Parameterized Algorithms
Introduction II

Lecture #2
October 26, 2021
Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for some constant c.
Recap: fixed-parameter tractability

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for some constant c.

Examples of NP-hard problems that are FPT:

- Finding a vertex cover of size k.
- Finding a path of length k.
- Finding k disjoint triangles.
- Drawing the graph in the plane with k edge crossings.
- Finding disjoint paths that connect k pairs of points.
- ...
Recap: fixed-parameter tractability

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for some constant c.

Main questions:

- Is the problem fixed-parameter tractable (FPT) with a given parameter?
- What is the best possible $f(k)$ in the running time?
Recap: FPT techniques

- Bounded-depth search trees
- Kernelization
- Algebraic techniques
- Treewidth
- Color coding
- Iterative compression
Recap: branching

Idea: reduce the problem into a bounder number of instances with strictly smaller parameter.

- Branching into c directions: $O^*(c^k)$ algorithms.
- Branching into k directions: $O^*(k^k)$ algorithms.
- Branching vectors and analysis of recurrences of the form

 $$T(k) \leq T(k - 1) + 2T(k - 2) + T(k - 3)$$

- Graph modification problems where the graph property can be characterized by a finite set of forbidden induced subgraphs is FPT.
Given strings s_1, \ldots, s_k of length L over alphabet Σ, and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)
Closest String

Given strings s_1, \ldots, s_k of length L over alphabet Σ, and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

We can ask for running time for example $f(d) n = O(1^d)$: FPT parameterized by $f(k, |\Sigma|) n = O(1^d)$: FPT with combined parameters k and $|\Sigma|$.
Closest String

Given strings s_1, \ldots, s_k of length L over alphabet Σ, and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

Different parameters:

- Number k of strings.
- Length L of strings
- Maximum distance d.
- Alphabet size $|\Sigma|$.
Closest String

Given strings s_1, \ldots, s_k of length L over alphabet Σ, and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

<table>
<thead>
<tr>
<th>s_1</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>C</th>
<th>A</th>
<th>C</th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>s_3</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>s_4</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>s_5</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

Different parameters:
- Number k of strings.
- Length L of strings
- Maximum distance d.
- Alphabet size $|\Sigma|$.

We can ask for running time for example
- $f(d)n^O(1)$: FPT parameterized by d
- $f(k, |\Sigma|)n^O(1)$: FPT with combined parameters k and $|\Sigma|$
Closest String

Note: Taking the majority at each position is in general *not* the best solution.

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

The positions are not independent!
Theorem

Closest String can be solved in time $2^{O(d \log d)} n^{O(1)}$.

- **Main idea:** Given a string y at Hamming distance ℓ from some solution, we use branching to find a string at distance at most $\ell - 1$ from some solution.
- Initially, $y = x_1$ is at distance at most d from some solution.
Theorem

Closest String can be solved in time $2^{O(d \log d)} n^{O(1)}$.

- **Main idea**: Given a string y at Hamming distance ℓ from some solution, we use branching to find a string at distance at most $\ell - 1$ from some solution.

- Initially, $y = x_1$ is at distance at most d from some solution.

- If y is not a solution, then there is an x_i with $d(y, x_i) \geq d + 1$.
 - Look at the first $d + 1$ positions p where $x_i[p] \neq y[p]$. For every solution z, it is true for one such p that $x_i[p] = z[p]$.
 - Branch on choosing one of these $d + 1$ positions and replace $y[p]$ with $x_i[p]$: distance of y from solution z decreases to $\ell - 1$.

- Running time $(d + 1)^d \cdot n^{O(1)} = 2^{O(d \log d)} n^{O(1)}$.

Closest String
Branching: wrap up

- Branching into c directions: $O^*(c^k)$ algorithms.
- Branching into k directions: $O^*(k^k)$ algorithms.
- Branching vectors and analysis of recurrences of the form
 \[T(k) \leq T(k - 1) + 2T(k - 2) + T(k - 3) \]
- Graph modification problems where the graph property can be characterized by a finite set of forbidden induced subgraphs is FPT.
Kernelization
Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more tractable.
Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more tractable.

Is there a polynomial-time algorithm that *always* reduces the size of the input by 1?
Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more tractable.

Is there a polynomial-time algorithm that *always* reduces the size of the input by 1?

Obviously, only if the problem is polynomial-time solvable.
Data reductions—with a guarantee

- **Kernelization** is a method for parameterized preprocessing:
 - We want to efficiently reduce the size of the instance \((x, k)\) to an equivalent instance with size bounded by \(f(k)\).
- A basic way of obtaining FPT algorithms:
 - Reduce the size of the instance to \(f(k)\) in polynomial time and then apply any brute force algorithm to the shrunk instance.
- Kernelization is also a rigorous mathematical analysis of efficient preprocessing.
Data reductions—with a guarantee

- **Kernelization** is a method for parameterized preprocessing:
 - We want to efficiently reduce the size of the instance \((x, k)\) to an equivalent instance with size bounded by \(f(k)\).

- A basic way of obtaining FPT algorithms:
 - Reduce the size of the instance to \(f(k)\) in polynomial time and then apply any brute force algorithm to the shrunk instance.

- Kernelization is also a rigorous mathematical analysis of efficient preprocessing.
Kernel for **Vertex Cover**

Reduction rules for instance \((G, k)\):

(R1) If \(v\) is an isolated vertex, then reduce to \((G - v, k)\).

(R2) If \(v\) has degree more than \(k\), then reduce to \((G - v, k - 1)\).
Kernel for Vertex Cover

Reduction rules for instance \((G, k)\):

(R1) If \(v\) is an isolated vertex, then reduce to \((G - v, k)\).

(R2) If \(v\) has degree more than \(k\), then reduce to \((G - v, k - 1)\).

Lemma

If \((G, k)\) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be applied, then \(|E(G)| \leq k^2\) and \(|V(G)| \leq k^2 + k\).
Kernel for **Vertex Cover**

Reduction rules for instance \((G, k)\):

1. **(R1)** If \(v\) is an isolated vertex, then reduce to \((G - v, k)\).
2. **(R2)** If \(v\) has degree more than \(k\), then reduce to \((G - v, k - 1)\).

Lemma

If \((G, k)\) is a yes-instance of **Vertex Cover** such that (R1) and (R2) cannot be applied, then \(|E(G)| \leq k^2\) and \(|V(G)| \leq k^2 + k\).

Proof:

- Each of the \(k\) vertices of the solution can cover at most \(k\) edges (by (R2)).
- Every vertex of \(G\) is either in the solution, or one of the \(\leq k\) neighbors of a vertex in a solution (by (R1)+(R2)).
Kernel for **Vertex Cover**

Reduction rules for instance \((G, k)\):

(R1) If \(v\) is an isolated vertex, then reduce to \((G - v, k)\).

(R2) If \(v\) has degree more than \(k\), then reduce to \((G - v, k - 1)\).

Lemma

If \((G, k)\) is a yes-instance of **Vertex Cover** such that (R1) and (R2) cannot be applied, then \(|E(G)| \leq k^2\) and \(|V(G)| \leq k^2 + k\).

Kernelization for **Vertex Cover**:

- Apply rules (R1) and (R2) exhaustively.
- If \(|E(G)| > k^2\) or \(|V(G)| > k^2 + k\), then we have a no-instance.
- Otherwise, we have a kernel of size \(O(k^2)\).
Kernelization: formal definition

- Let \(P \subseteq \Sigma^* \times \mathbb{N} \) be a parameterized problem and \(f : \mathbb{N} \rightarrow \mathbb{N} \) a computable function.

- A **kernel** for \(P \) of size \(f \) is an algorithm that, given \((x, k) \), takes time polynomial in \(|x| + k\) and outputs an instance \((x', k')\) such that
 - \((x, k) \in P \iff (x', k') \in P \)
 - \(|x'| \leq f(k), k' \leq f(k)\).

- A **polynomial kernel** is a kernel whose function \(f \) is polynomial.
Kernelization: formal definition

- Let $P \subseteq \Sigma^* \times \mathbb{N}$ be a parameterized problem and $f : \mathbb{N} \rightarrow \mathbb{N}$ a computable function.
- A kernel for P of size f is an algorithm that, given (x, k), takes time polynomial in $|x| + k$ and outputs an instance (x', k') such that
 - $(x, k) \in P \iff (x', k') \in P$
 - $|x'| \leq f(k)$, $k' \leq f(k)$.
- A polynomial kernel is a kernel whose function f is polynomial.

Which parameterized problems have kernels?
A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).
A surprising equivalence

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).</td>
</tr>
</tbody>
</table>

Proof:

- If the problem has a kernel:
 - Reducing the size of the instance to $f(k)$ in poly time + brute force
 - \Rightarrow problem is FPT.

The existence of kernels is not a separate question. . .

. . . but the existence of polynomial kernels is a deep and nontrivial topic!
A surprising equivalence

Theorem

A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).

Proof:

- If the problem has a kernel:
 Reducing the size of the instance to $f(k)$ in poly time + brute force
 \Rightarrow problem is FPT.

- If the problem can be solved in time $f(k)|x|^{O(1)}$:
 - If $|x| \leq f(k)$, then we already have a kernel of size $f(k)$.
 - If $|x| \geq f(k)$, then we can solve the problem in time $f(k)|x|^{O(1)} \leq |x| \cdot |x|^{O(1)}$ (polynomial in $|x|$) and then output a trivial yes- or no-instance.
A surprising equivalence

Theorem

A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).

Proof:

- If the problem has a kernel:
 Reducing the size of the instance to $f(k)$ in poly time + brute force
 \implies problem is FPT.

- If the problem can be solved in time $f(k)|x|^{O(1)}$:
 - If $|x| \leq f(k)$, then we already have a kernel of size $f(k)$.
 - If $|x| \geq f(k)$, then we can solve the problem in time $f(k)|x|^{O(1)} \leq |x| \cdot |x|^{O(1)}$ (polynomial in $|x|$) and then output a trivial yes- or no-instance.

- The existence of kernels is not a separate question...

- ...but the existence of **polynomial kernels** is a deep and nontrivial topic!
Can we efficiently preprocess the input to reduce the size to $f(k)$?

We have seen: a kernel of size $O(k^2)$ for Vertex Cover.

Kernelization follows from FPT algorithm, but the existence of a polynomial kernel is a separate question.

There are problems where e.g. branching immediately gives an FPT algorithm, but this does not give a polynomial kernel.

Later:
- Sunflower Lemma
- 2-Expansion Lemma
- Crown Decomposition
- Linear Programming

Lower bounds
Color Coding
Why randomized?

- A guaranteed error probability of 10^{-100} is as good as a deterministic algorithm. (Probability of hardware failure is larger!)
- Randomized algorithms can be more efficient and/or conceptually simpler.
- Can be the first step towards a deterministic algorithm.
Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms
- Randomized selection to pick a **typical, unproblematic, average** element/subset.
- Success probability is constant or at most polynomially small.

Randomized FPT algorithms
- Randomized selection to satisfy a **bounded number** of (unknown) constraints.
- Success probability might be exponentially small.
Randomization as reduction

Problem A
(what we want to solve)

Randomized magic

Problem B
(what we can solve)
Color Coding

k-Path

Input: A graph G, integer k.

Find: A simple path on k vertices.

Note: The problem is clearly NP-hard, as it contains the **Hamiltonian Path** problem. But finding a *walk* is easy.

Theorem

k-Path can be solved in time $2^{O(k)} \cdot n^{O(1)}$.
Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.
Color Coding

- Assign colors from \([k]\) to vertices \(V(G)\) uniformly and independently at random.

Check if there is a path colored \(1 - 2 - \cdots - k\); output "YES" or "NO".

If there is no \(k\)-path: no path colored \(1 - 2 - \cdots - k\) exists \(\Rightarrow\) "NO".

If there is a \(k\)-path: the probability that such a path is colored \(1 - 2 - \cdots - k\) is \(k^{-k}\) thus the algorithm outputs "YES" with at least that probability.
Color Coding

- Assign colors from \([k]\) to vertices \(V(G)\) uniformly and independently at random.

- Check if there is a path colored \(1-2-\cdots-k\); output “YES” or “NO”.
 - If there is no \(k\)-path: no path colored \(1-2-\cdots-k\) exists \(\Rightarrow\) “NO”.
 - If there is a \(k\)-path: the probability that such a path is colored \(1-2-\cdots-k\) is \(k^{-k}\) thus the algorithm outputs “YES” with at least that probability.
Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm does not say “YES” after $1/p$ repetitions is at most

$$
(1 - p)^{1/p} < \left(e^{-p}\right)^{1/p} = 1/e \approx 0.38
$$
Error probability

Useful fact
If the probability of success is at least p, then the probability that the algorithm does not say “YES” after $1/p$ repetitions is at most

$$(1 - p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$

- Thus if $p > k^{-k}$, then error probability is at most $1/e$ after k^k repetitions.
- Repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant.
- For example, by trying $100 \cdot k^k$ random colorings, the probability of a wrong answer is at most $1/e^{100}$.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

23
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Color Coding

Color Coding

k-PATH

Color Coding
success probability: k^{-k}

Finding a
$1 - 2 - \cdots - k$ colored path

polynomial-time solvable
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a colorful path where each color appears exactly once on the vertices; output “YES” or “NO”.

![Graph diagram]
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a colorful path where each color appears exactly once on the vertices; output “YES” or “NO”.
 - If there is no k-path: no colorful path exists \Rightarrow “NO”.
 - If there is a k-path: the probability that it is colorful is

$$\frac{k!}{k^k} > \frac{(\frac{k}{e})^k}{k^k} = e^{-k},$$

thus the algorithm outputs “YES” with at least that probability.
Improved Color Coding

- Assign colors from \([k]\) to vertices \(V(G)\) uniformly and independently at random.

- Repeating the algorithm \(100e^k\) times decreases the error probability to \(e^{-100}\).

How to find a colorful path?
- Try all permutations \((k! \cdot n^{O(1)}\) time)
- Dynamic programming \((2^k \cdot n^{O(1)}\) time)
Finding a colorful path

Subproblems:
We introduce $2^k \cdot |V(G)|$ Boolean variables:

$x(v, C) = \text{TRUE}$ for some $v \in V(G)$ and $C \subseteq [k]$

$
\upharpoonright
$
There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.

Answer:
There is a colorful path $\iff x(v, [k]) = \text{TRUE}$ for some vertex v.

26
Finding a colorful path

Subproblems:
We introduce $2^k \cdot |V(G)|$ Boolean variables:

\[
x(v, C) = \text{TRUE} \text{ for some } v \in V(G) \text{ and } C \subseteq [k]
\]

\Updownarrow

There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.

Initialization:
For every v with color r, $x(v, \{r\}) = \text{TRUE}$.

Recurrence:
For every v with color r and set $C \subseteq [k]

\[
x(v, C) = \bigvee_{u \in N(v)} x(u, C \setminus \{r\}).
\]
Improved Color Coding

k-PATH

Color Coding
success probability: e^{-k}

Finding a colorful path

Solvable in time $2^k \cdot n^{O(1)}$
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

\[\text{\includegraphics{dice.png}}\]
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

![Diagram of dice and colored circles]
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

[Image of dice and color tokens]

- Red
- Yellow
- Blue
- Red
- Red
- Blue
- Green
- Red
- Yellow
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

Deterministic
fixed family of colorings

Instead of repeatedly using randomness, we go through a special family of colorings.
Derandomization

Definition
A family \mathcal{H} of functions $[n] \to [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with $|S| = k$, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem
There is a k-perfect family of functions $[n] \to [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).
Derandomization

Definition

A family \mathcal{H} of functions $[n] \rightarrow [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with $|S| = k$, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S, x \neq y$.

Theorem

There is a k-perfect family of functions $[n] \rightarrow [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Instead of trying $O(e^k)$ random colorings, we go through a k-perfect family \mathcal{H} of functions $V(G) \rightarrow [k]$.

If there is a solution S

\Rightarrow The vertices of S are colorful for at least one $h \in \mathcal{H}$

\Rightarrow Algorithm outputs “YES”.

\Rightarrow k-Path can be solved in deterministic time $2^{O(k)} \cdot n^{O(1)}$.
Derandomized Color Coding

\(k \)-PATH

\(k \)-perfect family
\(2^{O(k)} \log n \) functions

Finding a colorful path

Solvable in time \(2^k \cdot n^{O(1)} \)
Recap: Feedback Vertex Set

Feedback Vertex Set:
Given \((G, k)\), find a set \(S\) of at most \(k\) vertices such that \(G - S\) has no cycles.

- We allow multiple parallel edges and self loops.
- A feedback vertex set is a set that hits every cycle in the graph.
Recap: **Feedback Vertex Set**

Feedback Vertex Set:
Given (G, k), find a set S of at most k vertices such that $G - S$ has no cycles.

- We allow multiple parallel edges and self loops.
- A **feedback vertex set** is a set that hits every cycle in the graph.
Recap: Feedback Vertex Set

- If we find a cycle, then we have to include at least one of its vertices into the solution. But the length of the cycle can be arbitrary large!
- **Main idea:** We identify a set of $O(k)$ vertices such that any size-k feedback vertex set has to contain one of these vertices.
- But first: some reductions to simplify the problem.
Reduction rules

(R1) If there is a loop at v, then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v.
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the neighbors of v.

If the reduction rules cannot be applied, then every vertex has degree at least 3.
Recap: Branching for **Feedback Vertex Set**

Let G be a graph whose vertices have degree at least 3.

- Order the vertices as v_1, v_2, \ldots, v_n by **decreasing** degree (breaking ties arbitrarily).
- Let $V_{3k} = \{v_1, \ldots, v_{3k}\}$ be the $3k$ largest-degree vertices.

Lemma

If G has minimum degree at least 3, then every feedback vertex set S of size at most k contains a vertex from V_{3k}.
Recap: Branching for Feedback Vertex Set

Let G be a graph whose vertices have degree at least 3.

- Order the vertices as v_1, v_2, \ldots, v_n by **decreasing** degree (breaking ties arbitrarily).
- Let $V_{3k} = \{v_1, \ldots, v_{3k}\}$ be the $3k$ largest-degree vertices.

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k contains a vertex from V_{3k}.

Algorithm:
- Apply the reduction rules (poly time) \Rightarrow graph has minimum degree 3.
- For each vertex $v \in V_{3k}$, recurse on the instance $(G - v, k - 1)$.
- Running time $(3k)^k \cdot n^{O(1)} = 2^{O(k \log k)} \cdot n^{O(1)}$.

Randomized algorithm for \textsc{Feedback Vertex Set}

Identifying a vertex of the solution randomly:

\begin{quote}
\textbf{Lemma}

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.
\end{quote}
Randomized algorithm for **Feedback Vertex Set**

Identifying a vertex of the solution randomly:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Consequence: if we select a random edge uv and select a random endpoint $x \in \{u, v\}$, then x is in some solution S with probability at least $1/4$.
Randomized algorithm for Feedback Vertex Set

Identifying a vertex of the solution randomly:

Lemma
Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Consequence: if we select a random edge uv and select a random endpoint $x \in \{u, v\}$, then x is in some solution S with probability at least $1/4$.

Algorithm for finding a solution of size k with probability $\geq 4^{-k}$:
- Apply reductions.
- Select random edge and random endpoint x.
- Remove x.
- Recurse with parameter $k - 1$.
Randomized algorithm for **Feedback Vertex Set**

Identifying a vertex of the solution randomly:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Consequence: if we select a random edge uv and select a random endpoint $x \in \{u, v\}$, then x is in some solution S with probability at least $\frac{1}{4}$.

Algorithm for finding a solution of size k with probability $\geq 4^{-k}$:

- Apply reductions.
- Select random edge and random endpoint x. \Rightarrow good with prob. $\geq 1/4$
- Remove x.
- Recurse with parameter $k - 1$. \Rightarrow good with prob. $\geq 4^{-(k-1)}$

Note: $\frac{1}{4} \cdot 4^{-(k-1)} = 4^{-k}$.
Proof of lemma:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

![Diagram showing $G - S$ and J]
Proof of lemma:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Only the edges in $G - S$ are BAD \Rightarrow $< |V(G - S)|$ BAD edges.
Proof of lemma:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Only the edges in $G - S$ are BAD \Rightarrow $< |V(G - S)|$ BAD edges.

Every edge in J is GOOD, lower bound on their number:

- Classify the vertices of $G - S$ into $V_{\leq 1}$, $V = 2$, $V > 2$ by degree.
- Each vertex in $V_{\leq 1}$ contributes ≥ 2 edges to J.
- Each vertex in $V_{\geq 2}$ contributes ≥ 1 edges to J.
Proof of lemma:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Only the edges in $G - S$ are BAD $\Rightarrow < |V(G - S)|$ BAD edges.

Every edge in J is GOOD, lower bound on their number:

- Classify the vertices of $G - S$ into $V_{\leq 1}$, $V_{= 2}$, $V_{> 2}$ by degree.
- Each vertex in $V_{\leq 1}$ contributes ≥ 2 edges to J.
- Each vertex in $V_{= 2}$ contributes ≥ 1 edges to J.
- Number of GOOD edges is more than the number of BAD edges:

$$2|V_{\leq 1}| + |V_{= 2}| > |V_{\leq 1}| + |V_{= 2}| + |V_{> 2}| = |V(G - S)|$$

$$|V_{\leq 1}| > |V_{> 2}|$$ because $G - S$ is a forest.
Questions
- Is the problem fixed-parameter tractable (FPT) with a given parameter?
- What is the best possible $f(k)$ in the running time?
- Is there a polynomial kernel?

Branching
- $2^{O(k)} \cdot n^{O(1)}$ time algorithms for Vertex Cover and Triangle Free Deletion.
- $2^{O(k \log k)} n^{O(1)}$ time algorithms for Feedback Vertex Set and Closest String

Kernelization
- $O(k^2)$ kernel for Vertex Cover.

Randomization
- $2^{O(k)} \cdot n^{O(1)}$ (randomized) algorithm for k-Path using Color Coding.
- $4^k \cdot n^{O(1)}$ (randomized) algorithm for Feedback Vertex Set.
The race for better FPT algorithms

Double exponential

"Slightly super-exponential"

Single exponential

Subexponential

Tower of exponentials

$2^{O(k)} \rightarrow 2^{2^{O(k)}} \rightarrow 2^{2^{2^{O(k)}}} \rightarrow \cdots \rightarrow 2^{2^{2^{2^{\cdots^{2^{f(k)}}}}}}$