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Recap: fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if there is an f (k)nc

time algorithm for some constant c .
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Recap: fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if there is an f (k)nc

time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .
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Recap: fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if there is an f (k)nc

time algorithm for some constant c .

Main questions:
Is the problem fixed-parameter tractable (FPT) with a given parameter?
What is the best possible f (k) in the running time?
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Recap: FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees
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Recap: branching

Idea: reduce the problem into a bounder number of instances with strictly smaller
parameter.

Branching into c directions: O∗(ck) algorithms.
Branching into k directions: O∗(kk) algorithms.
Branching vectors and analysis of recurrences of the form

T (k) ≤ T (k − 1) + 2T (k − 2) + T (k − 3)

Graph modification problems where the graph property can be characterized by a
finite set of forbidden induced subgraphs is FPT.
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Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d , find a string
s (of length L) such that Hamming distance d(s, si ) ≤ d for every 1 ≤ i ≤ k .

(Hamming distance: number of differing positions)
s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

We can ask for running time for example
f (d)nO(1): FPT parameterized by d

f (k , |Σ|)nO(1): FPT with combined parameters k and |Σ|
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Closest String

Note: Taking the majority at each position is in general not the best solution.

s1 A A A A A A
s2 B B B B B B
s3 B B B B B B
s4 B B B B B B
s5 B B B B B B

majority B B B B B B – distance 6 from s1
opt A A A B B B – distance 3 from every si

The positions are not independent!
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Closest String

Theorem
Closest String can be solved in time 2O(d log d)nO(1).

Main idea: Given a string y at Hamming distance ` from some solution, we use
branching to find a string at distance at most `− 1 from some solution.
Initially, y = x1 is at distance at most d from some solution.

If y is not a solution, then there is an xi with d(y , xi ) ≥ d + 1.
Look at the first d + 1 positions p where xi [p] 6= y [p]. For every solution z , it is true
for one such p that xi [p] = z [p].
Branch on choosing one of these d + 1 positions and replace y [p] with xi [p]:
distance of y from solution z decreases to `− 1.

Running time (d + 1)d · nO(1) = 2O(d log d)nO(1).
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Branching: wrap up

Branching into c directions: O∗(ck) algorithms.
Branching into k directions: O∗(kk) algorithms.
Branching vectors and analysis of recurrences of the form

T (k) ≤ T (k − 1) + 2T (k − 2) + T (k − 3)

Graph modification problems where the graph property can be characterized by a
finite set of forbidden induced subgraphs is FPT.
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Kernelization
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Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more
tractable.

Is there a polynomial-time algorithm that always
reduces the size of the input by 1?

Obviously, only if the problem is polynomial-time solvable.
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Data reductions—with a guarantee

Kernelization is a method for parameterized preprocessing:
We want to efficiently reduce the size of the instance (x , k) to an equivalent instance
with size bounded by f (k).

A basic way of obtaining FPT algorithms:
Reduce the size of the instance to f (k) in polynomial time and then apply any brute
force algorithm to the shrunk instance.

Kernelization is also a rigorous mathematical analysis of efficient preprocessing.

k

x

k ′

x ′
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Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G )| ≤ k2 and |V (G )| ≤ k2 + k .
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Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G )| ≤ k2 and |V (G )| ≤ k2 + k .

Proof:
Each of the k vertices of the solution can cover at most k edges (by (R2)).
Every vertex of G is either in the solution, or one of the ≤ k neighbors of a vertex
in a solution (by (R1)+(R2)).
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Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G )| ≤ k2 and |V (G )| ≤ k2 + k .

Kernelization for Vertex Cover:
Apply rules (R1) and (R2) exhaustively.
If |E (G )| > k2 or |V (G )| > k2 + k , then we have a no-instance.
Otherwise, we have a kernel of size O(k2).
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Kernelization: formal definition

Let P ⊆ Σ∗ × N be a parameterized problem and f : N→ N a computable
function.
A kernel for P of size f is an algorithm that, given (x , k), takes time polynomial
in |x |+ k and outputs an instance (x ′, k ′) such that

(x , k) ∈ P ⇐⇒ (x ′, k ′) ∈ P
|x ′| ≤ f (k), k ′ ≤ f (k).

A polynomial kernel is a kernel whose function f is polynomial.

Which parameterized problems have kernels?
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A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.

If the problem can be solved in time f (k)|x |O(1):
If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

14



A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.

If the problem can be solved in time f (k)|x |O(1):
If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

14



A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.
If the problem can be solved in time f (k)|x |O(1):

If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

14



A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.
If the problem can be solved in time f (k)|x |O(1):

If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

14



Kernelization: summary

Can we efficiently preprocess the input to reduce the size to f (k)?
We have seen: a kernel of size O(k2) for Vertex Cover.
Kernelization follows from FPT algorithm, but the existence of a polynomial
kernel is a separate question.
There are problems where e.g. branching immediately gives an FPT algorithm, but
this does not give a polynomial kernel.
Later:

Sunflower Lemma
2-Expansion Lemma
Crown Decomposition
Linear Programming

Lower bounds
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Color Coding
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Why randomized?

A guaranteed error probability of 10−100 is as good as a deterministic algorithm.
(Probability of hardware failure is larger!)
Randomized algorithms can be more efficient and/or conceptually simpler.
Can be the first step towards a deterministic algorithm.
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Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms
Randomized selection to pick a typical, unproblematic, average element/subset.
Success probability is constant or at most polynomially small.

Randomized FPT algorithms
Randomized selection to satisfy a bounded number of (unknown) constraints.
Success probability might be exponentially small.
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Randomization as reduction

Problem A
(what we want to solve)

Randomized magic
Problem B

(what we can solve)
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Color Coding

k-Path
Input: A graph G , integer k .
Find: A simple path on k vertices.

Note: The problem is clearly NP-hard, as it contains the Hamiltonian Path
problem. But finding a walk is easy.

Theorem
k-Path can be solved in time 2O(k) · nO(1).

20



Color Coding

Assign colors from [k] to vertices V (G ) uniformly and independently at random.

Check if there is a path colored 1− 2− · · · − k ; output “YES” or “NO”.
If there is no k-path: no path colored 1− 2− · · · − k exists ⇒ “NO”.
If there is a k-path: the probability that such a path is colored 1− 2− · · · − k is k−k

thus the algorithm outputs “YES” with at least that probability.
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Color Coding

Assign colors from [k] to vertices V (G ) uniformly and independently at random.
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Check if there is a path colored 1− 2− · · · − k ; output “YES” or “NO”.
If there is no k-path: no path colored 1− 2− · · · − k exists ⇒ “NO”.
If there is a k-path: the probability that such a path is colored 1− 2− · · · − k is k−k

thus the algorithm outputs “YES” with at least that probability.
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Error probability

Useful fact
If the probability of success is at least p, then the probability that the algorithm does
not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk repetitions.
Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the probability of a wrong
answer is at most 1/e100.

22



Error probability

Useful fact
If the probability of success is at least p, then the probability that the algorithm does
not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk repetitions.
Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the probability of a wrong
answer is at most 1/e100.

22



Finding a path colored 1− 2− · · · − k
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4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .
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Color Coding

k-PATH

Color Coding
success probability: k−k

Finding a
1− 2− · · · − k colored

path

polynomial-time solvable
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Improved Color Coding

Assign colors from [k] to vertices V (G ) uniformly and independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears exactly once on the
vertices; output “YES” or “NO”.
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Improved Color Coding

Assign colors from [k] to vertices V (G ) uniformly and independently at random.
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Check if there is a colorful path where each color appears exactly once on the
vertices; output “YES” or “NO”.

If there is no k-path: no colorful path exists ⇒ “NO”.
If there is a k-path: the probability that it is colorful is

k!

kk
>

( k
e )k

kk
= e−k ,

thus the algorithm outputs “YES” with at least that probability.
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Improved Color Coding

Assign colors from [k] to vertices V (G ) uniformly and independently at random.

2

4544

3 3 2

21

Repeating the algorithm 100ek times decreases the error probability to e−100.
How to find a colorful path?

Try all permutations (k! · nO(1) time)
Dynamic programming (2k · nO(1) time)
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Finding a colorful path
Subproblems:
We introduce 2k · |V (G )| Boolean variables:

x(v ,C ) = TRUE for some v ∈ V (G ) and C ⊆ [k]
m

There is a path P ending at v such that each color in C appears on P
exactly once and no other color appears.

Answer:
There is a colorful path ⇐⇒ x(v , [k]) = TRUE for some vertex v .
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Finding a colorful path
Subproblems:
We introduce 2k · |V (G )| Boolean variables:

x(v ,C ) = TRUE for some v ∈ V (G ) and C ⊆ [k]
m

There is a path P ending at v such that each color in C appears on P
exactly once and no other color appears.

Initialization:
For every v with color r , x(v , {r}) = TRUE.
Recurrence:
For every v with color r and set C ⊆ [k]

x(v ,C ) =
∨

u∈N(v)

x(u,C \ {r}).
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Improved Color Coding

k-PATH

Color Coding
success probability: e−k

Finding a colorful
path

Solvable in time 2k · nO(1)
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Derandomization
De-randomization: removing the random choices, making the algorithm deterministic.

Randomized Deterministic
fixed family of colorings

Instead of repeatedly using randomness, we go through a special family of colorings.
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Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash functions if for every
S ⊆ [n] with |S | = k , there is an h ∈ H such that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem
There is a k-perfect family of functions [n]→ [k] having size 2O(k) log n (and can be
constructed in time polynomial in the size of the family).

Instead of trying O(ek) random colorings, we go through a k-perfect family H of
functions V (G )→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).
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Derandomized Color Coding

k-PATH

k-perfect family
2O(k) log n functions

Finding a colorful
path

Solvable in time 2k · nO(1)
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Recap: Feedback Vertex Set

Feedback Vertex Set:
Given (G , k), find a set S of at most k vertices such that G − S has no cycles.

We allow multiple parallel edges and self loops.
A feedback vertex set is a set that hits every cycle in the graph.

31



Recap: Feedback Vertex Set

Feedback Vertex Set:
Given (G , k), find a set S of at most k vertices such that G − S has no cycles.

We allow multiple parallel edges and self loops.
A feedback vertex set is a set that hits every cycle in the graph.

31



Recap: Feedback Vertex Set

If we find a cycle, then we have to include at least one of its vertices into the
solution. But the length of the cycle can be arbitrary large!
Main idea: We identify a set of O(k) vertices such that any size-k feedback
vertex set has to contain one of these vertices.
But first: some reductions to simplify the problem.
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Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

If the reduction rules cannot be applied, then every vertex has degree at least 3.
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Recap: Branching for Feedback Vertex Set

Let G be a graph whose vertices have degree at least 3.
Order the vertices as v1, v2, . . ., vn by decreasing degree
(breaking ties arbitrarily).
Let V3k = {v1, . . . , v3k} be the 3k largest-degree vertices.

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

Algorithm:
Apply the reduction rules (poly time) ⇒ graph has minimum degree 3.
For each vertex v ∈ V3k , recurse on the instance (G − v , k − 1).
Running time (3k)k · nO(1) = 2O(k log k) · nO(1).
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Recap: Branching for Feedback Vertex Set
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Randomized algorithm for Feedback Vertex Set
Identifying a vertex of the solution randomly:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Consequence: if we select a random edge uv and select a random endpoint
x ∈ {u, v}, then x is in some solution S with probability at least 1/4.

Algorithm for finding a solution of size k with probability ≥ 4−k :
Apply reductions.
Select random edge and random endpoint x .

⇒ good with prob. ≥ 1/4

Remove x .
Recurse with parameter k − 1.

⇒ good with prob. ≥ 4−(k−1)

Note: 1/4 · 4−(k−1) = 4−k .
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Proof of lemma:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Only the edges in G − S are BAD ⇒ < |V (G − S)| BAD edges.

Every edge in J is GOOD, lower bound on their number:

Classify the vertices of G − S into V≤1, V=2, V>2 by degree.
Each vertex in V≤1 contributes ≥ 2 edges to J.
Each vertex in V=2 contributes ≥ 1 edges to J.
Number of GOOD edges is more than the number of BAD edges:

2|V≤1|+ |V=2| > |V≤1|+ |V=2|+ |V>2| = |V (G − S)|

(|V≤1| > |V>2| because G − S is a forest)

S

J

G − S
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Summary

Questions
Is the problem fixed-parameter tractable (FPT) with a given parameter?
What is the best possible f (k) in the running time?
Is there a polynomial kernel?

Branching
2O(k) · nO(1) time algorithms for Vertex Cover and Triangle Free Deletion.
2O(k log k)nO(1) time algorithms for Feedback Vertex Set and Closest String

Kernelization
O(k2) kernel for Vertex Cover.

Randomization
2O(k) · nO(1) (randomized) algorithm for k-Path using Color Coding.
4k · nO(1) (randomized) algorithm for Feedback Vertex Set.
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The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly
super-

exponential"

Tower of
exponentials
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