
Roohani Sharma
November 16, 2021

Kernelization
Every block of stone has a statue inside it and it is the task of the sculptor to discover it.

— Michelangelo Buonarroti

Lecture #5

Roohani Sharma
November 16, 2021

Kernelization
Every block of stone has a statue inside it and it is the task of the sculptor to discover it.

— Michelangelo Buonarroti

Lecture #5

The lost island of pre-processing…

*With guarantees
Pre-processing for NP-hard problems?

Can we preprocess a given instance of an NP-hard problem and
guarantee a 1% decrease in its size
in polynomial time?

*With guarantees
Pre-processing for NP-hard problems?

Can we preprocess a given instance of an NP-hard problem and
guarantee a 1% decrease in its size
in polynomial time?

*With guarantees
Pre-processing for NP-hard problems?

Can we preprocess a given instance of an NP-hard problem and
guarantee a 1% decrease in its size
in polynomial time?

Polynomial
 time

*With guarantees
Pre-processing for NP-hard problems?

Can we preprocess a given instance of an NP-hard problem and
guarantee a 1% decrease in its size
in polynomial time?

Polynomial
 time

Polynomial
 time

*With guarantees
Pre-processing for NP-hard problems?

Can we preprocess a given instance of an NP-hard problem and
guarantee a 1% decrease in its size
in polynomial time?

Polynomial
 time

Polynomial
 time

Polynomial
 time

*With guarantees
Pre-processing for NP-hard problems?

Can we preprocess a given instance of an NP-hard problem and
guarantee a 1% decrease in its size
in polynomial time?

Polynomial
 time

Polynomial
 time

Polynomial
 time

?
Polynomial

 time

Kernelization

- Efficient pre-processing with guarantees for parameterized problems

Kernelization

- Efficient pre-processing with guarantees for parameterized problems

Runs in
polynomial

time

Kernelization

- Efficient pre-processing with guarantees for parameterized problems

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

≡

Kernelization

- Efficient pre-processing with guarantees for parameterized problems

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

≡
|I’|, k’ ≤ g(k)

Kernelization

- Efficient pre-processing with guarantees for parameterized problems

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

≡
|I’|, k’ ≤ g(k)

Kernelization

- Efficient pre-processing with guarantees for parameterized problems

∏ admits a kernel of size g(k).

If g(k) is a polynomial/exponential function, then ∏ admits a polynomial/exponential kernel.

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

≡
|I’|, k’ ≤ g(k)

Reduction rules (RR)

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

Reduction rules (RR)

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

≡ Reduction
rule is safe.

Reduction rules (RR)

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

• A kernelization algorithm comprises of possibly several (polynomially many) safe reduction
rules.

≡ Reduction
rule is safe.

Reduction rules (RR)

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

• A kernelization algorithm comprises of possibly several (polynomially many) safe reduction
rules.

• Each reduction rules should be applicable only a polynomial number of times.

≡ Reduction
rule is safe.

Reduction rules (RR)

Runs in
polynomial

time

I,k ∏

I’,k’ ∏

• A kernelization algorithm comprises of possibly several (polynomially many) safe reduction
rules.

• Each reduction rules should be applicable only a polynomial number of times.
• This is followed by an analysis showing that if none of the designed reduction rules are
applicable, then the size of the instance is bounded by some g(k).

≡ Reduction
rule is safe.

Vertex Cover: Refresher

Vertex Cover
Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S?

Vertex Cover
Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S?

RR 1: Delete isolated vertices.

Vertex Cover
Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S?

RR 1: Delete isolated vertices.

RR 2 (Buss Rule): If there exists a vertex of degree at least k+1, then delete this
vertex and decrease the budget k by 1.

Vertex Cover
Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S?

RR 1: Delete isolated vertices.

RR 2 (Buss Rule): If there exists a vertex of degree at least k+1, then delete this
vertex and decrease the budget k by 1.
Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices, m’ edges,
and k’ budget.

Vertex Cover
Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S?

RR 1: Delete isolated vertices.

RR 2 (Buss Rule): If there exists a vertex of degree at least k+1, then delete this
vertex and decrease the budget k by 1.
Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices, m’ edges,
and k’ budget.

RR 3: If n’ > k’2 +k’ or m’ > k’2, then say No.

Vertex Cover
Safeness of RR 3: Suppose for the sake of contradiction that the
reduced instance is a Yes-instance.
Let S be a vertex cover of the reduced instance of size at most k’.

RR 3: If n’ > k’2 +k’ or m’ > k’2, then say No.

Vertex Cover
Safeness of RR 3: Suppose for the sake of contradiction that the
reduced instance is a Yes-instance.
Let S be a vertex cover of the reduced instance of size at most k’.

RR 3: If n’ > k’2 +k’ or m’ > k’2, then say No.

m0 
X

v2S

|N(v)|  k0k0 = k0
2 (because Buss rule is not applicable)

Vertex Cover
Safeness of RR 3: Suppose for the sake of contradiction that the
reduced instance is a Yes-instance.
Let S be a vertex cover of the reduced instance of size at most k’.

RR 3: If n’ > k’2 +k’ or m’ > k’2, then say No.

n0  |S| [v2S |N(v)|  k0 + k0
2 (because there are no isolated vertices)

m0 
X

v2S

|N(v)|  k0k0 = k0
2 (because Buss rule is not applicable)

Vertex Cover
Safeness of RR 3: Suppose for the sake of contradiction that the
reduced instance is a Yes-instance.
Let S be a vertex cover of the reduced instance of size at most k’.

VC admits a kernel with k2 +k vertices and k2 edges.

RR 3: If n’ > k’2 +k’ or m’ > k’2, then say No.

n0  |S| [v2S |N(v)|  k0 + k0
2 (because there are no isolated vertices)

m0 
X

v2S

|N(v)|  k0k0 = k0
2 (because Buss rule is not applicable)

Feedback Arc Set in
Tournaments

Covering edges with cliques

Feedback Arc Set in Tournaments
Input: A tournament G, an integer k
Question: Does there at most k edges, say F, such that G-F is acyclic?

Feedback Arc Set in Tournaments
Input: A tournament G, an integer k
Question: Does there at most k edges, say F, such that G-F is acyclic?

Observation: A tournament has a directed cycle if and only is it has a directed triangle.

Feedback Arc Set in Tournaments
Input: A tournament G, an integer k
Question: Does there at most k edges, say F, such that G-F is acyclic?

RR 0: If an edge is contained in at least k+1 triangles, delete it??

Observation: A tournament has a directed cycle if and only is it has a directed triangle.

Feedback Arc Set in Tournaments

Feedback Arc Set in Tournaments
Lemma: Let G be a directed graph. Then F is an inclusion minimal feedback arc set of G
if and only if F is an inclusion minimal set of arcs such that G◉F is acyclic (G◉F is the
graph G where the arcs of F have been reversed).

Feedback Arc Set in Tournaments
RR 1: If an edge is contained in at least k+1 triangles, then reverse it and decrease k by1.

Feedback Arc Set in Tournaments
RR 1: If an edge is contained in at least k+1 triangles, then reverse it and decrease k by1.

RR 2: If a vertex does not participate in a triangle, delete it.

Feedback Arc Set in Tournaments
Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices and k’ budget.

RR 3: If n’ > k’ (k’ +2) then say No.

Feedback Arc Set in Tournaments
Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices and k’ budget.

RR 3: If n’ > k’ (k’ +2) then say No.

FAST admits a kernel with k(k+2) vertices.

Edge Clique Cover
Covering edges with cliques

Edge Clique Cover

Input: A graph G, an integer k
Question: Does there exist k cliques in G, C1, …, Ck, such that for
each edge (u,v) there exists an i ∈ {1,…,k} such that (u,v) ∈ Ci?

Edge Clique Cover

Input: A graph G, an integer k
Question: Does there exist k cliques in G, C1, …, Ck, such that for
each edge (u,v) there exists an i ∈ {1,…,k} such that (u,v) ∈ Ci?

Edge Clique Cover

Input: A graph G, an integer k
Question: Does there exist k cliques in G, C1, …, Ck, such that for
each edge (u,v) there exists an i ∈ {1,…,k} such that (u,v) ∈ Ci?

Edge Clique Cover

Input: A graph G, an integer k
Question: Does there exist k cliques in G, C1, …, Ck, such that for
each edge (u,v) there exists an i ∈ {1,…,k} such that (u,v) ∈ Ci?

Edge Clique Cover

Input: A graph G, an integer k
Question: Does there exist k cliques in G, C1, …, Ck, such that for
each edge (u,v) there exists an i ∈ {1,…,k} such that (u,v) ∈ Ci?

Edge Clique Cover

Input: A graph G, an integer k
Question: Does there exist k cliques in G, C1, …, Ck, such that for
each edge (u,v) there exists an i ∈ {1,…,k} such that (u,v) ∈ Ci?

Edge Clique Cover

Input: A graph G, an integer k
Question: Does there exist k cliques in G, C1, …, Ck, such that for
each edge (u,v) there exists an i ∈ {1,…,k} such that (u,v) ∈ Ci?

Edge Clique Cover

Input: A graph G, an integer k
Question: Does there exist k cliques in G, C1, …, Ck, such that for
each edge (u,v) there exists an i ∈ {1,…,k} such that (u,v) ∈ Ci?

Edge Clique Cover

RR 1: Delete isolated vertices.

Edge Clique Cover

RR 1: Delete isolated vertices.

Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

Edge Clique Cover

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

u

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover

Let the reduced instance (with respect to RR 1, RR 2 and RR 3) have
n’ vertices and k’ budget.

RR 4: If n’ ≥ 2k’ -1 then say No.

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

Edge Clique Cover
Safeness of RR 4:

Suppose the reduced instance is a Yes-instance.
Let C1,…,Ck’ be the solution cliques.

Assign a k’ length bit vector to each vertex v.

vec(v) = (v ∈ C1, v ∈ C2, …, v ∈ Ck’)

vec(v)=(1,1,0,0,0)

Total number of bit vectors of length k’ = 2k’

If v is isolated, vec(v)=(0,0,0,0,0).

If vec(u)=vec(v), then N[u]=N[v].

v

? ? ?

RR 4: If n’ ≥ 2k’ -1 then say No.

Edge Clique Cover
Safeness of RR 4:

Suppose the reduced instance is a Yes-instance.
Let C1,…,Ck’ be the solution cliques.

Assign a k’ length bit vector to each vertex v.

vec(v) = (v ∈ C1, v ∈ C2, …, v ∈ Ck’)

vec(v)=(1,1,0,0,0)

Total number of bit vectors of length k’ = 2k’

If v is isolated, vec(v)=(0,0,0,0,0).

If vec(u)=vec(v), then N[u]=N[v].

v

? ? ?
Thus, when none of the previous reduction
rules are applicable, then each vertex gets a
unique not-all-zero vector associated to it.

RR 4: If n’ ≥ 2k’ -1 then say No.

ECC admits a kernel with 2k -1 vertices.

FPT and
Kernelization

A parameterized problem is FPT
if and only if it admits a kernel.

nO(1) + g(k)

f(k) size kernel
 ⇒

Find a kernel
+

Brute force

A parameterized problem is FPT
if and only if it admits a kernel.

f(k) nO(1)

f(k) size kernel

 ⇒

A parameterized problem is FPT
if and only if it admits a kernel.

f(k) nO(1)

f(k) size kernel

 ⇒ f(k) nc

f(k) ≤ n f(k) > n
FPT algorithm is the

kernelization algorithm.
(constant size kernel)

Kernel of size f(k)

A parameterized problem is FPT
if and only if it admits a kernel.

f(k) nO(1)

f(k) size kernel

 ⇒

Hence a search for polynomial kernels for FPT problems!

f(k) nc

f(k) ≤ n f(k) > n
FPT algorithm is the

kernelization algorithm.
(constant size kernel)

Kernel of size f(k)

d-Hitting Set

d-Hitting Set
Input: Universe U, family F of subsets of U of size at most d, integer k
Question: Does there exist X⊆U of size at most k such that for each S ∈ F,
S∩X ≠ Φ?

d-Hitting Set
Input: Universe U, family F of subsets of U of size at most d, integer k
Question: Does there exist X⊆U of size at most k such that for each S ∈ F,
S∩X ≠ Φ?

Input: Universe U, family F of subsets of U of size at most d, integer k
Question: Does there exist X⊆U of size at most k such that for each S ∈ F,
S∩X ≠ Φ?

d-Hitting Set

d-Hitting Set
Input: Universe U, family F of subsets of U of size at most d, integer k
Question: Does there exist X⊆U of size at most k such that for each S ∈ F,
S∩X ≠ Φ?

d-Hitting Set

d=2 is the Vertex Cover
problem.

Input: Universe U, family F of subsets of U of size at most d, integer k
Question: Does there exist X⊆U of size at most k such that for each S ∈ F,
S∩X ≠ Φ?

Reduction rules for d-HS

RR 0: If there exists an element u and sets S1,…, Sk+1 such that Si ⋂ Sj = {u}, for
each i,j ∈ {1,…,k+1}, then u must be in the solution.

Reduction rules for d-HS

RR 0: If there exists an element u and sets S1,…, Sk+1 such that Si ⋂ Sj = {u}, for
each i,j ∈ {1,…,k+1}, then u must be in the solution.

Vvu

a
b

p q

s
t

c d

Reduction rules for d-HS
RR 1: If there exist sets S1,…, Sk+1 such that Si ⋂ Sj = {C}, for each i,j ∈ {1,…,k+1},
delete S1,…,Sk+1 from F and add C to F.
If C =∅, say No.

Reduction rules for d-HS
RR 1: If there exist sets S1,…, Sk+1 such that Si ⋂ Sj = {C}, for each i,j ∈ {1,…,k+1},
delete S1,…,Sk+1 from F and add C to F.
If C =∅, say No.

Vvu,w

v1
v2

v3 v4

v4
v5

v6 v7

Reduction rules for d-HS
RR 1: If there exist sets S1,…, Sk+1 such that Si ⋂ Sj = {C}, for each i,j ∈ {1,…,k+1},
delete S1,…,Sk+1 from F and add C to F.
If C =∅, say No.

Vvu,w

v1
v2

v3 v4

v4
v5

v6 v7

Sunflower: A collection of sets S1,…,Sr such
that for each i,j ∈ {1,..,r}, Si ⋂ Sj = C.

C is called the core of the sunflower. (could be
empty)

Si/C are called the petals of the sunflower.

Sunflower lemma

Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.
Such a sunflower can be computed in polynomial
time.

Sunflower lemma

Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.
Such a sunflower can be computed in polynomial
time.

Sunflower lemma

Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.
Such a sunflower can be computed in polynomial
time.

d-HS admits a kernel with d! kd d sets and d! kd d2 elements (O(kd) kernel).

Proof of the Sunflower Lemma
Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.
Such a sunflower can be computed in polynomial
time.

Proof of the Sunflower Lemma
Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.
Such a sunflower can be computed in polynomial
time.

Every family F with > d! kd sets of size d
contains a sunflower with k+1 petals.

Induction on d

Every family F with > d! kd sets of size d
contains a sunflower with k+1 petals.

Induction on d

Base case (d=1): F has > k singleton sets =>
 Sunflower with k+1 petals and empty core.

Every family F with > d! kd sets of size d
contains a sunflower with k+1 petals.

Induction on d

Base case (d=1): F has > k singleton sets =>
 Sunflower with k+1 petals and empty core.

Induction step: SUPPOSE there exists an element v that is present
> (d-1)! kd-1 sets of F.

Every family F with > d! kd sets of size d
contains a sunflower with k+1 petals.

Induction on d

Base case (d=1): F has > k singleton sets =>
 Sunflower with k+1 petals and empty core.

Induction step: SUPPOSE there exists an element v that is present
> (d-1)! kd-1 sets of F.

Every family F with > d! kd sets of size d
contains a sunflower with k+1 petals.

Induction on d

Base case (d=1): F has > k singleton sets =>
 Sunflower with k+1 petals and empty core.

Induction step: SUPPOSE there exists an element v that is present
> (d-1)! kd-1 sets of F.

Good vertex

Every family F with > d! kd sets of size d
either contains a sunflower with k+1 petals and empty core
or there exists a good vertex.
Greedy

S1,…..,Sr be pairwise disjoint sets of F (maximal)

r≥ k+1

r≤ k

Every family F with > d! kd sets of size d
either contains a sunflower with k+1 petals and empty core
or there exists a good vertex.
Greedy

S1,…..,Sr be pairwise disjoint sets of F (maximal)

r≥ k+1

r≤ k

S1,…..,Sr, r≤ k

Every set of F intersects some Si

X = [i2{1,...,r}Si

|X|  dk

Pigeonhole Principle

∃ x ∈ X such that x is present in > |F |/|X| sets

|F |/|X| > d! kd/dk = (d-1)! kd-1

d-Set Packing

d-Set Packing
Input: Universe U, family F of subsets of U of size at most d, integer k
Question: Does there exist at least k pairwise disjoint sets in F ?

Input: Universe U, family F of subsets of U of size at most d, integer k
Question: Does there exist at least k pairwise disjoint sets in F ?

d-Set Packing

d=2 is the k-Matching problem.

Input: Universe U, family F of subsets of U of size at most d, integer k
Question: Does there exist at least k pairwise disjoint sets in F ?

d-Set Packing

“Buss rule” for 2-Set Packing

RR: If there exists a vertex with degree at least 2k, then delete an
edge incident on it.

“Buss rule” for 2-Set Packing

RR: If there exists a vertex with degree at least 2k, then delete an
edge incident on it.

“Buss rule” for 2-Set Packing

RR: If there exists a vertex with degree at least 2k, then delete an
edge incident on it.

2(k-1)

d-Set Packing
RR 1: If a family contains a sunflower with > d(k-1)+2 petals, then one
of these sets can be deleted.

Exercise: Show that RR 1 is safe.

d-Set Packing
RR 1: If a family contains a sunflower with > d(k-1)+2 petals, then one
of these sets can be deleted.

d-SP admits a kernel d! (dk-d+1)d d sets and d! (dk-d+1)d d2 elements
(O(kO(d)) kernel).

Exercise: Show that RR 1 is safe.

