Kernelization

Every block of stone has a statue ingide it and it is the tagk of the seulptor to discover it.
— Michelangelo Buonarroti

Lecture #5

Roohani Sharma

November 16, 2021




Kernelization

Every block of stone has a statue ingide it and it is the tagk of the seulptor to discover it.
— Michelangelo Buonarroti

Lecture #5

Roohani Sharma

November 16, 2021




The lost island of pre-processing...
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M admits a kernel of size g(k).
If g(k) is a polynomial/exponential function, then T admits a polynomial/exponential kernel.
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® A kernelization algorithm comprises of possibly several (polynomially many) safe reduction
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® A kernelization algorithm comprises of possibly several (polynomially many) safe reduction
rules.

® Each reduction rules should be applicable only a polynomial number of times.

® This is followed by an analysis showing that if none of the designed reduction rules are
applicable, then the size of the instance is bounded by some g(k).
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VERTEX COVER

RR 3: If n’ > k’? +k’ or m’ > k’?, then say No.

Safeness of RR 3: Suppose for the sake of contradiction that the
reduced instance is a Yes-instance.
Let S be a vertex cover of the reduced instance of size at most k’.

m' < Z IN(v)| < k'k' = '*  (because Buss rule is not applicable)
VES

n' <|S|Upes IN(w)| < k' + k’° (because there are no isolated vertices)

VC admits a kernel with k2 +k vertices and k2 edges.
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FEEDBACK ARC SET IN TOURNAMENTS

Lemma: Let G be a directed graph. Then F is an inclusion minimal feedback arc set of G
if and only if F is an inclusion minimal set of arcs such that G@®F is acyclic (G@®F is the

graph G where the arcs of F have been reversed).
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FEEDBACK ARC SET IN TOURNAMENTS

RR 1: If an edge is contained in at least k+1 triangles, then reverse it and decrease k by]1.

RR 2: If a vertex does not participate in a triangle, delete it.
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Let the reduced instance (with respect to RR 1 and RR 2) have n’ vertices and k’ budget.
RR 3: If n’ >k’ (k' +2) then say No.

FAST admits a kernel with k(k+2) vertices.
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RR 1: Delete isolated vertices.
RR 2: Delete a connected component that is a clique and decrease the budget k by1.
RR 3: If there exists vertices u,v such that N[u]=N]v], delete u.

Let the reduced instance (with respect to RR 1, RR 2 and RR 3) have
n’ vertices and k' budget.

RR 4: If n’ 2 2K'-1 then say No.
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RR 4: If n’ 2 2k'-1 then say No.
Safeness of RR 4:
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Let Cj,...,Ck be the solution cliques.

Assign a k’ length bit vector to each vertex v.
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RR 4: If n’ 2 2k'-1 then say No.
Safeness of RR 4:

Suppose the reduced instance is a Yes-instance.
Let Cj,...,Ck be the solution cliques.

Assign a k’ length bit vector to each vertex v.

vec(v)=(ve Cy, v €Cy, ..., ve Cy)
Thus, when none of the previous reduction

vec(v)=(1, ,0,0,0) rules are applicable, then each vertex gets a
unique not-all-zero vector associated to it.

Total number of bit vectors of length k' = 2K
If v is isolated, vec(v)=(0, ,0,0,0).

If vec(u)=vec(v), then N[u]=N]v].



ECC admits a Kernel with 2k -1 vertices.
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A parameterized problem is FPT
it and only it it admits a kernel.

(k) not) f(k) ns

,U, f(k) < n/\f(k) > n

FPT algorithm is the Kernel of size f(k)
kernelization algorithm.

f(k) Size kernel (constant size kernel)

Hence a search for polynomial kernels for FPT problems!
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d-HITTING SET

Input: Universe U, family & of subsets of U of size at most d, integer k
Question: Does there exist XcU of size at most k such that for each S € 7,
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d=2 is the VERTEX COVER
problem.
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Reduction rules for d-HS

RR 1: If there exist sets Si,..., Sk+1 such that Sin §; = {C}, for each i,j € {1,...,k+1},
delete S,...,Sk+1 from F and add C to F.
If C =, say No.
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= Sunflower: A collection of sets Sy, ...,S: such
o that for each i,j € {1,..,r}, Sin §;=C.

C is called the core of the sunflower. (could be
empty)

Si/C are called the petals of the sunflower.
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Every family & with > d! kd sets of size d

either contains a sunflower with k+1 petals and empty core
or there exists a good vertex.

Greedy
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Every family & with > d! kd sets of size d

either contains a sunflower with k+1 petals and empty core
or there exists a good vertex.

Greedy

S], ..... ,Sr

r2 k+1 J

be pairwise disjoint sets of 7 (maximal)

r< k

Every set of 7 intersects some S;
X = Uieqr,...mSi
X| < dk

Pigeonhole Principle

3 x € X such that x is present in > | 7| /| X| sets

| 71/1X] > dl kd/dk = (d-1)! kd-
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d-SET PACKING

Input: Universe U, family 7 of subsets of U of size at most d, integer k
Question: Does there exist at least k pairwise disjoint sets in .7 2

d=2 is the kMATCHING problem.
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RR: If there exists a vertex with degree at least 2k, then delete an
edge incident on it.
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RR 1: If a family contains a sunflower with > d(k-1)+2 petals, then one
of these sets can be deleted.

Exercise: Show that RR 1 is safe.
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RR 1: If a family contains a sunflower with > d(k-1)+2 petals, then one
of these sets can be deleted.

Exercise: Show that RR 1 is safe.

d-SP admits a kernel d! (dk-d+1)d d sets and d! (dk-d+1)d d2 elements
(O(kO) kernel).



