Kernelization

Every block of stone has a statue ingide it and it is the tagk of the seulptor to discover it.
— Michelangelo Buonarroti

Lecture #5

Roohani Sharma

November 16, 2021

Kernelization

Every block of stone has a statue ingide it and it is the tagk of the seulptor to discover it.
— Michelangelo Buonarroti

Lecture #5

Roohani Sharma

November 16, 2021

The lost island of pre-processing...

Pre-processing for NP-hard problems?

*With guarantees

Can we preprocess a given instance of an NP-hard problem and

guarantee a 1% decrease in its size
in polynomial time?

Pre-processing for NP-hard problems?

*With guarantees

Can we preprocess a given instance of an NP-hard problem and

guarantee a 1% decrease in its size
in polynomial time?

Pre-processing for NP-hard problems?

*With guarantees

Can we preprocess a given instance of an NP-hard problem and

guarantee a 1% decrease in its size
in polynomial time?

—

Polynomial
fime

Pre-processing for NP-hard problems?

*With guarantees

Can we preprocess a given instance of an NP-hard problem and

guarantee a 1% decrease in its size
in polynomial time?

B m

Polynomial Polynomial
fime tfime

Pre-processing for NP-hard problems?

*With guarantees

Can we preprocess a given instance of an NP-hard problem and

guarantee a 1% decrease in its size
in polynomial time?

B a e m

Polynomial Polynomial Polynomial
fime tfime fime

Pre-processing for NP-hard problems?

*With guarantees

Can we preprocess a given instance of an NP-hard problem and

guarantee a 1% decrease in its size
in polynomial time?

B a e m

Polynomial Polynomial Polynomial
fime tfime fime
Polynomial S

time

—

Kernelization

- Efficient pre-processing with guarantees for parameterized problems

.

N\
N

> Runs in
“polynomial

-
”
</
/

Kernelization

- Efficient pre-processing with guarantees for parameterized problems

L

\\‘I'I/
W\ ////

/7
7’
”
-
-

-—
—_—
e
—

—

. -
~
fime 3
// \\\
ST EERR

.

Kernelization

- Efficient pre-processing with guarantees for parameterized pr'oblem::iJJ
| Z 1

[
\\‘I'l/ I- ST -I
oV '), ' '
\\ ’] j
= Runs in ' I'k '
“polynomial :
~, time

/7 \
// \\
SN ERRR

Kernelization

- Efficient pre-processing with guarantees for parameterized pr'oblem::iJJ
| Z 1

\\\ ///

> Runs in
“polynomial

-

~ time &

/7 \
// \\
SN ERRR

Kernelization
- Efficient pre-processing with guarantees for paryne’rerized problems
| Z | \ J

\\\ ///

> Runs in
“polynomial

-

: .
” ~
>, time 3
/ \
///Illl\\\\

r 1
Kernelization
- Efficient pre-processing with guarantees for paryne’rerized problems
| Z] \ J
\V VR
N /,/
N /
~ . v
> Runsin =
—polynomial =
’/ ' ~
.. Time 3
/// \\\
SN ERRR

M admits a kernel of size g(k).
If g(k) is a polynomial/exponential function, then T admits a polynomial/exponential kernel.

Reduction rules (RR) |

m

i]

Reduction rules (RR) |

L
\VVRTTy
\\\\ ////
N /’
¢ . %
> Runs in =
“polynomial = Reduction
O ' N rule is safe.
>, Time
/// \\\
SN ERRR

i]

Reduction rules (RR) |

W\ enngy,
. LK
\ i
S . /

L

-polynomial = Reduction
~ time S rule is safe.
/////ll|l\\\\\\

® A kernelization algorithm comprises of possibly several (polynomially many) safe reduction
rules.

[]

Reduction rules (RR) |

L
\VVRT Ty
\\\\ ////
N /’
¢ . 2
> Runs in =
“polynomial = Reduction
// : ~ rule is safe.
>, Time 3
/// \\\
SN ERRR

® A kernelization algorithm comprises of possibly several (polynomially many) safe reduction
rules.
® Each reduction rules should be applicable only a polynomial number of times.

i]

Reduction rules (RR) |

i
W\ enngy,
" & LK
7’
/ i
2 . /

L

—polynomial = Reduction
~ .|.|m e S rule is safe.
/////Illl\\\\\\

® A kernelization algorithm comprises of possibly several (polynomially many) safe reduction
rules.

® Each reduction rules should be applicable only a polynomial number of times.

® This is followed by an analysis showing that if none of the designed reduction rules are
applicable, then the size of the instance is bounded by some g(k).

VERTEX COVER: Refresher

VERTEX COVER

Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S¢

VERTEX COVER

Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S¢

RR 1: Delete isolated vertices.

VERTEX COVER

Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S¢

RR 1: Delete isolated vertices.

RR 2 (Buss Rule): If there exists a vertex of degree at least k+1, then delete this
vertex and decrease the budget k by 1.

VERTEX COVER

Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S¢

RR 1: Delete isolated vertices.

RR 2 (Buss Rule): If there exists a vertex of degree at least k+1, then delete this
vertex and decrease the budget k by 1.

Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices, m’ edges,

and k’ budget.

VERTEX COVER

Input: A graph G, an integer k
Question: Does there at most k vertices, say S, such that each edge
of G is incident on S¢

RR 1: Delete isolated vertices.

RR 2 (Buss Rule): If there exists a vertex of degree at least k+1, then delete this
vertex and decrease the budget k by 1.

Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices, m’ edges,

and k’ budget.
RR 3: If n’ > k’? +k’ or m’ > k’?, then say No.

VERTEX COVER

RR 3: If n’ > k’? +k’ or m’ > k’?, then say No.

Safeness of RR 3: Suppose for the sake of contradiction that the
reduced instance is a Yes-instance.
Let S be a vertex cover of the reduced instance of size at most k’.

VERTEX COVER

RR 3: If n’ > k’? +k’ or m’ > k’?, then say No.

Safeness of RR 3: Suppose for the sake of contradiction that the
reduced instance is a Yes-instance.
Let S be a vertex cover of the reduced instance of size at most k’.

m' < Z IN(v)| < k'k' = '* (because Buss rule is not applicable)
VES

VERTEX COVER

RR 3: If n’ > k’? +k’ or m’ > k’?, then say No.

Safeness of RR 3: Suppose for the sake of contradiction that the
reduced instance is a Yes-instance.
Let S be a vertex cover of the reduced instance of size at most k’.

m' < Z IN(v)| < k'k' = '* (because Buss rule is not applicable)
VES

n' <|S|Upes IN(w)| < k' + k’° (because there are no isolated vertices)

VERTEX COVER

RR 3: If n’ > k’? +k’ or m’ > k’?, then say No.

Safeness of RR 3: Suppose for the sake of contradiction that the
reduced instance is a Yes-instance.
Let S be a vertex cover of the reduced instance of size at most k’.

m' < Z IN(v)| < k'k' = '* (because Buss rule is not applicable)
VES

n' <|S|Upes IN(w)| < k' + k’° (because there are no isolated vertices)

VC admits a kernel with k2 +k vertices and k2 edges.

FEEDBACK ARC SET IN
TOURNAMENTS

FEEDBACK ARC SET IN TOURNAMENTS

Input: A tournament G, an integer k
Question: Does there at most k edges, say F, such that G-F is acyclic?

FEEDBACK ARC SET IN TOURNAMENTS

Input: A tournament G, an integer k
Question: Does there at most k edges, say F, such that G-F is acyclic?

Observation: A tournament has a directed cycle if and only is it has a directed triangle.

FEEDBACK ARC SET IN TOURNAMENTS

Input: A tournament G, an integer k
Question: Does there at most k edges, say F, such that G-F is acyclic?

Observation: A tournament has a directed cycle if and only is it has a directed triangle.

RR O: If an edge is contained in at least k+1 triangles, delete it22

FEEDBACK ARC SET IN TOURNAMENTS

FEEDBACK ARC SET IN TOURNAMENTS

Lemma: Let G be a directed graph. Then F is an inclusion minimal feedback arc set of G
if and only if F is an inclusion minimal set of arcs such that G@®F is acyclic (G@®F is the

graph G where the arcs of F have been reversed).

FEEDBACK ARC SET IN TOURNAMENTS

RR 1: If an edge is contained in at least k+1 triangles, then reverse it and decrease k by]1.

FEEDBACK ARC SET IN TOURNAMENTS

RR 1: If an edge is contained in at least k+1 triangles, then reverse it and decrease k by]1.

RR 2: If a vertex does not participate in a triangle, delete it.

FEEDBACK ARC SET IN TOURNAMENTS

Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices and k’ budget.
RR 3: If n’ >k’ (k' +2) then say No.

FEEDBACK ARC SET IN TOURNAMENTS

Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices and k’ budget.
RR 3: If n’ >k’ (k' +2) then say No.

FAST admits a kernel with k(k+2) vertices.

EDGE CLIQUE COVER

EDGE CLIQUE COVER

Input: A graph G, an integer k
Question: Does there exist k cliques in G, Cy, ..., C, such that for
each edge (u,v) there exists ani € {1,...,k} such that (u,v) € Ci2

EDGE CLIQUE COVER

Input: A graph G, an integer k
Question: Does there exist k cliques in G, Cy, ..., C, such that for
each edge (u,v) there exists ani € {1,...,k} such that (u,v) € Ci2

ANRIS e

EDGE CLIQUE COVER

Input: A graph G, an integer k
Question: Does there exist k cliques in G, Cy, ..., C, such that for
each edge (u,v) there exists ani € {1,...,k} such that (u,v) € Ci2

AN >

EDGE CLIQUE COVER

Input: A graph G, an integer k
Question: Does there exist k cliques in G, Cy, ..., C, such that for
each edge (u,v) there exists ani € {1,...,k} such that (u,v) € Ci2

AN

EDGE CLIQUE COVER

Input: A graph G, an integer k
Question: Does there exist k cliques in G, Cy, ..., C, such that for
each edge (u,v) there exists ani € {1,...,k} such that (u,v) € Ci2

AN

EDGE CLIQUE COVER

Input: A graph G, an integer k
Question: Does there exist k cliques in G, Cy, ..., C, such that for
each edge (u,v) there exists ani € {1,...,k} such that (u,v) € Ci2

L e

EDGE CLIQUE COVER

Input: A graph G, an integer k
Question: Does there exist k cliques in G, Cy, ..., C, such that for
each edge (u,v) there exists ani € {1,...,k} such that (u,v) € Ci2

0N

EDGE CLIQUE COVER

Input: A graph G, an integer k
Question: Does there exist k cliques in G, Cy, ..., C, such that for
each edge (u,v) there exists ani € {1,...,k} such that (u,v) € Ci2

S

EDGE CLIQUE COVER

AN S e

RR 1: Delete isolated vertices.

EDGE CLIQUE COVER

AR S ez

RR 1: Delete isolated vertices.

EDGE CLIQUE COVER

AR S ez

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

EDGE CLIQUE COVER

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

EDGE CLIQUE COVER

U

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N][v], delete v.

EDGE CLIQUE COVER

: : A4
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

EDGE CLIQUE COVER

: : A4
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

0,

EDGE CLIQUE COVER

A4

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

vt

EDGE CLIQUE COVER

A4

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

W%ﬁ@k

EDGE CLIQUE COVER

A4

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

ALK

EDGE CLIQUE COVER

A4

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

ALK

EDGE CLIQUE COVER

. . \"4
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

g%

Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

EDGE CLIQUE COVER

e »

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 1: Delete isolated vertices.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

EDGE CLIQUE COVER

oo \Ds

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 1: Delete isolated vertices.

RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

EDGE CLIQUE COVER

oo o o

RR 1: Delete isolated vertices.
RR 2: Delete a connected component that is a clique and decrease the budget k by1.
RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

Let the reduced instance (with respect to RR 1, RR 2 and RR 3) have
n’ vertices and k' budget.

RR 4: If n’ 2 2K'-1 then say No.

EDGE CLIQUE COVER

RR 4: If n’ 2 2k'-1 then say No.
Safeness of RR 4:

Suppose the reduced instance is a Yes-instance.
Let Cj,...,Ck be the solution cliques.

Assign a k’ length bit vector to each vertex v.
vec(v)=(ve Ci, v € Cy, ..., veCy)
vec(v)=(1, ,0,0,0)

Total number of bit vectors of length k' = 2K
If v is isolated, vec(v)=(0, ,0,0,0).

If vec(u)=vec(v), then N[u]=N]v].

EDGE CLIQUE COVER

RR 4: If n’ 2 2k'-1 then say No.
Safeness of RR 4:

Suppose the reduced instance is a Yes-instance.
Let Cj,...,Ck be the solution cliques.

Assign a k’ length bit vector to each vertex v.

vec(v)=(ve Cy, v €Cy, ..., ve Cy)
Thus, when none of the previous reduction

vec(v)=(1, ,0,0,0) rules are applicable, then each vertex gets a
unique not-all-zero vector associated to it.

Total number of bit vectors of length k' = 2K
If v is isolated, vec(v)=(0, ,0,0,0).

If vec(u)=vec(v), then N[u]=N]v].

ECC admits a Kernel with 2k -1 vertices.

FPT and
Kernelization

A parameterized problem is FPT
it and only it it admits a kernel.

f(k) size kernel
Find a kernel
+
Brute force

nOll + g(k)

A parameterized problem is FPT
it and only it it admits a kernel.

f(k) no(1)

|

f(k) size kernel

A parameterized problem is FPT
it and only it it admits a kernel.

(k) not) f(k) ns

~U' fk) < r/ \f(k) > n

FPT algorithm is the Kernel of size f(k)
kernelization algorithm.

f(k) Size kernel (constant size kernel)

A parameterized problem is FPT
it and only it it admits a kernel.

(k) not) f(k) ns

,U, f(k) < n/\f(k) > n

FPT algorithm is the Kernel of size f(k)
kernelization algorithm.

f(k) Size kernel (constant size kernel)

Hence a search for polynomial kernels for FPT problems!

d-HITTING SET

d-HITTING SET

Input: Universe U, family & of subsets of U of size at most d, integer k
Question: Does there exist XcU of size at most k such that for each S € 7,

SNX # P¢

d-HITTING SET

Input: Universe U, family 7 of subsets of U of size at most d, integer k
Question: Does there exist XcU of size at most k such that for each S € 7,

SNX # P¢

d-HITTING SET

Input: Universe U, family & of subsets of U of size at most d, integer k
Question: Does there exist XcU of size at most k such that for each S € 7,

SNX # P¢

d-HITTING SET

Input: Universe U, family & of subsets of U of size at most d, integer k
Question: Does there exist XcU of size at most k such that for each S € 7,

SNX # P¢

@ -

)

@

@

d-HITTING SET

Input: Universe U, family & of subsets of U of size at most d, integer k
Question: Does there exist XcU of size at most k such that for each S € 7,

SNX # P¢

e -

@

@

@

d=2 is the VERTEX COVER
problem.

Reduction rules for d-HS

RR O: If there exists an element u and sets Si,..., Sk+1 such that S; n' S; = {u}, for
each i,j e {1,...,k+1}, then u must be in the solution.

Reduction rules for d-HS

RR O: If there exists an element u and sets Si,..., Sk+1 such that S; n' S; = {u}, for
each i,j e {1,...,k+1}, then u must be in the solution.

Reduction rules for d-HS

RR 1: If there exist sets Si,..., Sk+1 such that Sin §; = {C}, for each i,j € {1,...,k+1},
delete S,...,Sk+1 from F and add C to F.
If C =, say No.

Reduction rules for d-HS

RR 1: If there exist sets Si,..., Sk+1 such that Sin §; = {C}, for each i,j € {1,...,k+1},
delete S,...,Sk+1 from F and add C to F.
If C =, say No.

Reduction rules for d-HS

RR 1: If there exist sets Si,..., Sk+1 such that Sin §; = {C}, for each i,j € {1,...,k+1},
delete S,...,Sk+1 from F and add C to F.
If C =, say No.

- \ \‘.‘ | ' .‘...“ %
kN \\\ Fa || e

= Sunflower: A collection of sets Sy, ...,S: such
o that for each i,j € {1,..,r}, Sin §;=C.

C is called the core of the sunflower. (could be
empty)

Si/C are called the petals of the sunflower.

Sunflower lemma

Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.

Such a sunflower can be computed in polynomial
fime.

Sunflower lemma

Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.

Such a sunflower can be computed in polynomial
fime.

Sunflower lemma

Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.

Such a sunflower can be computed in polynomial
fime.

d-HS admits a kernel with d! kd d sets and d! kd d2 elements (O(kd) kernel).

® Proof of the Sunflower Lemma

Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.

Such a sunflower can be computed in polynomial
fime.

® Proof of the Sunflower Lemma

Every family with > d! kd sets of size exactly d
contains a sunflower with k+1 petals.

Such a sunflower can be computed in polynomial
fime.

Induction on d

Every family 7 with > d! kd sets of size d
contains a sunflower with k+1 petals.

Induction on d

Base case (d=1): 7 has > k singleton sets =>
Sunflower with k+1 petals and empty core.

Every family 7 with > d! kd sets of size d
contains a sunflower with k+1 petals.

Induction on d

Base case (d=1): 7 has > k singleton sets =>
Sunflower with k+1 petals and empty core.

Induction step: SUPPOSE there exists an element v that is present
> (d-1)1 kd1 sets of 7

Every family 7 with > d! kd sets of size d
contains a sunflower with k+1 petals.

Induction on d

Base case (d=1): 7 has > k singleton sets =>
Sunflower with k+1 petals and empty core.

Induction step: SUPPOSE there exists an element v that is present

> (d-1)! kd1 sets of F /

Every family 7 with > d! kd sets of size d
contains a sunflower with k+1 petals.

Induction on d

Base case (d=1): 7 has > k singleton sets =>
Sunflower with k+1 petals and empty core.

Induction step: SUPPOSE there exists an element v that is present

> (d-1)! kd1 sets of F /\

Good vertex

Every family & with > d! kd sets of size d

either contains a sunflower with k+1 petals and empty core
or there exists a good vertex.

Greedy

S1,.....,5: be pairwise disjoint sets of 7 (maximal)

r2 k+1 /

r< k

Every family & with > d! kd sets of size d

either contains a sunflower with k+1 petals and empty core
or there exists a good vertex.

Greedy

S], ,Sr

r2 k+1 J

be pairwise disjoint sets of 7 (maximal)

r< k

Every set of 7 intersects some S;
X = Uieqr,...mSi
X| < dk

Pigeonhole Principle

3 x € X such that x is present in > | 7| /| X| sets

| 71/1X] > dl kd/dk = (d-1)! kd-

d-SET PACKING

d-SET PACKING

Input: Universe U, family 7 of subsets of U of size at most d, integer k
Question: Does there exist at least k pairwise disjoint sets in .7 2

d-SET PACKING

Input: Universe U, family 7 of subsets of U of size at most d, integer k
Question: Does there exist at least k pairwise disjoint sets in .7 2

d-SET PACKING

Input: Universe U, family 7 of subsets of U of size at most d, integer k
Question: Does there exist at least k pairwise disjoint sets in .7 2

d=2 is the kMATCHING problem.

“Buss rule” tor 2-Set Packing

RR: If there exists a vertex with degree at least 2k, then delete an
edge incident on it.

"Buss rule” for 2-Set Packing

RR: If there exists a vertex with degree at least 2k, then delete an
edge incident on it.

"Buss rule” for 2-Set Packing

RR: If there exists a vertex with degree at least 2k, then delete an
edge incident on it.

S

2(k-1)

d-SET PACKING

RR 1: If a family contains a sunflower with > d(k-1)+2 petals, then one
of these sets can be deleted.

Exercise: Show that RR 1 is safe.

d-SET PACKING

RR 1: If a family contains a sunflower with > d(k-1)+2 petals, then one
of these sets can be deleted.

Exercise: Show that RR 1 is safe.

d-SP admits a kernel d! (dk-d+1)d d sets and d! (dk-d+1)d d2 elements
(O(kO) kernel).

