# Parameterized Algorithms

- Iterative Compression (2004)
- Dynamic Programming over Subsets

Roohani Sharma Lecture #3 November 02, 2021

## Iterative Compression

(Illustrate with examples)

#### FEEDBACK VERTEX SET (FVS)

Input: A graph G, a positive integer k

Question: Does there exists a set of at most k vertices, say S, such that G-S is acyclic (forest)?

Lecture #1:

$$2^{\mathcal{O}(k\log k)}n^{\mathcal{O}(1)}$$

(Branching: If minimum degeee is at least 3, then set of 3k largest-degree vertices contain a vertex of the solution.)

The race for better FPT algorithms



Goal:

$$2^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$$

$$2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$$
  $5^k n^{\mathcal{O}(1)}$ 

#### COMPRESSION FEEDBACK VERTEX SET

Input: A graph G, a positive integer k

+ a solution X of size k+1 (a slightly large solution)

Question: Does there exists a set of at most k vertices, say S, such that G-S is acyclic (forest)?

Idea: X gives additional structure on the input graph.



$$|X|=k+1$$



Algorithm:

Step 1: Guess the intersection of the solution S with X.

Say 
$$S \cap X = X_S$$
, and  $X \setminus S = X^*$ .

#### COMPRESSION FEEDBACK VERTEX SET

Input: A graph G, a positive integer k

+ a solution X of size k+1 (a slightly large solution)

Question: Does there exists a set of at most k vertices, say S, such that G-S is acyclic (forest)?

Idea: X gives additional structure on the input graph.

$$X_S$$
 $X^*$ 
 $X_S$ 
 $X_S$ 



Algorithm:

Step I: Guess the intersection of the solution S with X.

Say 
$$S \cap X = X_S$$
, and  $X \setminus S = X^*$ .

Number of guesses/branches:

$$2|X|$$
 or  $\sum_{i=0}^k {|X| \choose i} = \sum_{i=0}^k {k+1 \choose i}$ 

Step 2: Delete X<sub>S</sub> from the graph.

Look for a solution of size  $k-|X_S|$  that is disjoint from  $X^*$ .

#### DISJOINT FEEDBACK VERTEX SET

Input: A graph G, positive integers i and k such that  $k \le i$ , a solution  $X^*$  of size i

Question: Does there exists a set S such that:

- G-S is acyclic?
- S is disjoint from X\*
- $| \bullet | | S | \leq k$







Forest

Observation: Graph induced on X\* is a forest. Otherwise, say No.



X\* Forest



G - X\* Forest

#### Algorithm:

Fix a leaf v of G -  $X^*$ . Let u be the unique parent of v in G -  $X^*$ .

- If v has no neighbours in X\*, then delete v (because v does not participate in any cycle).
- 2.



G - X\* Forest

#### Algorithm:

Fix a leaf v of G -  $X^*$ . Let u be the unique parent of v in G -  $X^*$ .

- If v has no neighbours in X\*, then delete v (because v does not participate in any cycle).
- 2. If v has exactly one neighbour (say y) in X\*, then delete v and and an edge between y and u (because any cycle that passes through v, also passes through u).

13.



G - X\* Forest

#### Algorithm:

Fix a leaf v of G -  $X^*$ . Let u be the unique parent of v in G -  $X^*$ .

- If v has no neighbours in X\*, then delete v (because v does not participate in any cycle).
- 2. If v has exactly one neighbour (say y) in X\*, then delete v and and an edge between y and u (because any cycle that passes through v, also passes through u).
- 3. If v has at least two neighbours in the same tree of X\*, the pick v in the solution, delete it and decrease k by I (because there is a cycle all of whose vertices, except v, are in X\*).

4.



G - X\* Forest

#### Algorithm:

Fix a leaf v of G -  $X^*$ . Let u be the unique parent of v in G -  $X^*$ .

- I. If v has no neighbours in  $X^*$ , then delete v (because v does not participate in any cycle).
- 2. If v has exactly one neighbour (say y) in X\*, then delete v and and an edge between y and u (because any cycle that passes through v, also passes through u).
- 3. If v has at least two neighbours in the same tree of X\*, the pick v in the solution, delete it and decrease k by I (because there is a cycle all of whose vertices, except v, are in X\*).
- 4. Otherwise, v has a neighbours in at least two different trees of X\*. In this case, branch in the following two branches:
  - a. Either v belongs to the solution. In this case, pick v in the solution, delete it, and decrease k by 1.
  - b. Or v does not belong to the solution. In this case, update  $X^* = X^* \cup v$ . In this case, the number of trees of  $X^*$  decrease by I (because v has neighbours in at least two trees of  $X^*$ ).



X\* Forest



G - X\* Forest

#### Algorithm:

Fix a leaf v of G -  $X^*$ . Let u be the unique parent of v in G -  $X^*$ .

- I. If v has no neighbours in  $X^*$ , then delete v (because v does not participate in any cycle).
- 2. If v has exactly one neighbour (say y) in X\*, then delete v and and an edge between y and u (because any cycle that passes through v, also passes through u).
- 3. If v has at least two neighbours in the same tree of  $X^*$ , the pick v in the solution, delete it and decrease k by I (because there is a cycle all of whose vertices, except v, are in  $X^*$ ).
- 4. Otherwise, v has a neighbours in at least two different trees of X\*. In this case, branch in the following two branches:
  - a. Either v belongs to the solution. In this case, pick v in the solution, delete it and decrease k by 1.
  - b. Or v does not belong to the solution. In this case, update  $X^* = X^* \cup v$ . In this case, the number of trees of  $X^*$  decrease by I (because v has neighbours in at least two trees of  $X^*$ ).

Fix a leaf v of G -  $X^*$ . Let u be the unique parent of v in G -  $X^*$ .

- If v has no neighbours in X\*, then delete v (because v does not participate in any cycle).
- If v has exactly one neighbour (say y) in  $X^*$ , then delete v and and [Input: A graph G, an acyclic solution  $X^*$  such an edge between y and u (because any cycle that passes through v, also passes through u).
- If v has at least two neighbours in the same tree of  $X^*$ , the pick v in the solution, delete it and decrease k by I (because there is a cycle all of whose vertices, except v, are in  $X^*$ ).
- Otherwise, v has a neighbours in at least two different trees of X\*. In this case, branch in the following two branches:
  - Either v belongs to the solution. In this case, pick v in the solution, delete it and decrease k by 1.
  - Or v does not belong to the solution. In this case, update  $X^* = 1$  $X^* \cup v$ . In this case, the number of trees of  $X^*$  decrease by I (because v has neighbours in at least two trees of  $X^*$ ).

Running time:

Cases 1-3 are applicable in polynomial time.

Cases 4 is a branching step.

We are solving the following problem recursively.

that the graph induced on X\* has t trees, and an integer k.

Question: Does there exists a solution of size at most k that is disjoint from X\*?

- Size of the branching tree is  $2^{k+t}$ . Since we start with  $X^*$  of size i,  $t \le i$ . Also  $k \le i$ .
- Spend polynomial time on each node of the branching tree (check if Cases 1-3 are applicable).

Overall running time:

$$2^{k+t} n^{\mathcal{O}(1)} \le 4^i n^{\mathcal{O}(1)}$$

#### DISJOINT FEEDBACK VERTEX SET

Input: A graph G, positive integers i and k such that k < i, a solution  $X^*$  of size i

Question: Does there exists a set S such that:

- G-S is acyclic?
- S is disjoint from X\*
- |S| ≤ k

DISJOINT FEEDBACK VERTEX SET can be solved in  $4^i n^{\mathcal{O}(1)} time$ .

#### COMPRESSION FEEDBACK VERTEX SET

Input: A graph G, a positive integer k

+ a solution X of size k+1

Question: Does there exists a set of at most k vertices, say S, such that G-S is acyclic (forest)?

#### Running time:

$$\sum_{i=0}^{k} \binom{k+1}{i} 4^{i} n^{\mathcal{O}(1)}$$

$$\leq (1+4)^k n^{\mathcal{O}(1)}$$
 (Binomial theorem)

$$5^k n^{\mathcal{O}(1)}$$

Compression Feedback Vertex Set can be solved in  $5^k n^{\mathcal{O}(1)} time$ .

Let  $\Pi$  be a vertex deletion to a hereditary property.

#### Definition

A graph property  $\mathcal{P}$  is hereditary or closed under induced subgraphs if whenever  $G \in \mathcal{P}$ , every induced subgraph of G is also in  $\mathcal{P}$ .

"removing a vertex does not ruin the property" (e.g., triangle free, bipartite, planar) If **DISJOINT-Π** can be solved in  $g(i) \cdot n^{\mathcal{O}(1)}$ 

then COMPRESSION-II can be solved in

$$\sum_{i=0}^{k} \binom{k+1}{i} g(i) \cdot n^{\mathcal{O}(1)}$$

If DISJOINT-Π is FPT, then so is COMPRESSION-Π.

In fact, if DISJOINT- $\Pi$  is solvable in  $\alpha^i$   $n^{O(1)}$  time, then COMPRESSION- $\Pi$  is solvable in  $(1+\alpha)^k$   $n^{O(1)}$  time.

How to get a solution X of size k+1?

- Order the vertices of the graph arbitrarily, say  $v_1, \ldots, v_n$ .
- Let  $G_i$  be the graph induced on the first i vertices,  $v_1, \ldots, v_i$ .
- $G_{k+2}$  has a trivial solution of size k+1 (take any k+1 vertices in the solution).
- Use COMPRESSION FVS to find a solution, say  $S_{k+2}$ , of size at most k for  $G_{k+2}$ .
  - 0 If no such  $S_{k+2}$  exists, then report No, that is, there is no solution of size at most k for G (this is true acyclicity is a hereditary property).
  - O Otherwise,  $(S_{k+2} \cup v_{k+3})$  is an at most k+1 size solution for  $G_{k+3}$ .
- Repeat.

FEEDBACK VERTEX SET can be solved in  $5^k n^{\mathcal{O}(1)} time$ .

If  $\Pi$  is a vertex deletion problem to a hereditary property, then if Compression- $\Pi$  can be solved in f(k)n<sup>c</sup> time, then  $\Pi$  can be solved in f(k)n<sup>c+1</sup> time.

# Another example: FEEDBACK VERTEX SET IN TOURNAMENTS (FVST)

- Directed Feedback Vertex Set is FPT (we will see later in the course). Also uses iterative compression and more advanced tools.
- For today, we focus our attention to the case when the input is a tournament.
- A tournament is a directed graph where there is exactly one arc between any pair of vertices.



#### **IFVST**

Input: A tournament D, a positive integer k

Question: Does there exists a set of at most k vertices, say S, such that D-S has no directed cycles?

NP-hard

A tournament D has a directed cycle if and only if D has a directed triangle (cycle on 3 vertices). (Exercise) Therefore, FVST can be solved in 3<sup>k</sup> n<sup>O(1)</sup> using branching.

Goal: 
$$2^k \cdot n^{\mathcal{O}(1)}$$

#### DISJOINT FVST

Input: A tournament D, positive integers i and k such that k < i, a solution  $X^*$  of size i

Question: Does there exists a set S such that:

- S is disjoint from X\*
- $|S| \le k$
- G-S has no directed cycles?

Enough to show that **DISJOINT FVST** is solvable in: polynomial time

A topological ordering of an acyclic directed graph D is an ordering of the vertices of D, say  $\sigma$ , say that, for any u,v, such that  $\sigma(u) > \sigma(v)$ , (u,v) is not an arc of D (no backward arcs).

#### Exercise

If D is a tournament then the following are equivalent:

D is acyclic,

D has no directed triangles,

D has a unique topological ordering.



Observation: Graph induced on X\* is acyclic. Otherwise, say No.

Let  $\rho$  be the unique topological ordering of  $X^*$ . Let  $\sigma$  be the unique topological ordering of  $A=V(D)-X^*$ .





The vertices of X\* appear in the same ordering in the final topological ordering.



Vertices of A ordered according

to  $\sigma$ 



Reduction rule: If there exists a directed triangle two of whose vertices belong to  $X^*$ , then pick its intersection with A in the solution.



For each  $y \in A$ , posn(y)= largest  $i \in X^*$ , such that i is an in-neighbour of y.

If y has no in-neighbour in  $X^*$  then posn(y) =0.

(posn(y) tells the relative position of y w.r.t. to the vertices of  $X^*$  in the final ordering).



Goal: Find a maximum sized subset A, say  $W \subseteq A$ , such that  $D[X^* \cup W]$  is acyclic.

Consider the vertices of A that are not in the solution.

Can y and z both not be in solution when y appears before z in the ordering of A? No (posn(y) > posn(z)).

Goal: Find a longest non-decreasing subsequence in the sequence of position set of A.



Goal: Find a maximum sized subset A, say  $W \subseteq A$ , such that  $D[X^* \cup W]$  is acyclic.

Consider the vertices of A that are not in the solution.

Can y and z both not be in solution when y appears before z in the ordering of A? No (posn(y) > posn(z)).

Goal: Find a longest non-decreasing subsequence in the sequence of position set of A.



Goal: Find a maximum sized subset A, say  $W \subseteq A$ , such that  $D[X^* \cup W]$  is acyclic.

Consider the vertices of A that are not in the solution.

Can y and z both not be in solution when y appears before z in the ordering of A? No (posn(y) > posn(z)).

Goal: Find a longest non-decreasing subsequence in the sequence of position set of A.

This can be done in polynomial time using standard dynamic programming. (Exercise)

# Another example: ODD CYCLE TRANSVERSAL (OCT)

#### **OCT**

Input: A graph G, a positive integer k

Question: Does there exists a set of at most k vertices, say S, such that G-S has no odd length cycle (bipartite)?

Goal:

$$3^k \cdot n^{\mathcal{O}(1)}$$

 $\mathcal{O}(3^k \cdot kn(n+m))$ 

#### DISJOINT OCT

Input: A graph G, positive integers i and k such that  $k \le i$ , a solution  $X^*$  of size i

Question: Does there exists a set S such that:

- S is disjoint from X\*
- |S| ≤ k
- G-S is bipartite?

Enough to show that **DISJOINT OCT** is solvable in:

$$2^i \cdot n^{\mathcal{O}(1)}$$

$$\mathcal{O}(2^i \cdot k(n+m))$$

### Solving Disjoint OCT

Observation: Graph induced on X\* is bipartite. Otherwise, say No.

Since  $G-X^*$  is bipartite, let (A,B) be a bipartition of  $G-X^*$ .

Let (L,R) be a solution bipartition that is a bipartition of G-S.



Step I: Guess the partition of X\* into L and R.

$$2^{|X^*|} = 2^{k+1}$$



$$X_R = X^* \cap R$$







Revised goal: Find a set  $S \subseteq A \cup B$  of at most k vertices such that G-S has a bipartition (L,R) where the blue vertices (LA  $\cup$  LB) goes to the right side (R) and the green vertices (RA  $\cup$  RB) goes to the left side (L).



Revised goal: Find a set  $S \subseteq A \cup B$ of at most k vertices such that G-S has a bipartition (L,R) where the blue vertices (LA U LB) goes to the right side (R) and goes to the left side (L).

Observation (necessary condition): A solution S is a (LA  $\cup$  RB)-(LB  $\cup$  RA) separator.

Suppose there is a (LA,LB)-path in L  $\cup$  R.



Therefore, no (LA,LB)-path. Similarly, no (RB,RA)-path.



Revised goal: Find a set  $S \subseteq A \cup B$  of at most k vertices such that G-S has a bipartition (L,R) where the blue vertices (LA  $\cup$  LB) goes to the right side (R) and the green vertices (RA  $\cup$  RB) goes to the left side (L).

Observation (necessary condition): A solution S is a (LA  $\cup$  RB)-(LB  $\cup$  RA) separator.

Suppose there is a (LA,RA)-path in L  $\cup$  R.



Therefore, no (LA,RA)-path. Similarly, no (RB,LB)-path.

Observation (sufficient condition): Any (LA  $\cup$  RB)-(LB  $\cup$  RA) separator is a solution.



R

Claim: S is a solution if and only if S is an (LA  $\cup$  RB)-(LB  $\cup$  RA) separator size at most k.

Such a set S can be found using k rounds of Ford-Fulkerson is O(k (n+m)) time.

#### DISJOINT OCT

Input: A graph G, positive integers i and k such that  $k \le i$ , a solution  $X^*$  of size i

Question: Does there exists a set S such that:

- S is disjoint from X\*
- $| \bullet | S | \leq k$
- G-S is bipartite?

Overall algorithm:

- Guess the partition of X\* into L and R.
- Compute sets LA,LB,RA,RB.
- Find an (LA  $\cup$  RB)-(LB  $\cup$  RA) separator

$$2^{|X^*|} = 2$$

$$O(n+m)$$

$$O(k(n+m))$$

Overall running time:

$$\mathcal{O}(2^i \cdot k(n+m))$$

 $\mathcal{O}(2^i \cdot k(n+m))$  Odd cycle transversal can be solved in  $\mathcal{O}(3^k \cdot kn(n+m))$  time.