Dynamic Programming



Set Cover

@ Input : A universe U of n elements and
o ||l O a family F = {F}, Y, ... F,,} of m
o o o subsets of U.

o Parameter : n (Size of the Universe)
© O O e Output : A subfamily 7' C F of

minimum size that “covers U”

U F=vu

FeF’

Theorem
SET COVER is FPT parameterized by the size of the universe

Running time: 2" - poly(n,m)



Set Cover: Dynamic Programming

@ Fix an ordering of the family F: Fy, Fs, ..., F,,
@ Dynamic Programming Table,
for every X C U and j € {0,1,...,m}
T[X,j] = size of a min subset of {Fy, Fh, ..., F;} that covers X
@ Table Size: 2!V x m
@ Base Case : T[X,0] =0 if X =0, else it is cc.

@ Recursize Step :
TIX,jl=min {T[X,j —1], 1+T[X\Fj;,j—1]}

o Either X can be covered using within {Fy, F», ..., F;_1}
o Or we need F; + best solution of X \ F

T[U,m]| is the minimum set cover size

Maintain a candidate solution along with each T[X, j].



Set Cover: Dynamic Programming

@ Fix an ordering of the family F: Fy, Fs, ..., F,,
@ Dynamic Programming Table,
for every X C U and j € {0,1,...,m}
T[X,j] = size of a min subset of {Fy, Fh, ..., F;} that covers X
@ Table Size: 2!V x m
@ Base Case : T[X,0] =0 if X =0, else it is cc.

@ Recursize Step :
TIX,jl=min {T[X,j —1], 1+T[X\Fj;,j—1]}

o Either X can be covered using within {Fy, F», ..., F;_1}
o Or we need F; + best solution of X \ F

T[U,m]| is the minimum set cover size

@ Maintain a candidate solution along with each T'[X, j].

Exercise: Prove that T'[X, j] indeed contains a minimum set cover of X
from {Fth, AP ,Fj}



Steiner Tree

e Input : Graph G on n vertices,
S C V(@) of k vertices called Terminals.

e Parameter : & (Number of Terminals)

e Output : Minimum connected
subgraph H of GG that contains all of S.

Observation : H must be a Tree

Theorem

STEINER TREE can be solved in time 3F - poly(n).

Notation:

o dg(u,v) = length of shortest path between v and v in G.

o Assume every terminal s € S has degree 1



Steiner Tree: Dynamic Programming

@ DP Table: For X C S and v € V(G)

T[X,v] = minimum cost of a sub-tree
containing X U v.

@ Table Size: 2° - n
Base Case I: T[),v] = 1 for every v € V(G)

]
Base Case IT: T'[{s},v] = d(s,v) for every
ses

Recursive Case: for X C V(G), |X| > 2

T[X,v] = ueV(GI)I,H%#YgX da(u,v) + T[Y,u] + T[X \ Y, u]



Steiner Tree: Dynamic Programming

@ DP Table: For X C S and v € V(G)

T[X,v] = minimum cost of a sub-tree
containing X U v.

@ Recursive Case:

TIX,v] = i TVY, TIX\Y,
[ ?U] uEV(GI)I,llgyéYngG(u’v)—i_ [,U]—|— [ \ 7“]

Correctness: (LHS < RHS)

@ For any Y C X and u € V(G), the RHS is the cost of a sub-tree
connecting X U v.

@ RHS = min-cost subtree for Y U u + min-cost subtree for
(X \Y)Uu + shortest path between v and v



Steiner Tree: Dynamic Programming

@ DP Table: For X C S and v € V(G)

T[X,v] = minimum cost of a sub-tree
containing X U v.

@ Recursive Case:

TIX.v] = ' TIY, TIX\ Y,
[X, ] MEV(GI)%#Y;XCZG(“’”H Yu] + T[X \ Y,y

Correctness: (LHS > RHS)
@ Consider a minimum subtree H of G connecting X U v.

@ root H at v, and w is the closest descendant with multiple
children {uy,ua,...,ue}

Note: u exists because |X| > 2 and all terminals have degree 1.
Further dg(u,v) = da(u,v), by choice of H



Steiner Tree: Dynamic Programming

@ DP Table: For X C S and v € V(G)

T[X,v] = minimum cost of a sub-tree
containing X U v.

@ Recursive Case:

T|IX,v] = i TVY, TIX\Y,
[ ?U] uEV(GI)I,llgyéYngG(u’v)—i_ [,U]—|— [ \ 7“]

Correctness: (LHS > RHS)
@ Let Y = all terminal from X in sub-tree of u;.

@ Split H into 3 parts

o The sub-path between u and v
o The sub-tree of H rooted at u; + edge (u,u;)
o The sub-tree of H excluding the above



Steiner Tree: Dynamic Programming

@ DP Table: For X C S and v € V(G)

T'[X,v] = minimum cost of a sub-tree
containing X U v.

@ Recursive Case:

TX,v] = i d TV, TX\Y,
Xl = | min | de(u0) + T[Y,0] + TIX\Y.al

Running Time:
e Computing 7'[X,v] requires 2/XI - poly(n) time.
@ Computing the entire table requires time:

> 2Xpoly(n)

veV(G),XCS

@ This is 3/°I - poly(n)



Steiner Tree

e Input : Graph G on n vertices,
S C V(@) of k vertices called Terminals.

e Parameter : & (Number of Terminals)

e Output : Minimum connected
subgraph H of GG that contains all of S.

Observation : H must be a Tree

Theorem

STEINER TREE can be solved in time 3F - poly(n).

Exercise: STEINER TREE with weights (Positive Integers)



