Parameterized Algorithms - Iterative Compression (2004) - Dynamic Programming over Subsets Roohani Sharma Lecture #3 November 02, 2021 ## Iterative Compression (Illustrate with examples) #### FEEDBACK VERTEX SET (FVS) Input: A graph G, a positive integer k Question: Does there exists a set of at most k vertices, say S, such that G-S is acyclic (forest)? Lecture #1: $$2^{\mathcal{O}(k\log k)}n^{\mathcal{O}(1)}$$ (Branching: If minimum degeee is at least 3, then set of 3k largest-degree vertices contain a vertex of the solution.) The race for better FPT algorithms Goal: $$2^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$$ $$2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$$ $5^k n^{\mathcal{O}(1)}$ #### COMPRESSION FEEDBACK VERTEX SET Input: A graph G, a positive integer k + a solution X of size k+1 (a slightly large solution) Question: Does there exists a set of at most k vertices, say S, such that G-S is acyclic (forest)? Idea: X gives additional structure on the input graph. $$|X|=k+1$$ Algorithm: Step 1: Guess the intersection of the solution S with X. Say $$S \cap X = X_S$$, and $X \setminus S = X^*$. #### COMPRESSION FEEDBACK VERTEX SET Input: A graph G, a positive integer k + a solution X of size k+1 (a slightly large solution) Question: Does there exists a set of at most k vertices, say S, such that G-S is acyclic (forest)? Idea: X gives additional structure on the input graph. $$X_S$$ X^* X_S Algorithm: Step I: Guess the intersection of the solution S with X. Say $$S \cap X = X_S$$, and $X \setminus S = X^*$. Number of guesses/branches: $$2|X|$$ or $\sum_{i=0}^k {|X| \choose i} = \sum_{i=0}^k {k+1 \choose i}$ Step 2: Delete X_S from the graph. Look for a solution of size $k-|X_S|$ that is disjoint from X^* . #### DISJOINT FEEDBACK VERTEX SET Input: A graph G, positive integers i and k such that $k \le i$, a solution X^* of size i Question: Does there exists a set S such that: - G-S is acyclic? - S is disjoint from X* - $| \bullet | | S | \leq k$ Forest Observation: Graph induced on X* is a forest. Otherwise, say No. X* Forest G - X* Forest #### Algorithm: Fix a leaf v of G - X^* . Let u be the unique parent of v in G - X^* . - If v has no neighbours in X*, then delete v (because v does not participate in any cycle). - 2. G - X* Forest #### Algorithm: Fix a leaf v of G - X^* . Let u be the unique parent of v in G - X^* . - If v has no neighbours in X*, then delete v (because v does not participate in any cycle). - 2. If v has exactly one neighbour (say y) in X*, then delete v and and an edge between y and u (because any cycle that passes through v, also passes through u). 13. G - X* Forest #### Algorithm: Fix a leaf v of G - X^* . Let u be the unique parent of v in G - X^* . - If v has no neighbours in X*, then delete v (because v does not participate in any cycle). - 2. If v has exactly one neighbour (say y) in X*, then delete v and and an edge between y and u (because any cycle that passes through v, also passes through u). - 3. If v has at least two neighbours in the same tree of X*, the pick v in the solution, delete it and decrease k by I (because there is a cycle all of whose vertices, except v, are in X*). 4. G - X* Forest #### Algorithm: Fix a leaf v of G - X^* . Let u be the unique parent of v in G - X^* . - I. If v has no neighbours in X^* , then delete v (because v does not participate in any cycle). - 2. If v has exactly one neighbour (say y) in X*, then delete v and and an edge between y and u (because any cycle that passes through v, also passes through u). - 3. If v has at least two neighbours in the same tree of X*, the pick v in the solution, delete it and decrease k by I (because there is a cycle all of whose vertices, except v, are in X*). - 4. Otherwise, v has a neighbours in at least two different trees of X*. In this case, branch in the following two branches: - a. Either v belongs to the solution. In this case, pick v in the solution, delete it, and decrease k by 1. - b. Or v does not belong to the solution. In this case, update $X^* = X^* \cup v$. In this case, the number of trees of X^* decrease by I (because v has neighbours in at least two trees of X^*). X* Forest G - X* Forest #### Algorithm: Fix a leaf v of G - X^* . Let u be the unique parent of v in G - X^* . - I. If v has no neighbours in X^* , then delete v (because v does not participate in any cycle). - 2. If v has exactly one neighbour (say y) in X*, then delete v and and an edge between y and u (because any cycle that passes through v, also passes through u). - 3. If v has at least two neighbours in the same tree of X^* , the pick v in the solution, delete it and decrease k by I (because there is a cycle all of whose vertices, except v, are in X^*). - 4. Otherwise, v has a neighbours in at least two different trees of X*. In this case, branch in the following two branches: - a. Either v belongs to the solution. In this case, pick v in the solution, delete it and decrease k by 1. - b. Or v does not belong to the solution. In this case, update $X^* = X^* \cup v$. In this case, the number of trees of X^* decrease by I (because v has neighbours in at least two trees of X^*). Fix a leaf v of G - X^* . Let u be the unique parent of v in G - X^* . - If v has no neighbours in X*, then delete v (because v does not participate in any cycle). - If v has exactly one neighbour (say y) in X^* , then delete v and and [Input: A graph G, an acyclic solution X^* such an edge between y and u (because any cycle that passes through v, also passes through u). - If v has at least two neighbours in the same tree of X^* , the pick v in the solution, delete it and decrease k by I (because there is a cycle all of whose vertices, except v, are in X^*). - Otherwise, v has a neighbours in at least two different trees of X*. In this case, branch in the following two branches: - Either v belongs to the solution. In this case, pick v in the solution, delete it and decrease k by 1. - Or v does not belong to the solution. In this case, update $X^* = 1$ $X^* \cup v$. In this case, the number of trees of X^* decrease by I (because v has neighbours in at least two trees of X^*). Running time: Cases 1-3 are applicable in polynomial time. Cases 4 is a branching step. We are solving the following problem recursively. that the graph induced on X* has t trees, and an integer k. Question: Does there exists a solution of size at most k that is disjoint from X*? - Size of the branching tree is 2^{k+t} . Since we start with X^* of size i, $t \le i$. Also $k \le i$. - Spend polynomial time on each node of the branching tree (check if Cases 1-3 are applicable). Overall running time: $$2^{k+t} n^{\mathcal{O}(1)} \le 4^i n^{\mathcal{O}(1)}$$ #### DISJOINT FEEDBACK VERTEX SET Input: A graph G, positive integers i and k such that k < i, a solution X^* of size i Question: Does there exists a set S such that: - G-S is acyclic? - S is disjoint from X* - |S| ≤ k DISJOINT FEEDBACK VERTEX SET can be solved in $4^i n^{\mathcal{O}(1)} time$. #### COMPRESSION FEEDBACK VERTEX SET Input: A graph G, a positive integer k + a solution X of size k+1 Question: Does there exists a set of at most k vertices, say S, such that G-S is acyclic (forest)? #### Running time: $$\sum_{i=0}^{k} \binom{k+1}{i} 4^{i} n^{\mathcal{O}(1)}$$ $$\leq (1+4)^k n^{\mathcal{O}(1)}$$ (Binomial theorem) $$5^k n^{\mathcal{O}(1)}$$ Compression Feedback Vertex Set can be solved in $5^k n^{\mathcal{O}(1)} time$. Let Π be a vertex deletion to a hereditary property. #### Definition A graph property \mathcal{P} is hereditary or closed under induced subgraphs if whenever $G \in \mathcal{P}$, every induced subgraph of G is also in \mathcal{P} . "removing a vertex does not ruin the property" (e.g., triangle free, bipartite, planar) If **DISJOINT-Π** can be solved in $g(i) \cdot n^{\mathcal{O}(1)}$ then COMPRESSION-II can be solved in $$\sum_{i=0}^{k} \binom{k+1}{i} g(i) \cdot n^{\mathcal{O}(1)}$$ If DISJOINT-Π is FPT, then so is COMPRESSION-Π. In fact, if DISJOINT- Π is solvable in α^i $n^{O(1)}$ time, then COMPRESSION- Π is solvable in $(1+\alpha)^k$ $n^{O(1)}$ time. How to get a solution X of size k+1? - Order the vertices of the graph arbitrarily, say v_1, \ldots, v_n . - Let G_i be the graph induced on the first i vertices, v_1, \ldots, v_i . - G_{k+2} has a trivial solution of size k+1 (take any k+1 vertices in the solution). - Use COMPRESSION FVS to find a solution, say S_{k+2} , of size at most k for G_{k+2} . - 0 If no such S_{k+2} exists, then report No, that is, there is no solution of size at most k for G (this is true acyclicity is a hereditary property). - O Otherwise, $(S_{k+2} \cup v_{k+3})$ is an at most k+1 size solution for G_{k+3} . - Repeat. FEEDBACK VERTEX SET can be solved in $5^k n^{\mathcal{O}(1)} time$. If Π is a vertex deletion problem to a hereditary property, then if Compression- Π can be solved in f(k)n^c time, then Π can be solved in f(k)n^{c+1} time. # Another example: FEEDBACK VERTEX SET IN TOURNAMENTS (FVST) - Directed Feedback Vertex Set is FPT (we will see later in the course). Also uses iterative compression and more advanced tools. - For today, we focus our attention to the case when the input is a tournament. - A tournament is a directed graph where there is exactly one arc between any pair of vertices. #### **IFVST** Input: A tournament D, a positive integer k Question: Does there exists a set of at most k vertices, say S, such that D-S has no directed cycles? NP-hard A tournament D has a directed cycle if and only if D has a directed triangle (cycle on 3 vertices). (Exercise) Therefore, FVST can be solved in 3^k n^{O(1)} using branching. Goal: $$2^k \cdot n^{\mathcal{O}(1)}$$ #### DISJOINT FVST Input: A tournament D, positive integers i and k such that k < i, a solution X^* of size i Question: Does there exists a set S such that: - S is disjoint from X* - $|S| \le k$ - G-S has no directed cycles? Enough to show that **DISJOINT FVST** is solvable in: polynomial time A topological ordering of an acyclic directed graph D is an ordering of the vertices of D, say σ , say that, for any u,v, such that $\sigma(u) > \sigma(v)$, (u,v) is not an arc of D (no backward arcs). #### Exercise If D is a tournament then the following are equivalent: D is acyclic, D has no directed triangles, D has a unique topological ordering. Observation: Graph induced on X* is acyclic. Otherwise, say No. Let ρ be the unique topological ordering of X^* . Let σ be the unique topological ordering of $A=V(D)-X^*$. The vertices of X* appear in the same ordering in the final topological ordering. Vertices of A ordered according to σ Reduction rule: If there exists a directed triangle two of whose vertices belong to X^* , then pick its intersection with A in the solution. For each $y \in A$, posn(y)= largest $i \in X^*$, such that i is an in-neighbour of y. If y has no in-neighbour in X^* then posn(y) =0. (posn(y) tells the relative position of y w.r.t. to the vertices of X^* in the final ordering). Goal: Find a maximum sized subset A, say $W \subseteq A$, such that $D[X^* \cup W]$ is acyclic. Consider the vertices of A that are not in the solution. Can y and z both not be in solution when y appears before z in the ordering of A? No (posn(y) > posn(z)). Goal: Find a longest non-decreasing subsequence in the sequence of position set of A. Goal: Find a maximum sized subset A, say $W \subseteq A$, such that $D[X^* \cup W]$ is acyclic. Consider the vertices of A that are not in the solution. Can y and z both not be in solution when y appears before z in the ordering of A? No (posn(y) > posn(z)). Goal: Find a longest non-decreasing subsequence in the sequence of position set of A. Goal: Find a maximum sized subset A, say $W \subseteq A$, such that $D[X^* \cup W]$ is acyclic. Consider the vertices of A that are not in the solution. Can y and z both not be in solution when y appears before z in the ordering of A? No (posn(y) > posn(z)). Goal: Find a longest non-decreasing subsequence in the sequence of position set of A. This can be done in polynomial time using standard dynamic programming. (Exercise) # Another example: ODD CYCLE TRANSVERSAL (OCT) #### **OCT** Input: A graph G, a positive integer k Question: Does there exists a set of at most k vertices, say S, such that G-S has no odd length cycle (bipartite)? Goal: $$3^k \cdot n^{\mathcal{O}(1)}$$ $\mathcal{O}(3^k \cdot kn(n+m))$ #### DISJOINT OCT Input: A graph G, positive integers i and k such that $k \le i$, a solution X^* of size i Question: Does there exists a set S such that: - S is disjoint from X* - |S| ≤ k - G-S is bipartite? Enough to show that **DISJOINT OCT** is solvable in: $$2^i \cdot n^{\mathcal{O}(1)}$$ $$\mathcal{O}(2^i \cdot k(n+m))$$ ### Solving Disjoint OCT Observation: Graph induced on X* is bipartite. Otherwise, say No. Since $G-X^*$ is bipartite, let (A,B) be a bipartition of $G-X^*$. Let (L,R) be a solution bipartition that is a bipartition of G-S. Step I: Guess the partition of X* into L and R. $$2^{|X^*|} = 2^{k+1}$$ $$X_R = X^* \cap R$$ Revised goal: Find a set $S \subseteq A \cup B$ of at most k vertices such that G-S has a bipartition (L,R) where the blue vertices (LA \cup LB) goes to the right side (R) and the green vertices (RA \cup RB) goes to the left side (L). Revised goal: Find a set $S \subseteq A \cup B$ of at most k vertices such that G-S has a bipartition (L,R) where the blue vertices (LA U LB) goes to the right side (R) and goes to the left side (L). Observation (necessary condition): A solution S is a (LA \cup RB)-(LB \cup RA) separator. Suppose there is a (LA,LB)-path in L \cup R. Therefore, no (LA,LB)-path. Similarly, no (RB,RA)-path. Revised goal: Find a set $S \subseteq A \cup B$ of at most k vertices such that G-S has a bipartition (L,R) where the blue vertices (LA \cup LB) goes to the right side (R) and the green vertices (RA \cup RB) goes to the left side (L). Observation (necessary condition): A solution S is a (LA \cup RB)-(LB \cup RA) separator. Suppose there is a (LA,RA)-path in L \cup R. Therefore, no (LA,RA)-path. Similarly, no (RB,LB)-path. Observation (sufficient condition): Any (LA \cup RB)-(LB \cup RA) separator is a solution. R Claim: S is a solution if and only if S is an (LA \cup RB)-(LB \cup RA) separator size at most k. Such a set S can be found using k rounds of Ford-Fulkerson is O(k (n+m)) time. #### DISJOINT OCT Input: A graph G, positive integers i and k such that $k \le i$, a solution X^* of size i Question: Does there exists a set S such that: - S is disjoint from X* - $| \bullet | S | \leq k$ - G-S is bipartite? Overall algorithm: - Guess the partition of X* into L and R. - Compute sets LA,LB,RA,RB. - Find an (LA \cup RB)-(LB \cup RA) separator $$2^{|X^*|} = 2$$ $$O(n+m)$$ $$O(k(n+m))$$ Overall running time: $$\mathcal{O}(2^i \cdot k(n+m))$$ $\mathcal{O}(2^i \cdot k(n+m))$ Odd cycle transversal can be solved in $\mathcal{O}(3^k \cdot kn(n+m))$ time.