max Independent Set and treewidth
	Weighted Max Independent Set and treewidth
	Monadic Second Order Logic
	Courcelle's Theorem
	Running time
	Running time
	Running time
	Exponential Time Hypothesis (ETH)
	Exponential Time Hypothesis (ETH)
	Exponential Time Hypothesis (ETH)
	Sparsification
	Sparsification
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds based on ETH
	Lower bounds for treewidth
	Hamiltonian cycle and treewidth
	Hamiltonian cycle and treewidth
	Cut and count
	Cut and count
	Isolation Lemma
	Isolation Lemma
	Cycle covers
	Cycle covers
	Cycle covers
	Cycle covers
	Cycle covers
	Cycle covers
	Cycle covers
	Cut and Count
	Cut and Count
	Optimal algorithms for tree decompositions
	Best possible bases
	Best possible bases
	ETH and SETH
	ETH and SETH
	ETH and SETH
	Lower bounds based on SETH
	Lower bounds based on SETH
	Lower bounds based on SETH
	Lower bounds based on SETH
	Lower bounds based on SETH
	Lower bounds based on SETH
	Lower bounds based on SETH
	Better lower bound
	Better lower bound
	Better lower bound
	Better lower bound
	Better lower bound
	A problem
	A problem
	A problem
	Lower bound for Independent Set
	Dominating Set and treewidth
	Dominating Set and treewidth
	Lower bound for Dominating Set
	Lower bound for Dominating Set
	Lower bound for Dominating Set
	Best possible bases
	Distance-d versions
	Distance-d versions
	Connected problems
	List Coloring
	Parameterized reductions
	Parameterized reductions
	List Coloring
	List Coloring
	Treewidth and complexity
	Treewidth — a measure of ``tree-likeness''

