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The lost island of pre-processing…
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Kernelization

- Efficient pre-processing with guarantees for parameterized problems

∏ admits a kernel of size g(k).

If g(k) is a polynomial/exponential function, then ∏ admits a polynomial/exponential kernel.
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Runs in 
polynomial 

time
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• A kernelization algorithm comprises of possibly several (polynomially many) safe reduction 
rules. 

• Each reduction rules should be applicable only a polynomial number of times. 
• This is followed by an analysis showing that if none of the designed reduction rules are 
applicable, then the size of the instance is bounded by some g(k).

≡ Reduction 
rule is safe.
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Vertex Cover
Safeness of RR 3: Suppose for the sake of contradiction that the 
reduced instance is a Yes-instance. 
Let S be a vertex cover of the reduced instance of size at most k’.

VC admits a kernel with k2 +k vertices and k2 edges.

RR 3: If n’ > k’2 +k’ or m’ > k’2, then say No.

n0  |S| [v2S |N(v)|  k0 + k0
2 (because there are no isolated vertices)

m0 
X
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Feedback Arc Set in Tournaments
Input: A tournament G, an integer k 
Question: Does there at most k edges, say F, such that G-F is acyclic?

RR 0: If an edge is contained in at least k+1 triangles, delete it??

Observation: A tournament has a directed cycle if and only is it has a directed triangle.
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Feedback Arc Set in Tournaments
Lemma: Let G be a directed graph. Then F is an inclusion minimal feedback arc set of G 
if and only if F is an inclusion minimal set of arcs such that G◉F is acyclic (G◉F is the 
graph G where the arcs of F have been reversed).
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Feedback Arc Set in Tournaments
RR 1: If an edge is contained in at least k+1 triangles, then reverse it and decrease k by1.

RR 2: If a vertex does not participate in a triangle, delete it.
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Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices and k’ budget.

RR 3: If n’ > k’ (k’ +2) then say No.



Feedback Arc Set in Tournaments
Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices and k’ budget.

RR 3: If n’ > k’ (k’ +2) then say No.

FAST admits a kernel with k(k+2) vertices.
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RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.

u

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.



Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover

v
RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover
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Edge Clique Cover

Let the reduced instance (with respect to RR 1, RR 2 and RR 3) have 
n’ vertices and k’ budget.

RR 4: If n’ ≥ 2k’ -1 then say No.

RR 1: Delete isolated vertices.

RR 2: Delete a connected component that is a clique and decrease the budget k by1.

RR 3: If there exists vertices u,v such that N[u]=N[v], delete u.



Edge Clique Cover
Safeness of RR 4:  

Suppose the reduced instance is a Yes-instance. 
Let C1,…,Ck’ be the solution cliques.  

Assign a k’ length bit vector to each vertex v. 

vec(v) = (v ∈ C1, v  ∈ C2, …, v ∈ Ck’) 

vec(v)=(1,1,0,0,0) 

Total number of bit vectors of length k’ = 2k’ 

If v is isolated, vec(v)=(0,0,0,0,0). 

If vec(u)=vec(v), then N[u]=N[v]. 
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Safeness of RR 4:  

Suppose the reduced instance is a Yes-instance. 
Let C1,…,Ck’ be the solution cliques.  

Assign a k’ length bit vector to each vertex v. 

vec(v) = (v ∈ C1, v  ∈ C2, …, v ∈ Ck’) 

vec(v)=(1,1,0,0,0) 

Total number of bit vectors of length k’ = 2k’ 

If v is isolated, vec(v)=(0,0,0,0,0). 

If vec(u)=vec(v), then N[u]=N[v]. 

v

? ? ?
Thus, when none of the previous reduction 
rules are applicable, then each vertex gets a 
unique not-all-zero vector associated to it.

RR 4: If n’ ≥ 2k’ -1 then say No.



ECC admits a kernel with 2k -1 vertices.



FPT and 
Kernelization
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A parameterized problem is FPT 
if and only if it admits a kernel.

f(k) nO(1)

f(k) size kernel

 ⇒

Hence a search for polynomial kernels for FPT problems!

f(k) nc

f(k) ≤ n f(k) > n
FPT algorithm is the  

kernelization algorithm. 
(constant size kernel)

Kernel of size f(k) 
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d-Hitting Set

d=2 is the Vertex Cover 
problem.

Input: Universe U, family F of subsets of U of size at most d, integer k 
Question: Does there exist X⊆U of size at most k such that for each S ∈ F, 
S∩X ≠ Φ?
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RR 1: If there exist sets S1,…, Sk+1 such that Si ⋂ Sj = {C}, for each i,j ∈ {1,…,k+1}, 
delete S1,…,Sk+1 from F and add C to F.  
If C =∅, say No.
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Sunflower: A collection of sets S1,…,Sr such 
that for each i,j ∈ {1,..,r}, Si ⋂ Sj = C. 

C is called the core of the sunflower. (could be 
empty) 

Si/C are called the petals of the sunflower.
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Every family F  with > d! kd sets of size d  
either contains a sunflower with k+1 petals and empty core 
or there exists a good vertex.
Greedy

S1,…..,Sr be pairwise disjoint sets of F  (maximal) 

r≥ k+1

r≤ k

S1,…..,Sr, r≤ k 

Every set of F  intersects some Si

X = [i2{1,...,r}Si

|X|  dk

Pigeonhole Principle

∃ x ∈ X such that x is present in > |F |/|X| sets

|F |/|X| > d! kd/dk = (d-1)! kd-1
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d=2 is the k-Matching problem.

Input: Universe U, family F of subsets of U of size at most d, integer k 
Question: Does there exist at least k pairwise disjoint sets in F  ?

d-Set Packing
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d-Set Packing
RR 1: If a family contains a sunflower with > d(k-1)+2 petals, then one 
of these sets can be deleted.

Exercise: Show that RR 1 is safe.



d-Set Packing
RR 1: If a family contains a sunflower with > d(k-1)+2 petals, then one 
of these sets can be deleted.

d-SP admits a kernel d! (dk-d+1)d d sets and d! (dk-d+1)d d2 elements 
(O(kO(d)) kernel).

Exercise: Show that RR 1 is safe.


