Dynamic Programming

Set Cover

- Input : A universe U of n elements and a family $\mathcal{F} = \{F_1, F_2, \dots, F_m\}$ of msubsets of U.
- **Parameter :** *n* (Size of the Universe)
- Output : A subfamily *F*' ⊆ *F* of minimum size that "covers *U*"

$$\bigcup_{F\in \mathcal{F}'}F=U$$

Theorem

SET COVER is FPT parameterized by the size of the universe

Running time: $2^n \cdot \mathsf{poly}(n,m)$

Set Cover: Dynamic Programming

- Fix an ordering of the family $\mathcal{F}: F_1, F_2, \ldots, F_m$
- Dynamic Programming Table,

for every $X \subseteq U$ and $j \in \{0, 1, \dots, m\}$

T[X, j] = size of a min subset of $\{F_1, F_2, \dots, F_j\}$ that covers X

- Table Size: $2^{|U|} \times m$
- Base Case : T[X, 0] = 0 if $X = \emptyset$, else it is ∞ .
- Recursize Step :

 $T[X, j] = \min \{ T[X, j-1], 1 + T[X \setminus F_j, j-1] \}$

- Either X can be covered using within $\{F_1, F_2, \dots, F_{j-1}\}$
- Or we need F_j + best solution of $X \setminus F_j$
- T[U, m] is the minimum set cover size
- Maintain a candidate solution along with each T[X, j].

Set Cover: Dynamic Programming

- Fix an ordering of the family $\mathcal{F}: F_1, F_2, \ldots, F_m$
- Dynamic Programming Table,

for every $X \subseteq U$ and $j \in \{0, 1, \dots, m\}$

T[X, j] = size of a min subset of $\{F_1, F_2, \dots, F_j\}$ that covers X

- Table Size: $2^{|U|} \times m$
- Base Case : T[X, 0] = 0 if $X = \emptyset$, else it is ∞ .
- Recursize Step :

 $T[X, j] = \min \{ T[X, j-1], 1 + T[X \setminus F_j, j-1] \}$

- Either X can be covered using within $\{F_1, F_2, \dots, F_{j-1}\}$
- Or we need F_j + best solution of $X \setminus F_j$
- T[U, m] is the minimum set cover size
- Maintain a candidate solution along with each T[X, j].

Exercise: Prove that T[X, j] indeed contains a minimum set cover of X from $\{F_1, F_2, \ldots, F_j\}$

Steiner Tree

- Input : Graph G on n vertices, $S \subseteq V(G)$ of k vertices called Terminals.
- **Parameter :** *k* (Number of Terminals)
- **Output** : Minimum connected subgraph *H* of *G* that contains all of *S*.

Observation : H must be a Tree

Theorem

STEINER TREE can be solved in time $3^k \cdot \operatorname{poly}(n)$.

Notation:

- $d_G(u, v) =$ length of shortest path between u and v in G.
- Assume every terminal $s \in S$ has degree 1

• DP Table: For $X \subseteq S$ and $v \in V(G)$

T[X, v] =minimum cost of a sub-tree containing $X \cup v$.

- Table Size: $2^{S} \cdot n$
- Base Case I: $T[\emptyset, v] = 1$ for every $v \in V(G)$
- Base Case II: $T[\{s\}, v] = d_G(s, v)$ for every $s \in S$
- Recursive Case: for $X \subseteq V(G), |X| \ge 2$

$$T[X, v] = \min_{u \in V(G), \ \emptyset \neq Y \subsetneq X} d_G(u, v) + T[Y, u] + T[X \setminus Y, u]$$

• DP Table: For $X \subseteq S$ and $v \in V(G)$

T[X, v] =minimum cost of a sub-tree containing $X \cup v$.

• Recursive Case:

$$T[X, v] = \min_{u \in V(G), \ \emptyset \neq Y \subsetneq X} d_G(u, v) + T[Y, u] + T[X \setminus Y, u]$$

Correctness: (LHS < RHS)

- For any $Y \subseteq X$ and $u \in V(G)$, the RHS is the cost of a sub-tree connecting $X \cup v$.
- RHS = min-cost subtree for $Y \cup u$ + min-cost subtree for $(X \setminus Y) \cup u$ + shortest path between u and v

• DP Table: For $X \subseteq S$ and $v \in V(G)$

T[X, v] =minimum cost of a sub-tree containing $X \cup v$.

• Recursive Case:

$$T[X,v] = \min_{u \in V(G), \ \emptyset \neq Y \subsetneq X} d_G(u,v) + T[Y,u] + T[X \setminus Y,u]$$

Correctness: $(LHS \ge RHS)$

- Consider a minimum subtree H of G connecting $X \cup v$.
- root H at v, and u is the closest descendant with multiple children $\{u_1, u_2, \dots, u_\ell\}$

Note: u exists because $|X| \ge 2$ and all terminals have degree 1. Further $d_H(u, v) = d_G(u, v)$, by choice of H

• DP Table: For $X \subseteq S$ and $v \in V(G)$

T[X, v] =minimum cost of a sub-tree containing $X \cup v$.

• Recursive Case:

 $T[X,v] = \min_{u \in V(G), \ \emptyset \neq Y \subsetneq X} d_G(u,v) + T[Y,u] + T[X \setminus Y,u]$

Correctness: $(LHS \ge RHS)$

- Let Y = all terminal from X in sub-tree of u_1 .
- Split H into 3 parts
 - $\bullet\,$ The sub-path between u and v
 - The sub-tree of H rooted at u_1 + edge (u, u_1)
 - The sub-tree of H excluding the above

• DP Table: For $X \subseteq S$ and $v \in V(G)$

T[X, v] =minimum cost of a sub-tree containing $X \cup v$.

• Recursive Case:

$$T[X, v] = \min_{u \in V(G), \ \emptyset \neq Y \subsetneq X} d_G(u, v) + T[Y, u] + T[X \setminus Y, u]$$

Running Time:

- Computing T[X, v] requires $2^{|X|} \cdot \mathsf{poly}(n)$ time.
- Computing the entire table requires time:

$$\sum_{v \in V(G), X \subseteq S} 2^{|X|} \cdot \mathsf{poly}(n)$$

• This is $3^{|S|} \cdot \mathsf{poly}(n)$

Steiner Tree

- Input : Graph G on n vertices, $S \subseteq V(G)$ of k vertices called Terminals.
- **Parameter :** *k* (Number of Terminals)
- **Output** : Minimum connected subgraph *H* of *G* that contains all of *S*.

Observation : H must be a Tree

Theorem

STEINER TREE can be solved in time $3^k \cdot \operatorname{poly}(n)$.

Exercise: STEINER TREE with weights (Positive Integers)