Parameterized Algorithms Introduction II

> Lecture #2 October 26, 2021

Recap: fixed-parameter tractability

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^{c}$ time algorithm for some constant c.

Recap: fixed-parameter tractability

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^{c}$ time algorithm for some constant c.

Examples of NP-hard problems that are FPT:

- Finding a vertex cover of size *k*.
- Finding a path of length *k*.
- Finding *k* disjoint triangles.
- Drawing the graph in the plane with k edge crossings.
- Finding disjoint paths that connect *k* pairs of points.

• . . .

Recap: fixed-parameter tractability

Main definition

A parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k)n^{c}$ time algorithm for some constant c.

Main questions:

- Is the problem fixed-parameter tractable (FPT) with a given parameter?
- What is the best possible f(k) in the running time?

Recap: FPT techniques

Recap: branching

Idea: reduce the problem into a bounder number of instances with strictly smaller parameter.

- Branching into c directions: $O^*(c^k)$ algorithms.
- Branching into k directions: $O^*(k^k)$ algorithms.
- Branching vectors and analysis of recurrences of the form

 $T(k) \leq T(k-1) + 2T(k-2) + T(k-3)$

• Graph modification problems where the graph property can be characterized by a finite set of forbidden induced subgraphs is FPT.

CLOSEST STRING Given strings s_1, \ldots, s_k of length L over alphabet Σ , and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

CLOSEST STRING Given strings s_1, \ldots, s_k of length L over alphabet Σ , and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

CLOSEST STRING Given strings s_1, \ldots, s_k of length L over alphabet Σ , and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

Different parameters:

- Number *k* of strings.
- Length <u>L</u> of strings
- Maximum distance *d*.
- Alphabet size |Σ|.

CLOSEST STRING Given strings s_1, \ldots, s_k of length L over alphabet Σ , and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

Different parameters:

- Number *k* of strings.
- Length <u>L</u> of strings
- Maximum distance *d*.
- Alphabet size $|\Sigma|$.

We can ask for running time for example

- $f(d)n^{O(1)}$: FPT parameterized by d
- $f(k, |\Sigma|)n^{O(1)}$: FPT with combined parameters k and $|\Sigma|$

Note: Taking the majority at each position is in general *not* the best solution.

s_1	А	А	А	А	А	A
<i>s</i> ₂	В	В	В	В	В	В
<i>s</i> 3	В	В	В	В	В	В
<i>S</i> 4	В	В	В	В	В	В
<i>S</i> 5	В	В	В	В	В	В
majority	В	В	В	В	В	B – distance 6 from s_1
opt	А	А	А	В	В	B – distance 3 from every s_i

The positions are not independent!

Theorem

CLOSEST STRING can be solved in time $2^{O(d \log d)} n^{O(1)}$.

- Main idea: Given a string y at Hamming distance ℓ from some solution, we use branching to find a string at distance at most $\ell 1$ from some solution.
- Initially, $y = x_1$ is at distance at most d from some solution.

Theorem

CLOSEST STRING can be solved in time $2^{O(d \log d)} n^{O(1)}$.

- Main idea: Given a string y at Hamming distance ℓ from some solution, we use branching to find a string at distance at most $\ell 1$ from some solution.
- Initially, $y = x_1$ is at distance at most d from some solution.
- If y is not a solution, then there is an x_i with $d(y, x_i) \ge d + 1$.
 - Look at the first d + 1 positions p where $x_i[p] \neq y[p]$. For every solution z, it is true for one such p that $x_i[p] = z[p]$.
 - Branch on choosing one of these d + 1 positions and replace y[p] with $x_i[p]$: distance of y from solution z decreases to $\ell 1$.
- Running time $(d+1)^d \cdot n^{O(1)} = 2^{O(d \log d)} n^{O(1)}$.

Branching: wrap up

- Branching into c directions: $O^*(c^k)$ algorithms.
- Branching into k directions: $O^*(k^k)$ algorithms.
- Branching vectors and analysis of recurrences of the form

 $T(k) \leq T(k-1) + 2T(k-2) + T(k-3)$

• Graph modification problems where the graph property can be characterized by a finite set of forbidden induced subgraphs is FPT.

Kernelization

Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more tractable.

We would like to efficiently reduce the input size of a hard problem to make it more tractable.

Is there a polynomial-time algorithm that *always* reduces the size of the input by 1?

We would like to efficiently reduce the input size of a hard problem to make it more tractable.

Is there a polynomial-time algorithm that *always* reduces the size of the input by 1?

Obviously, only if the problem is polynomial-time solvable.

Data reductions—with a guarantee

- Kernelization is a method for parameterized preprocessing:
 - We want to efficiently reduce the size of the instance (x, k) to an equivalent instance with size bounded by f(k).
- A basic way of obtaining FPT algorithms:
 - Reduce the size of the instance to f(k) in polynomial time and then apply any brute force algorithm to the shrunk instance.
- Kernelization is also a rigorous mathematical analysis of efficient preprocessing.

Data reductions—with a guarantee

- Kernelization is a method for parameterized preprocessing:
 - We want to efficiently reduce the size of the instance (x, k) to an equivalent instance with size bounded by f(k).
- A basic way of obtaining FPT algorithms:
 - Reduce the size of the instance to f(k) in polynomial time and then apply any brute force algorithm to the shrunk instance.
- Kernelization is also a rigorous mathematical analysis of efficient preprocessing.

Reduction rules for instance (G, k):

(R1) If v is an isolated vertex, then reduce to (G - v, k).

(R2) If v has degree more than k, then reduce to (G - v, k - 1).

Reduction rules for instance (G, k):

(R1) If v is an isolated vertex, then reduce to (G - v, k).

(R2) If v has degree more than k, then reduce to (G - v, k - 1).

Lemma

If (G, k) is a yes-instance of VERTEX COVER such that (R1) and (R2) cannot be applied, then $|E(G)| \le k^2$ and $|V(G)| \le k^2 + k$.

Reduction rules for instance (G, k):

(R1) If v is an isolated vertex, then reduce to (G - v, k).

(R2) If v has degree more than k, then reduce to (G - v, k - 1).

Lemma

If (G, k) is a yes-instance of VERTEX COVER such that (R1) and (R2) cannot be applied, then $|E(G)| \le k^2$ and $|V(G)| \le k^2 + k$.

Proof:

- Each of the k vertices of the solution can cover at most k edges (by (R2)).
- Every vertex of G is either in the solution, or one of the $\leq k$ neighbors of a vertex in a solution (by (R1)+(R2)).

Reduction rules for instance (G, k):

(R1) If v is an isolated vertex, then reduce to (G - v, k).

(R2) If v has degree more than k, then reduce to (G - v, k - 1).

Lemma

If (G, k) is a yes-instance of VERTEX COVER such that (R1) and (R2) cannot be applied, then $|E(G)| \le k^2$ and $|V(G)| \le k^2 + k$.

Kernelization for VERTEX COVER:

- Apply rules (R1) and (R2) exhaustively.
- If $|E(G)| > k^2$ or $|V(G)| > k^2 + k$, then we have a no-instance.
- Otherwise, we have a kernel of size $O(k^2)$.

Kernelization: formal definition

- Let P ⊆ Σ* × N be a parameterized problem and f : N → N a computable function.
- A kernel for *P* of size *f* is an algorithm that, given (x, k), takes time polynomial in |x| + k and outputs an instance (x', k') such that
 - $(x,k) \in P \iff (x',k') \in P$
 - $|x'| \le f(k), k' \le f(k).$
- A polynomial kernel is a kernel whose function *f* is polynomial.

Kernelization: formal definition

- Let P ⊆ Σ* × N be a parameterized problem and f : N → N a computable function.
- A kernel for *P* of size *f* is an algorithm that, given (x, k), takes time polynomial in |x| + k and outputs an instance (x', k') such that
 - $(x,k) \in P \iff (x',k') \in P$
 - $|x'| \le f(k), \ k' \le f(k).$
- A polynomial kernel is a kernel whose function *f* is polynomial.

Which parameterized problems have kernels?

Theorem

A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).

Theorem

A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).

Proof:

 If the problem has a kernel: Reducing the size of the instance to f(k) in poly time + brute force
⇒ problem is FPT.

Theorem

A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).

Proof:

- If the problem has a kernel: Reducing the size of the instance to f(k) in poly time + brute force
 ⇒ problem is FPT.
- If the problem can be solved in time $f(k)|x|^{O(1)}$:
 - If $|x| \leq f(k)$, then we already have a kernel of size f(k).
 - If $|x| \ge f(k)$, then we can solve the problem in time $f(k)|x|^{O(1)} \le |x| \cdot |x|^{O(1)}$ (polynomial in |x|) and then output a trivial yes- or no-instance.

Theorem

A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).

Proof:

- If the problem has a kernel: Reducing the size of the instance to f(k) in poly time + brute force
 ⇒ problem is FPT.
- If the problem can be solved in time $f(k)|x|^{O(1)}$:
 - If $|x| \le f(k)$, then we already have a kernel of size f(k).
 - If $|x| \ge f(k)$, then we can solve the problem in time $f(k)|x|^{O(1)} \le |x| \cdot |x|^{O(1)}$ (polynomial in |x|) and then output a trivial yes- or no-instance.
- The existence of kernels is not a separate question...
- ...but the existence of polynomial kernels is a deep and nontrivial topic!

Kernelization: summary

- Can we efficiently preprocess the input to reduce the size to f(k)?
- We have seen: a kernel of size $O(k^2)$ for VERTEX COVER.
- Kernelization follows from FPT algorithm, but the existence of a **polynomial kernel** is a separate question.
- There are problems where e.g. branching immediately gives an FPT algorithm, but this does not give a polynomial kernel.
- Later:
 - Sunflower Lemma
 - 2-Expansion Lemma
 - Crown Decomposition
 - Linear Programming
- Lower bounds

Color Coding

Why randomized?

- A guaranteed error probability of 10⁻¹⁰⁰ is as good as a deterministic algorithm. (Probability of hardware failure is larger!)
- Randomized algorithms can be more efficient and/or conceptually simpler.
- Can be the first step towards a deterministic algorithm.

Polynomial-time randomized algorithms

- Randomized selection to pick a typical, unproblematic, average element/subset.
- Success probability is constant or at most polynomially small.

Randomized FPT algorithms

- Randomized selection to satisfy a **bounded number** of (unknown) constraints.
- Success probability might be exponentially small.

Randomization as reduction

Color Coding

k-Path

Input: A graph G, integer k.Find: A simple path on k vertices.

Note: The problem is clearly NP-hard, as it contains the HAMILTONIAN PATH problem. But finding a *walk* is easy.

Theorem

k-PATH can be solved in time $2^{O(k)} \cdot n^{O(1)}$.
• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

- Check if there is a path colored $1 2 \dots k$; output "YES" or "NO".
 - If there is no k-path: no path colored $1 2 \dots k$ exists \Rightarrow "NO".
 - If there is a k-path: the probability that such a path is colored $1 2 \dots k$ is k^{-k} thus the algorithm outputs "YES" with at least that probability.

Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm **does** not say "YES" after 1/p repetitions is at most

$$(1-
ho)^{1/
ho} < \left(e^{-
ho}
ight)^{1/
ho} = 1/e pprox 0.38$$

Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm **does not** say "YES" after 1/p repetitions is at most

$$(1-p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$

- Thus if $p > k^{-k}$, then error probability is at most 1/e after k^k repetitions.
- Repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant.
- For example, by trying $100 \cdot k^k$ random colorings, the probability of a wrong answer is at most $1/e^{100}$.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Check if there is a **colorful** path where each color appears exactly once on the vertices; output "YES" or "NO".

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

- Check if there is a **colorful** path where each color appears exactly once on the vertices; output "YES" or "NO".
 - If there is no *k*-path: no **colorful** path exists \Rightarrow "NO".
 - If there is a k-path: the probability that it is colorful is

$$\frac{k!}{k^k} > \frac{\left(\frac{k}{e}\right)^k}{k^k} = e^{-k},$$

thus the algorithm outputs "YES" with at least that probability.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Repeating the algorithm $100e^k$ times decreases the error probability to e^{-100} . How to find a colorful path?

- Try all permutations $(k! \cdot n^{O(1)} \text{ time})$
- Dynamic programming $(2^k \cdot n^{O(1)} \text{ time})$

Finding a colorful path

Subproblems:

We introduce $2^k \cdot |V(G)|$ Boolean variables:

```
\begin{aligned} x(v,C) &= \mathsf{TRUE} \text{ for some } v \in V(G) \text{ and } C \subseteq [k] \\ & \\ \uparrow \\ \end{aligned}
There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.
```

Answer:

There is a colorful path $\iff x(v, [k]) = \text{TRUE}$ for some vertex v.

Finding a colorful path

Subproblems:

We introduce $2^k \cdot |V(G)|$ Boolean variables:

```
\begin{aligned} x(v,C) &= \mathsf{TRUE} \text{ for some } v \in V(G) \text{ and } C \subseteq [k] \\ & \uparrow \\ \end{aligned}
There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.
```

Initialization:

For every v with color r, $x(v, \{r\}) = \text{TRUE}$.

Recurrence:

For every v with color r and set $C \subseteq [k]$

$$x(v,C) = \bigvee_{u \in N(v)} x(u,C \setminus \{r\}).$$

De-randomization: removing the random choices, making the algorithm deterministic.

De-randomization: removing the random choices, making the algorithm deterministic.

De-randomization: removing the random choices, making the algorithm deterministic.

De-randomization: removing the random choices, making the algorithm deterministic.

De-randomization: removing the random choices, making the algorithm deterministic.

De-randomization: removing the random choices, making the algorithm deterministic.

Instead of repeatedly using randomness, we go through a special family of colorings.

Definition

A family \mathcal{H} of functions $[n] \to [k]$ is a *k*-perfect family of hash functions if for every $S \subseteq [n]$ with |S| = k, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S, x \neq y$.

Theorem

There is a *k*-perfect family of functions $[n] \rightarrow [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Definition

A family \mathcal{H} of functions $[n] \to [k]$ is a *k*-perfect family of hash functions if for every $S \subseteq [n]$ with |S| = k, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S, x \neq y$.

Theorem

There is a k-perfect family of functions $[n] \rightarrow [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Instead of trying $O(e^k)$ random colorings, we go through a *k*-perfect family \mathcal{H} of functions $V(G) \to [k]$.

If there is a solution S

- \Rightarrow The vertices of S are colorful for at least one $h \in \mathcal{H}$
- \Rightarrow Algorithm outputs "YES".

 \Rightarrow *k*-PATH can be solved in **deterministic** time $2^{O(k)} \cdot n^{O(1)}$.

Derandomized Color Coding

Recap: FEEDBACK VERTEX SET

FEEDBACK VERTEX SET: Given (G, k), find a set S of at most k vertices such that G - S has no cycles.

- We allow multiple parallel edges and self loops.
- A feedback vertex set is a set that hits every cycle in the graph.

Recap: FEEDBACK VERTEX SET

FEEDBACK VERTEX SET: Given (G, k), find a set S of at most k vertices such that G - S has no cycles.

- We allow multiple parallel edges and self loops.
- A feedback vertex set is a set that hits every cycle in the graph.

- If we find a cycle, then we have to include at least one of its vertices into the solution. But the length of the cycle can be arbitrary large!
- Main idea: We identify a set of O(k) vertices such that any size-k feedback vertex set has to contain one of these vertices.
- But first: some reductions to simplify the problem.

- (R1) If there is a loop at v, then delete v and decrease k by one.
- (R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
- (R3) If there is a vertex v of degree at most 1, then delete v.
- (R4) If there is a vertex v of degree 2, then delete v and add an edge between the neighbors of v.

If the reduction rules cannot be applied, then every vertex has degree at least 3.

Recap: Branching for FEEDBACK VERTEX SET

Let G be a graph whose vertices have degree at least 3.

- Order the vertices as v_1, v_2, \ldots, v_n by decreasing degree (breaking ties arbitrarily).
- Let $V_{3k} = \{v_1, \ldots, v_{3k}\}$ be the 3k largest-degree vertices.

Lemma

If G has minimum degree at least 3, then every feedback vertex set S of size at most k contains a vertex from V_{3k} .

Recap: Branching for FEEDBACK VERTEX SET

Let G be a graph whose vertices have degree at least 3.

- Order the vertices as v_1, v_2, \ldots, v_n by decreasing degree (breaking ties arbitrarily).
- Let $V_{3k} = \{v_1, \ldots, v_{3k}\}$ be the 3k largest-degree vertices.

Lemma

If G has minimum degree at least 3, then every feedback vertex set S of size at most k contains a vertex from V_{3k} .

Algorithm:

- Apply the reduction rules (poly time) \Rightarrow graph has minimum degree 3.
- For each vertex $v \in V_{3k}$, recurse on the instance (G v, k 1).
- Running time $(3k)^k \cdot n^{O(1)} = 2^{O(k \log k)} \cdot n^{O(1)}$.

Identifying a vertex of the solution randomly:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least on endpoint in S.

Identifying a vertex of the solution randomly:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least on endpoint in S.

Consequence: if we select a random edge uv and select a random endpoint $x \in \{u, v\}$, then x is in some solution S with probability at least 1/4.

Identifying a vertex of the solution randomly:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least on endpoint in S.

Consequence: if we select a random edge uv and select a random endpoint $x \in \{u, v\}$, then x is in some solution S with probability at least 1/4.

Algorithm for finding a solution of size k with probability $\geq 4^{-k}$:

- Apply reductions.
- Select random edge and random endpoint x.
- Remove <u>x</u>.
- Recurse with parameter k 1.

Identifying a vertex of the solution randomly:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least on endpoint in S.

Consequence: if we select a random edge uv and select a random endpoint $x \in \{u, v\}$, then x is in some solution S with probability at least 1/4.

Algorithm for finding a solution of size k with probability $\geq 4^{-k}$:

- Apply reductions.
- Select random edge and random endpoint $x_{\cdot} \Rightarrow$ good with prob. $\geq 1/4$
- Remove <u>x</u>.
- Recurse with parameter k 1. \Rightarrow good with prob. $\ge 4^{-(k-1)}$

Note: $1/4 \cdot 4^{-(k-1)} = 4^{-k}$.
Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least on endpoint in S.

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least on endpoint in S.

Only the edges in G - S are BAD $\Rightarrow \langle |V(G - S)| |$ BAD edges.

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least on endpoint in S.

Only the edges in G - S are BAD $\Rightarrow \langle |V(G - S)| |$ BAD edges.

Every edge in J is GOOD, lower bound on their number:

- Classify the vertices of G S into $V_{\leq 1}$, $V_{=2}$, $V_{>2}$ by degree.
- Each vertex in $V_{\leq 1}$ contributes ≥ 2 edges to J.
- Each vertex in $V_{=2}$ contributes ≥ 1 edges to J.

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least on endpoint in S.

Only the edges in G - S are BAD $\Rightarrow \langle |V(G - S)|$ BAD edges.

Every edge in J is GOOD, lower bound on their number:

- Classify the vertices of G S into $V_{\leq 1}$, $V_{=2}$, $V_{>2}$ by degree.
- Each vertex in $V_{\leq 1}$ contributes ≥ 2 edges to J.
- Each vertex in $V_{=2}$ contributes ≥ 1 edges to J.
- Number of GOOD edges is more than the number of BAD edges:

 $2|V_{\leq 1}| + |V_{=2}| > |V_{\leq 1}| + |V_{=2}| + |V_{>2}| = |V(G - S)|$

 $(|V_{\leq 1}| > |V_{>2}|$ because G - S is a forest)

Summary

Questions

- Is the problem fixed-parameter tractable (FPT) with a given parameter?
- What is the best possible f(k) in the running time?
- Is there a polynomial kernel?
- Branching
 - 2^{O(k)} · n^{O(1)} time algorithms for VERTEX COVER and TRIANGLE FREE DELETION.
 2^{O(k log k)} n^{O(1)} time algorithms for FEEDBACK VERTEX SET and CLOSEST STRING
- Kernelization
 - $O(k^2)$ kernel for VERTEX COVER.
- Randomization
 - $2^{O(k)} \cdot n^{O(1)}$ (randomized) algorithm for k-PATH using Color Coding.
 - $4^k \cdot n^{O(1)}$ (randomized) algorithm for FEEDBACK VERTEX SET.

The race for better FPT algorithms

