
Dynamic Programming

Set Cover

Input : A universe U of n elements and
a family F = {F1, F2, . . . Fm} of m
subsets of U .

Parameter : n (Size of the Universe)

Output : A subfamily F ′ ⊆ F of
minimum size that “covers U”

⋃

F∈F ′

F = U

Theorem

Set Cover is FPT parameterized by the size of the universe

Running time: 2n · poly(n,m)

Set Cover: Dynamic Programming

Fix an ordering of the family F : F1, F2, . . . , Fm

Dynamic Programming Table,

for every X ⊆ U and j ∈ {0, 1, . . . ,m}

T [X, j] = size of a min subset of {F1, F2, . . . , Fj} that covers X

Table Size: 2|U | ×m

Base Case : T [X, 0] = 0 if X = ∅, else it is ∞.

Recursize Step :

T [X, j] = min
{
T [X, j − 1], 1 + T [X \ Fj , j − 1]

}

Either X can be covered using within {F1, F2, . . . , Fj−1}
Or we need Fj + best solution of X \ Fj

T [U,m] is the minimum set cover size

Maintain a candidate solution along with each T [X, j].

Exercise: Prove that T [X, j] indeed contains a minimum set cover of X
from {F1, F2, . . . , Fj}

Set Cover: Dynamic Programming

Fix an ordering of the family F : F1, F2, . . . , Fm

Dynamic Programming Table,

for every X ⊆ U and j ∈ {0, 1, . . . ,m}

T [X, j] = size of a min subset of {F1, F2, . . . , Fj} that covers X

Table Size: 2|U | ×m

Base Case : T [X, 0] = 0 if X = ∅, else it is ∞.

Recursize Step :

T [X, j] = min
{
T [X, j − 1], 1 + T [X \ Fj , j − 1]

}

Either X can be covered using within {F1, F2, . . . , Fj−1}
Or we need Fj + best solution of X \ Fj

T [U,m] is the minimum set cover size

Maintain a candidate solution along with each T [X, j].

Exercise: Prove that T [X, j] indeed contains a minimum set cover of X
from {F1, F2, . . . , Fj}

Steiner Tree

Input : Graph G on n vertices,
S ⊆ V (G) of k vertices called Terminals.

Parameter : k (Number of Terminals)

Output : Minimum connected
subgraph H of G that contains all of S.

Observation : H must be a Tree

Theorem

Steiner Tree can be solved in time 3k · poly(n).

Notation:

dG(u, v) = length of shortest path between u and v in G.

Assume every terminal s ∈ S has degree 1

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Table Size: 2S · n

Base Case I: T [∅, v] = 1 for every v ∈ V (G)

Base Case II: T [{s}, v] = dG(s, v) for every
s ∈ S

Recursive Case: for X ⊆ V (G), |X| ≥ 2

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Correctness: (LHS ≤ RHS)

For any Y ⊆ X and u ∈ V (G), the RHS is the cost of a sub-tree
connecting X ∪ v.

RHS = min-cost subtree for Y ∪ u + min-cost subtree for
(X \ Y) ∪ u + shortest path between u and v

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Correctness: (LHS ≥ RHS)

Consider a minimum subtree H of G connecting X ∪ v.

root H at v, and u is the closest descendant with multiple
children {u1, u2, . . . , u`}

Note: u exists because |X| ≥ 2 and all terminals have degree 1.

Further dH(u, v) = dG(u, v), by choice of H

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y (X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Correctness: (LHS ≥ RHS)

Let Y = all terminal from X in sub-tree of u1.

Split H into 3 parts

The sub-path between u and v
The sub-tree of H rooted at u1 + edge (u, u1)
The sub-tree of H excluding the above

Steiner Tree: Dynamic Programming

DP Table: For X ⊆ S and v ∈ V (G)

T [X, v] = minimum cost of a sub-tree
containing X ∪ v.

Recursive Case:

T [X, v] = min
u∈V (G), ∅6=Y(X

dG(u, v) + T [Y, u] + T [X \ Y, u]

Running Time:

Computing T [X, v] requires 2|X| · poly(n) time.

Computing the entire table requires time:
∑

v∈V (G),X⊆S

2|X| · poly(n)

This is 3|S| · poly(n)

Steiner Tree

Input : Graph G on n vertices,
S ⊆ V (G) of k vertices called Terminals.

Parameter : k (Number of Terminals)

Output : Minimum connected
subgraph H of G that contains all of S.

Observation : H must be a Tree

Theorem

Steiner Tree can be solved in time 3k · poly(n).

Exercise: Steiner Tree with weights (Positive Integers)

