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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.
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A subtree communicates with the outside world
only via the root of the subtree.
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Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max Independent Set can be
solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v ], B[v ] for each vertex of the
graph, we compute 2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S ]:
the max. weight of an independent set I ⊆ Vx with I∩Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S ] if all the values are known for the children of x?
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Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if G has a cycle.
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Courcelle’s Theorem

Courcelle’s Theorem
There exists an algorithm that, given a width-w tree decomposition of an n-vertex
graph G and an EMSO formula φ, decides whether G satisfies φ in time f (w , |φ|) · n.

If we can express a property in EMSO, then we immediately get that testing this
property is FPT parameterized by the treewidth w of the input graph.

⇒ The following problem are FPT parameterized by treewidth:
c-Coloring

Hamiltonian Cycle

Partition into Triangles

. . .
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Running time
Lots of research on this topic:

Many of the hard algorithmic problems on graphs can be solved in time f (w) · nO(1) if a
tree decomposition of width w is given.

In other words: these problems are fixed-parameter tractable (FPT) parameterized
by treewidth.

What does the f (w) depend on?

1 The number of subproblems at each node.
(often depends on the number of states of each vertex)

2 The time needed to handle a join node.

Can we prove lower bounds on the best possible f (w) for a problem?
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Exponential Time Hypothesis (ETH)
3CNF: φ is a conjuction of clauses, where each clause is a disjunction of at most 3
literals (= a variable or its negation), e.g., (x1 ∨ x3 ∨ x̄4) ∧ (x̄2 ∨ x̄3) ∨ (x1 ∨ x2 ∨ x4).

3SAT: given a 3CNF formula φ with n variables and m clauses, decide whether φ is
satisfiable.

Current best algorithm is 1.30704n [Hertli 2011].
Can we do significantly better, e.g, 2O(n/ log n)?

Hypothesis introduced by Impagliazzo, Paturi, and Zane in 2001:
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Exponential Time Hypothesis (ETH)
3CNF: φ is a conjuction of clauses, where each clause is a disjunction of at most 3
literals (= a variable or its negation), e.g., (x1 ∨ x3 ∨ x̄4) ∧ (x̄2 ∨ x̄3) ∨ (x1 ∨ x2 ∨ x4).

3SAT: given a 3CNF formula φ with n variables and m clauses, decide whether φ is
satisfiable.

Current best algorithm is 1.30704n [Hertli 2011].
Can we do significantly better, e.g, 2O(n/ log n)?

Hypothesis introduced by Impagliazzo, Paturi, and Zane in 2001:

Exponential Time Hypothesis (ETH) [real statement]

There is a constant δ > 0 such that there is no O(2δn) time algorithm for 3SAT.
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Sparsification

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

Observe: an n-variable 3SAT formula can have m = Ω(n3) clauses.

Are there algorithms that are subexponential in the size n + m of the 3SAT formula?

Sparsification Lemma

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

Intuitively: When considering a hard 3SAT instance, we can assume that it has
m = O(n) clauses.
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(n) algorithm for Independent Set on an n-vertex
graph.
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(w) · nO(1) algorithm for Independent Set on graphs
of treewidth w .
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Lower bounds for treewidth

Similarly, assuming ETH, there is no 2o(w) · nO(1) time algorithm for
Independent Set

Dominating Set

Odd Cycle Transversal

. . .

Are there other problems where some other form of running time is optimal?
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Hamiltonian cycle and treewidth
Theorem
Given a tree decomposition of width w , Hamiltonian cycle can be solved in time
wO(w) · n.
Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .
If H is a Hamiltonian cycle, then the subgraph H[Vx ] is a
set of paths with endpoints in Bx .

What are the important properties of H[Vx ] “seen from
outside”?

The subsets B0
x , B

1
x , B

2
x of Bx having degree 0, 1,

and 2.
The matching M of B1

x .

x

Vx

No. of subproblems (B0
x ,B

1
x ,B

2
x ,M) for node x : at most 3w · ww .

For each subproblem, we have to determine if there is a set of paths with this pattern.
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Cut and count

A very powerful technique for many problems on graphs of bounded-treewidth.

Classical result:

Theorem
Given a tree decomposition of width w , Hamiltonian Cycle can be solved in time
wO(w) · nO(1) = 2O(w logw) · nO(1).

Seems like best possible, but. . .

Improved algorithms:

Given a tree decomposition of width w , Hamiltonian Cycle can be solved in time
4w · nO(1).

The first technique achieving this was Cut & Count.

12



Cut and count

A very powerful technique for many problems on graphs of bounded-treewidth.

Classical result:

Theorem
Given a tree decomposition of width w , Hamiltonian Cycle can be solved in time
wO(w) · nO(1) = 2O(w logw) · nO(1).

Seems like best possible, but. . .

Improved algorithms:

Given a tree decomposition of width w , Hamiltonian Cycle can be solved in time
4w · nO(1).

The first technique achieving this was Cut & Count.

12



Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]
Let F be a nonempty family of subsets of U and assign a weight w(u) ∈ [N] to each
u ∈ U uniformly and independently at random. The probability that there is a unique
S ∈ F having minimum weight is at least

1− |U|
N
.

Proof:
Def: x ∈ U is singular in a weight assignment if there are minimum weight sets
A,B ∈ F with x ∈ A and x 6∈ B .
Claim 1:x ∈ U is singular in a random w with probability ≤ 1/N.
Set w randomly except w(x) = 0. If a (resp. b) is the min. weight of a set containing x
(resp. not containing x), then x becomes singular only if we set w(x) = b − a.

Claim 2: If there is no singular x ∈ U, then there is a unique minimum weight set.
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Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]
Let F be a nonempty family of subsets of U and assign a weight w(u) ∈ [N] to each
u ∈ U uniformly and independently at random. The probability that there is a unique
S ∈ F having minimum weight is at least

1− |U|
N
.

Let U = E (G ) and F be the set of all Hamiltonian cycles.
By setting N := |V (G )|O(1), we can assume that there is a unique minimum
weight Hamiltonian cycle.
If N is polynomial in the input size, we can guess this minimum weight.
So we are looking for a Hamiltonian cycle of weight exactly C , under the
assumption that there is a unique such cycle.
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Cycle covers
Cycle cover: A subgraph having degree exactly two at each vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one
component.
Colored cycle cover: each component is colored black or white.
A cycle cover with k components gives rise to 2k colored cycle covers.

If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle
covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored
cycle covers is 2 mod 4.
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Cut and Count

Assign random weights ≤ 2|E (G )| to the edges.
If there is a Hamiltonian cycle, then with probability 1/2, there is a C such that
there is a unique weight-C Hamiltionian cycle.
Try all possible C .
Count the number of weight-C colored cycle covers: can be done in time
4w · nO(1) if a tree decomposition of width w is given.
Answer YES if this number is 2 mod 4.
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Cut and Count

HAMILTONIAN
CYCLE

Random weights
success probability: 1/2

Counting weighted
colored cycle

covers

4w · nO(1) time
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Optimal algorithms for tree decompositions
Assuming ETH, these running times are best possible:

Maximum Independent Set 2O(w)
Dominating Set

Hamiltonian Cycle 2O(w logw)

Cut & Count 2O(w)

Chromatic Number 2O(w logw)

Cycle Packing 2O(w logw)

Hitting Candy Graphs

2O(w c)
Hc :

1
2

c

3-Choosability 22
O(w)

3-Choosability Deletion 22
2O(w)
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Best possible bases

Algorithms given a tree decomposition of width w :

Independent Set 2w

Dominating Set 3w

c-Coloring cw

Odd Cycle Transversal 3w

Partition into Triangles 2w

Max Cut 2w

#Perfect Matching 2w

Are these constants best possible?

Can we improve 2 to 1.99?
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Best possible bases

Algorithms given a tree decomposition of width w :

Independent Set 2w

Dominating Set 3w

c-Coloring cw

Odd Cycle Transversal 3w

Partition into Triangles 2w

Max Cut 2w

#Perfect Matching 2w

ETH seems to be too weak for this:
2w vs. 4w is just a polynomial difference!
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ETH and SETH
Exponential Time Hypothesis (ETH)

There is a constant δ > 0 such that there is no O(2δn) time algorithm for 3SAT.

Let sd = inf{c : d-SAT has a 2cn algorithm}
Let s∞ = limd→∞ sd .

ETH: s3 > 0 SETH: s∞ = 1.

In other words:

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

Consequence of SETH

There is no (2− ε)n ·mO(1) time algorithm for SAT (with clauses of aribtrary length).
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Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4
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The textbook reduction from 3SAT to Independent Set:

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

x̄1 ∨ x2 ∨ x̄3

Treewidth of the constructed graph is at most 2n + 2.
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Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

3SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + 2
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There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + d

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming SETH, there is no (2− ε)w/2 · nO(1) algorithm for Independent Set for
any ε > 0.
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Lower bounds based on SETH

Strong Exponential-Time Hypothesis (SETH)
There is no ε > 0 such that d-SAT for every d can be solved in time O((2− ε)n).

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth 2n + d

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming SETH, there is no (1.41− ε)w · nO(1) algorithm for Independent Set for
any ε > 0.
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Better lower bound

We need a reduction of the following form for every d :

d-SAT formula φ
n variables
m clauses

⇒
Graph G

treewidth n + Od(1)

This would show:

Theorem
Assuming SETH, there is no (2− ε)w · nO(1) algorithm for Independent Set for any
ε > 0.

21



Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm
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false

true
false

true

true
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d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

false

true
false

true

true

x1

x2x̄3

(x1 ∨ x2 ∨ x̄3)

Independent set of size nm + m ⇐⇒ formula is satisfiable
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Better lower bound
d-Sat with n variables and m clauses ⇒ n paths of 2m vertices.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

false

true
false

true

true

x1

x2x̄3

(x1 ∨ x2 ∨ x̄3)

Not difficult to show: treewidth is at most n + d
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A problem

A path may start as “true” and switch to “false”.
Simple solution: repeat the instance n + 1 times.

x1
x2
x3
. . .
xn

C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2 C1 C2 CmC1 C2

1 2 n + 1

By the Pigeonhole Principle, there is a repetition where no switch occurs.
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Lower bound for Independent Set

We have shown: Reduction from n-variable d-SAT to Independent Set in a
graph with treewidth w = n + d .

(2− ε)w · nO(1) algorithm for Independent Set
⇓

(2− ε)n · nO(1) algorithm for d-SAT

As this is true for any d , having such an algorithm for Independent Set would
violate SETH.

Theorem
Assuming SETH, there is no (2− ε)w · nO(1) algorithm for Independent Set for any
ε > 0.
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Dominating Set and treewidth
Dominating Set: Given G and k , find a set S of k vertices such
that every vertex of G is in S or has a neighbor in S .

Each vertex has three possible states in a bag:

selected already
dominated

not yet
dominated

⇒ 3w+1 different subproblems at each node.
25



Dominating Set and treewidth
How to solve a subproblem at a join node?

selected

dominated from left

dominated from right

dominated from both

not dominated

Natural approach: 9w · nO(1) [Telle and Proskurowski 1993]

Considering the 5 possibilities: 5w · nO(1)

More efficiently: 4w · nO(1) [Alber et al. 2002]

Fast subset convolution: 3w · nO(1) [Björkund et al. 2007], [Rooij et al. 2009]
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Lower bound for Dominating Set

Theorem
Assuming SETH, there is no (3− ε)w · nO(1) algorithm for Dominating Set for any
ε > 0.

We need a reduction of the following form for every d :

d-SAT formula φ
n variables
m clauses

⇒

Graph G
treewidth

n/ log2 3 + Od(1)

Then
(3− ε)w ≤ (3− ε)n/ log2 3 · 3Od (1) = Od((2− ε′)n)

How to increase treewidth by only 1/ log2 3 = 0.6309 for every variable?
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Lower bound for Dominating Set

Each path has now 3 different states.

x1

x2

x3

. . .

xn

C1 C2 . . . Cm

A group of g variables can be described by ≈ log3 2g = g/ log2 3 = 0.6309g paths.
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Best possible bases

Assuming SETH. . .

Independent Set no (2− ε)w
Dominating Set no (3− ε)w
c-Coloring no (c − ε)w
Odd Cycle Transversal no (3− ε)w
Partition into Triangles no (2− ε)w
Max Cut no (2− ε)w
#Perfect Matching no (2− ε)w
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Distance-d versions
d-Scattered Set: find a set S of k vertices with pairwise distance ≥ d .

Theorem
If there is an ε > 0 and an algorithm solving d-Scattered Set in time
(d − ε)w · nO(1) on a tree decomposition of width w , then the SETH fails.

d states: selected; unselected at distance 1, 2, . . . ,≥ d − 1 from a selected.

(k , d)-center: find a set S of k vertices such that every vertex is at most distance d
from S .

Theorem
If there is an ε > 0 and an algorithm solving (k, d)-center in time
(2d + 1− ε)w · nO(1) on a tree decomposition of width w , then the SETH fails.

2d + 1 states: selected; at distance 1, 2, . . . , d from a selected vertex going up/down.
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Connected problems

Connected (k, d)-center: find a set S of k vertices such that every vertex is at
most distance d from S and G [S ] is connected.

Handling connectivity in a standard way gives a 2O(w logw) · nO(1) algorithm.
2O(w) · nO(1) running time requires the Cut & Count technique.

Theorem
Given a tree decomposition of width w , Connected (k , d)-center can be
solved in time (2d + 2)w · nO(1).
If there is an ε > 0 and an algorithm solving Connected (k , d)-center in time
(2d + 2− ε)w · nO(1) on a tree decomposition of width w , then the SETH fails.
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List Coloring
List Coloring is a generalization of ordinary vertex coloring: given a

graph G ,
a set of colors C , and
a list L(v) ⊆ C for each vertex v ,

the task is to find a coloring c where c(v) ∈ L(v) for every v .

Theorem
Vertex Coloring is FPT parameterized by treewidth.

However, list coloring is more difficult:

Theorem
List Coloring is W[1]-hard parameterized by treewidth.
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Parameterized reductions

Definition
Parameterized reduction from problem A to problem B : a function φ with the
following properties:

φ(x) is a yes-instance of B ⇐⇒ x is a yes-instance of A,
φ(x) can be computed in time f (k) · |x |O(1), where k is the parameter of x ,
If k is the parameter of x and k ′ is the parameter of φ(x), then k ′ ≤ g(k) for
some function g .

Theorem
If there is a parameterized reduction from problem A to problem B and B is FPT, then
A is also FPT.

Intuitively: Reduction A→ B + algorithm for B gives an algorithm for A.

W[1]-hard: Clique can be reduced to it.
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List Coloring

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

Proof: By reduction from Multicolored Independent Set.
Let G be a graph with color classes V1, . . . , Vk .
Set C of colors: the set of vertices of G .
The colors appearing on vertices u1, . . . , uk correspond to the k vertices of the
clique, hence we set L(ui ) = Vi .

If x ∈ Vi and y ∈ Vj are adjacent in G , then we need to ensure that c(ui ) = x and
c(uj) = y are not true at the same time ⇒ we add a vertex adjacent to ui and uj
whose list is {x , y}.

u1 : V1 u3 : V3

u2 : V2

u4 : V4u5 : V5 34



List Coloring

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

Proof: By reduction from Multicolored Independent Set.
Let G be a graph with color classes V1, . . . , Vk .
Set C of colors: the set of vertices of G .
The colors appearing on vertices u1, . . . , uk correspond to the k vertices of the
clique, hence we set L(ui ) = Vi .
If x ∈ Vi and y ∈ Vj are adjacent in G , then we need to ensure that c(ui ) = x and
c(uj) = y are not true at the same time ⇒ we add a vertex adjacent to ui and uj
whose list is {x , y}.

u1 : V1 u3 : V3

u2 : V2

u4 : V4u5 : V5

{x , y}
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Treewidth and complexity

Many natural problems are FPT parameterized by treewidth — but not all (e.g.,
List Coloring).
The ETH can be used to prove tight lower bounds on the f (k) in the running time
f (k)nO(1).
The SETH can be used to prove tight lower bounds on c in the running time
ck · nO(1).
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure satisfying the following
properties:

1 If u and v are neighbors, then there is a bag containing both of them.
2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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