
Parameterized Algorithms
Introduction II

Lecture #2
October 26, 2021

1

Recap: fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if there is an f (k)nc

time algorithm for some constant c .

2

Recap: fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if there is an f (k)nc

time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

2

Recap: fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if there is an f (k)nc

time algorithm for some constant c .

Main questions:
Is the problem fixed-parameter tractable (FPT) with a given parameter?
What is the best possible f (k) in the running time?

2

Recap: FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees

3

Recap: branching

Idea: reduce the problem into a bounder number of instances with strictly smaller
parameter.

Branching into c directions: O∗(ck) algorithms.
Branching into k directions: O∗(kk) algorithms.
Branching vectors and analysis of recurrences of the form

T (k) ≤ T (k − 1) + 2T (k − 2) + T (k − 3)

Graph modification problems where the graph property can be characterized by a
finite set of forbidden induced subgraphs is FPT.

4

Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d , find a string
s (of length L) such that Hamming distance d(s, si) ≤ d for every 1 ≤ i ≤ k .

(Hamming distance: number of differing positions)
s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

We can ask for running time for example
f (d)nO(1): FPT parameterized by d

f (k , |Σ|)nO(1): FPT with combined parameters k and |Σ|

5

Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d , find a string
s (of length L) such that Hamming distance d(s, si) ≤ d for every 1 ≤ i ≤ k .

(Hamming distance: number of differing positions)
s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

A D D B C A C B D

We can ask for running time for example
f (d)nO(1): FPT parameterized by d

f (k , |Σ|)nO(1): FPT with combined parameters k and |Σ|

5

Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d , find a string
s (of length L) such that Hamming distance d(s, si) ≤ d for every 1 ≤ i ≤ k .

(Hamming distance: number of differing positions)
s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

A D D B C A C B D

Different parameters:
Number k of strings.
Length L of strings
Maximum distance d .
Alphabet size |Σ|.

We can ask for running time for example
f (d)nO(1): FPT parameterized by d

f (k , |Σ|)nO(1): FPT with combined parameters k and |Σ|

5

Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an integer d , find a string
s (of length L) such that Hamming distance d(s, si) ≤ d for every 1 ≤ i ≤ k .

(Hamming distance: number of differing positions)
s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

A D D B C A C B D

Different parameters:
Number k of strings.
Length L of strings
Maximum distance d .
Alphabet size |Σ|.

We can ask for running time for example
f (d)nO(1): FPT parameterized by d

f (k , |Σ|)nO(1): FPT with combined parameters k and |Σ|

5

Closest String

Note: Taking the majority at each position is in general not the best solution.

s1 A A A A A A
s2 B B B B B B
s3 B B B B B B
s4 B B B B B B
s5 B B B B B B

majority B B B B B B – distance 6 from s1
opt A A A B B B – distance 3 from every si

The positions are not independent!

6

Closest String

Theorem
Closest String can be solved in time 2O(d log d)nO(1).

Main idea: Given a string y at Hamming distance ` from some solution, we use
branching to find a string at distance at most `− 1 from some solution.
Initially, y = x1 is at distance at most d from some solution.

If y is not a solution, then there is an xi with d(y , xi) ≥ d + 1.
Look at the first d + 1 positions p where xi [p] 6= y [p]. For every solution z , it is true
for one such p that xi [p] = z [p].
Branch on choosing one of these d + 1 positions and replace y [p] with xi [p]:
distance of y from solution z decreases to `− 1.

Running time (d + 1)d · nO(1) = 2O(d log d)nO(1).

7

Closest String

Theorem
Closest String can be solved in time 2O(d log d)nO(1).

Main idea: Given a string y at Hamming distance ` from some solution, we use
branching to find a string at distance at most `− 1 from some solution.
Initially, y = x1 is at distance at most d from some solution.
If y is not a solution, then there is an xi with d(y , xi) ≥ d + 1.

Look at the first d + 1 positions p where xi [p] 6= y [p]. For every solution z , it is true
for one such p that xi [p] = z [p].
Branch on choosing one of these d + 1 positions and replace y [p] with xi [p]:
distance of y from solution z decreases to `− 1.

Running time (d + 1)d · nO(1) = 2O(d log d)nO(1).

7

Branching: wrap up

Branching into c directions: O∗(ck) algorithms.
Branching into k directions: O∗(kk) algorithms.
Branching vectors and analysis of recurrences of the form

T (k) ≤ T (k − 1) + 2T (k − 2) + T (k − 3)

Graph modification problems where the graph property can be characterized by a
finite set of forbidden induced subgraphs is FPT.

8

Kernelization

9

Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more
tractable.

Is there a polynomial-time algorithm that always
reduces the size of the input by 1?

Obviously, only if the problem is polynomial-time solvable.

10

Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more
tractable.

Is there a polynomial-time algorithm that always
reduces the size of the input by 1?

Obviously, only if the problem is polynomial-time solvable.

10

Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more
tractable.

Is there a polynomial-time algorithm that always
reduces the size of the input by 1?

Obviously, only if the problem is polynomial-time solvable.

10

Data reductions—with a guarantee

Kernelization is a method for parameterized preprocessing:
We want to efficiently reduce the size of the instance (x , k) to an equivalent instance
with size bounded by f (k).

A basic way of obtaining FPT algorithms:
Reduce the size of the instance to f (k) in polynomial time and then apply any brute
force algorithm to the shrunk instance.

Kernelization is also a rigorous mathematical analysis of efficient preprocessing.

k

x

k ′

x ′

11

Data reductions—with a guarantee

Kernelization is a method for parameterized preprocessing:
We want to efficiently reduce the size of the instance (x , k) to an equivalent instance
with size bounded by f (k).

A basic way of obtaining FPT algorithms:
Reduce the size of the instance to f (k) in polynomial time and then apply any brute
force algorithm to the shrunk instance.

Kernelization is also a rigorous mathematical analysis of efficient preprocessing.

k

x

k ′

x ′ solution

11

Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G)| ≤ k2 and |V (G)| ≤ k2 + k .

12

Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G)| ≤ k2 and |V (G)| ≤ k2 + k .

12

Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G)| ≤ k2 and |V (G)| ≤ k2 + k .

Proof:
Each of the k vertices of the solution can cover at most k edges (by (R2)).
Every vertex of G is either in the solution, or one of the ≤ k neighbors of a vertex
in a solution (by (R1)+(R2)).

12

Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G)| ≤ k2 and |V (G)| ≤ k2 + k .

Kernelization for Vertex Cover:
Apply rules (R1) and (R2) exhaustively.
If |E (G)| > k2 or |V (G)| > k2 + k , then we have a no-instance.
Otherwise, we have a kernel of size O(k2).

12

Kernelization: formal definition

Let P ⊆ Σ∗ × N be a parameterized problem and f : N→ N a computable
function.
A kernel for P of size f is an algorithm that, given (x , k), takes time polynomial
in |x |+ k and outputs an instance (x ′, k ′) such that

(x , k) ∈ P ⇐⇒ (x ′, k ′) ∈ P
|x ′| ≤ f (k), k ′ ≤ f (k).

A polynomial kernel is a kernel whose function f is polynomial.

Which parameterized problems have kernels?

13

Kernelization: formal definition

Let P ⊆ Σ∗ × N be a parameterized problem and f : N→ N a computable
function.
A kernel for P of size f is an algorithm that, given (x , k), takes time polynomial
in |x |+ k and outputs an instance (x ′, k ′) such that

(x , k) ∈ P ⇐⇒ (x ′, k ′) ∈ P
|x ′| ≤ f (k), k ′ ≤ f (k).

A polynomial kernel is a kernel whose function f is polynomial.
Which parameterized problems have kernels?

13

A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.

If the problem can be solved in time f (k)|x |O(1):
If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

14

A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.

If the problem can be solved in time f (k)|x |O(1):
If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

14

A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.
If the problem can be solved in time f (k)|x |O(1):

If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

14

A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.
If the problem can be solved in time f (k)|x |O(1):

If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

14

Kernelization: summary

Can we efficiently preprocess the input to reduce the size to f (k)?
We have seen: a kernel of size O(k2) for Vertex Cover.
Kernelization follows from FPT algorithm, but the existence of a polynomial
kernel is a separate question.
There are problems where e.g. branching immediately gives an FPT algorithm, but
this does not give a polynomial kernel.
Later:

Sunflower Lemma
2-Expansion Lemma
Crown Decomposition
Linear Programming

Lower bounds

15

Color Coding

16

Why randomized?

A guaranteed error probability of 10−100 is as good as a deterministic algorithm.
(Probability of hardware failure is larger!)
Randomized algorithms can be more efficient and/or conceptually simpler.
Can be the first step towards a deterministic algorithm.

17

Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms
Randomized selection to pick a typical, unproblematic, average element/subset.
Success probability is constant or at most polynomially small.

Randomized FPT algorithms
Randomized selection to satisfy a bounded number of (unknown) constraints.
Success probability might be exponentially small.

18

Randomization as reduction

Problem A
(what we want to solve)

Randomized magic
Problem B

(what we can solve)

19

Color Coding

k-Path
Input: A graph G , integer k .
Find: A simple path on k vertices.

Note: The problem is clearly NP-hard, as it contains the Hamiltonian Path
problem. But finding a walk is easy.

Theorem
k-Path can be solved in time 2O(k) · nO(1).

20

Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

Check if there is a path colored 1− 2− · · · − k ; output “YES” or “NO”.
If there is no k-path: no path colored 1− 2− · · · − k exists ⇒ “NO”.
If there is a k-path: the probability that such a path is colored 1− 2− · · · − k is k−k

thus the algorithm outputs “YES” with at least that probability.

21

Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

4544

3 3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES” or “NO”.
If there is no k-path: no path colored 1− 2− · · · − k exists ⇒ “NO”.
If there is a k-path: the probability that such a path is colored 1− 2− · · · − k is k−k

thus the algorithm outputs “YES” with at least that probability.

21

Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

44

3

54

3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES” or “NO”.
If there is no k-path: no path colored 1− 2− · · · − k exists ⇒ “NO”.
If there is a k-path: the probability that such a path is colored 1− 2− · · · − k is k−k

thus the algorithm outputs “YES” with at least that probability.

21

Error probability

Useful fact
If the probability of success is at least p, then the probability that the algorithm does
not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk repetitions.
Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the probability of a wrong
answer is at most 1/e100.

22

Error probability

Useful fact
If the probability of success is at least p, then the probability that the algorithm does
not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk repetitions.
Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the probability of a wrong
answer is at most 1/e100.

22

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

23

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

23

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

23

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

23

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

23

Color Coding

k-PATH

Color Coding
success probability: k−k

Finding a
1− 2− · · · − k colored

path

polynomial-time solvable

24

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears exactly once on the
vertices; output “YES” or “NO”.

25

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears exactly once on the
vertices; output “YES” or “NO”.

If there is no k-path: no colorful path exists ⇒ “NO”.
If there is a k-path: the probability that it is colorful is

k!

kk
>

(k
e)k

kk
= e−k ,

thus the algorithm outputs “YES” with at least that probability.

25

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

4544

3 3 2

21

Repeating the algorithm 100ek times decreases the error probability to e−100.
How to find a colorful path?

Try all permutations (k! · nO(1) time)
Dynamic programming (2k · nO(1) time)

25

Finding a colorful path
Subproblems:
We introduce 2k · |V (G)| Boolean variables:

x(v ,C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is a path P ending at v such that each color in C appears on P
exactly once and no other color appears.

Answer:
There is a colorful path ⇐⇒ x(v , [k]) = TRUE for some vertex v .

26

Finding a colorful path
Subproblems:
We introduce 2k · |V (G)| Boolean variables:

x(v ,C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is a path P ending at v such that each color in C appears on P
exactly once and no other color appears.

Initialization:
For every v with color r , x(v , {r}) = TRUE.
Recurrence:
For every v with color r and set C ⊆ [k]

x(v ,C) =
∨

u∈N(v)

x(u,C \ {r}).

26

Improved Color Coding

k-PATH

Color Coding
success probability: e−k

Finding a colorful
path

Solvable in time 2k · nO(1)

27

Derandomization
De-randomization: removing the random choices, making the algorithm deterministic.

Randomized Deterministic
fixed family of colorings

Instead of repeatedly using randomness, we go through a special family of colorings.

28

Derandomization
De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

Deterministic
fixed family of colorings

Instead of repeatedly using randomness, we go through a special family of colorings.

28

Derandomization
De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

Deterministic
fixed family of colorings

Instead of repeatedly using randomness, we go through a special family of colorings.

28

Derandomization
De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

Deterministic
fixed family of colorings

Instead of repeatedly using randomness, we go through a special family of colorings.

28

Derandomization
De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

Deterministic
fixed family of colorings

Instead of repeatedly using randomness, we go through a special family of colorings.

28

Derandomization
De-randomization: removing the random choices, making the algorithm deterministic.

Randomized Deterministic
fixed family of colorings

Instead of repeatedly using randomness, we go through a special family of colorings.
28

Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash functions if for every
S ⊆ [n] with |S | = k , there is an h ∈ H such that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem
There is a k-perfect family of functions [n]→ [k] having size 2O(k) log n (and can be
constructed in time polynomial in the size of the family).

Instead of trying O(ek) random colorings, we go through a k-perfect family H of
functions V (G)→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).

29

Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash functions if for every
S ⊆ [n] with |S | = k , there is an h ∈ H such that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem
There is a k-perfect family of functions [n]→ [k] having size 2O(k) log n (and can be
constructed in time polynomial in the size of the family).

Instead of trying O(ek) random colorings, we go through a k-perfect family H of
functions V (G)→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).

29

Derandomized Color Coding

k-PATH

k-perfect family
2O(k) log n functions

Finding a colorful
path

Solvable in time 2k · nO(1)

30

Recap: Feedback Vertex Set

Feedback Vertex Set:
Given (G , k), find a set S of at most k vertices such that G − S has no cycles.

We allow multiple parallel edges and self loops.
A feedback vertex set is a set that hits every cycle in the graph.

31

Recap: Feedback Vertex Set

Feedback Vertex Set:
Given (G , k), find a set S of at most k vertices such that G − S has no cycles.

We allow multiple parallel edges and self loops.
A feedback vertex set is a set that hits every cycle in the graph.

31

Recap: Feedback Vertex Set

If we find a cycle, then we have to include at least one of its vertices into the
solution. But the length of the cycle can be arbitrary large!
Main idea: We identify a set of O(k) vertices such that any size-k feedback
vertex set has to contain one of these vertices.
But first: some reductions to simplify the problem.

32

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

If the reduction rules cannot be applied, then every vertex has degree at least 3.

33

Recap: Branching for Feedback Vertex Set

Let G be a graph whose vertices have degree at least 3.
Order the vertices as v1, v2, . . ., vn by decreasing degree
(breaking ties arbitrarily).
Let V3k = {v1, . . . , v3k} be the 3k largest-degree vertices.

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

Algorithm:
Apply the reduction rules (poly time) ⇒ graph has minimum degree 3.
For each vertex v ∈ V3k , recurse on the instance (G − v , k − 1).
Running time (3k)k · nO(1) = 2O(k log k) · nO(1).

34

Recap: Branching for Feedback Vertex Set

Let G be a graph whose vertices have degree at least 3.
Order the vertices as v1, v2, . . ., vn by decreasing degree
(breaking ties arbitrarily).
Let V3k = {v1, . . . , v3k} be the 3k largest-degree vertices.

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

Algorithm:
Apply the reduction rules (poly time) ⇒ graph has minimum degree 3.
For each vertex v ∈ V3k , recurse on the instance (G − v , k − 1).
Running time (3k)k · nO(1) = 2O(k log k) · nO(1).

34

Randomized algorithm for Feedback Vertex Set
Identifying a vertex of the solution randomly:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Consequence: if we select a random edge uv and select a random endpoint
x ∈ {u, v}, then x is in some solution S with probability at least 1/4.

Algorithm for finding a solution of size k with probability ≥ 4−k :
Apply reductions.
Select random edge and random endpoint x .

⇒ good with prob. ≥ 1/4

Remove x .
Recurse with parameter k − 1.

⇒ good with prob. ≥ 4−(k−1)

Note: 1/4 · 4−(k−1) = 4−k .

35

Randomized algorithm for Feedback Vertex Set
Identifying a vertex of the solution randomly:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Consequence: if we select a random edge uv and select a random endpoint
x ∈ {u, v}, then x is in some solution S with probability at least 1/4.

Algorithm for finding a solution of size k with probability ≥ 4−k :
Apply reductions.
Select random edge and random endpoint x .

⇒ good with prob. ≥ 1/4

Remove x .
Recurse with parameter k − 1.

⇒ good with prob. ≥ 4−(k−1)

Note: 1/4 · 4−(k−1) = 4−k .

35

Randomized algorithm for Feedback Vertex Set
Identifying a vertex of the solution randomly:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Consequence: if we select a random edge uv and select a random endpoint
x ∈ {u, v}, then x is in some solution S with probability at least 1/4.

Algorithm for finding a solution of size k with probability ≥ 4−k :
Apply reductions.
Select random edge and random endpoint x .

⇒ good with prob. ≥ 1/4

Remove x .
Recurse with parameter k − 1.

⇒ good with prob. ≥ 4−(k−1)

Note: 1/4 · 4−(k−1) = 4−k .

35

Randomized algorithm for Feedback Vertex Set
Identifying a vertex of the solution randomly:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Consequence: if we select a random edge uv and select a random endpoint
x ∈ {u, v}, then x is in some solution S with probability at least 1/4.

Algorithm for finding a solution of size k with probability ≥ 4−k :
Apply reductions.
Select random edge and random endpoint x . ⇒ good with prob. ≥ 1/4
Remove x .
Recurse with parameter k − 1. ⇒ good with prob. ≥ 4−(k−1)

Note: 1/4 · 4−(k−1) = 4−k .
35

Proof of lemma:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Only the edges in G − S are BAD ⇒ < |V (G − S)| BAD edges.

Every edge in J is GOOD, lower bound on their number:

Classify the vertices of G − S into V≤1, V=2, V>2 by degree.
Each vertex in V≤1 contributes ≥ 2 edges to J.
Each vertex in V=2 contributes ≥ 1 edges to J.
Number of GOOD edges is more than the number of BAD edges:

2|V≤1|+ |V=2| > |V≤1|+ |V=2|+ |V>2| = |V (G − S)|

(|V≤1| > |V>2| because G − S is a forest)

S

J

G − S

36

Proof of lemma:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Only the edges in G − S are BAD ⇒ < |V (G − S)| BAD edges.

Every edge in J is GOOD, lower bound on their number:

Classify the vertices of G − S into V≤1, V=2, V>2 by degree.
Each vertex in V≤1 contributes ≥ 2 edges to J.
Each vertex in V=2 contributes ≥ 1 edges to J.
Number of GOOD edges is more than the number of BAD edges:

2|V≤1|+ |V=2| > |V≤1|+ |V=2|+ |V>2| = |V (G − S)|

(|V≤1| > |V>2| because G − S is a forest)

S

J

G − S

36

Proof of lemma:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Only the edges in G − S are BAD ⇒ < |V (G − S)| BAD edges.

Every edge in J is GOOD, lower bound on their number:
Classify the vertices of G − S into V≤1, V=2, V>2 by degree.
Each vertex in V≤1 contributes ≥ 2 edges to J.
Each vertex in V=2 contributes ≥ 1 edges to J.

Number of GOOD edges is more than the number of BAD edges:

2|V≤1|+ |V=2| > |V≤1|+ |V=2|+ |V>2| = |V (G − S)|

(|V≤1| > |V>2| because G − S is a forest)

S

J

G − S

36

Proof of lemma:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of
G . Then more than half of the edges have at least on endpoint in S .

Only the edges in G − S are BAD ⇒ < |V (G − S)| BAD edges.

Every edge in J is GOOD, lower bound on their number:
Classify the vertices of G − S into V≤1, V=2, V>2 by degree.
Each vertex in V≤1 contributes ≥ 2 edges to J.
Each vertex in V=2 contributes ≥ 1 edges to J.
Number of GOOD edges is more than the number of BAD edges:

2|V≤1|+ |V=2| > |V≤1|+ |V=2|+ |V>2| = |V (G − S)|

(|V≤1| > |V>2| because G − S is a forest)

S

J

G − S

36

Summary

Questions
Is the problem fixed-parameter tractable (FPT) with a given parameter?
What is the best possible f (k) in the running time?
Is there a polynomial kernel?

Branching
2O(k) · nO(1) time algorithms for Vertex Cover and Triangle Free Deletion.
2O(k log k)nO(1) time algorithms for Feedback Vertex Set and Closest String

Kernelization
O(k2) kernel for Vertex Cover.

Randomization
2O(k) · nO(1) (randomized) algorithm for k-Path using Color Coding.
4k · nO(1) (randomized) algorithm for Feedback Vertex Set.

37

The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly
super-

exponential"

Tower of
exponentials

38

