

Roohani Sharma November 16, 2021

Every block of stone has a statue inside it and it is the task of the sculptor to discover it. — Michelangelo Buonarroti

Lecture #6

Roohani Sharma November 16, 2021

Every block of stone has a statue inside it and it is the task of the sculptor to discover it. — Michelangelo Buonarroti

Lecture #6

It admits a kernel of size g(k).

If g(k) is a polynomial/exponential function, then Π admits a polynomial/exponential kernel.

- A kernelization algorithm comprises of possibly several (polynomially many) safe reduction rules.
- Each reduction rules should be applicable only a polynomial number of times. applicable, then the size of the instance is bounded by some g(k).

• This is followed by an analysis showing that if none of the designed reduction rules are

Vertex Cover	k²+k ve
Feedback Arc Set in Tournaments	
Edge Clique Cover	
d-Hitting Set	O(k ⁴
d-Set Packing	O(k ^c

ertices and k ² edges	
O(k ²) vertices	
2 ^k -1 vertices	
d) sets and elements	
d) sets and elements	

Vertex Cover	k²+k ve
Feedback Arc Set in Tournaments	
Edge Clique Cover	
d-Hitting Set	O(k ⁴
d-Set Packing	O(k ^c

ertices and k ² edges	
O(k ²) vertices	
2 ^k -1 vertices	
d) sets and elements	
d) sets and elements	

	Vertex Cover	k ² +k vertices and k ² edges	O(k ² -ε) size
	Feedback Arc Set in Tournaments	O(k ²) vertices	
	Edge Clique Cover	2 ^k -1 vertices	Polynomial kernel
	d-Hitting Set	O(k ^d) sets and elements	O(k ^d -ε) size
r	d-Set Packing	O(k ^d) sets and elements	O(k ^d -ε) size

	Vertex Cover	k ² +k vertices and k ² edges	O(k ² -ε) size
	Feedback Arc Set in Tournaments	O(k ²) vertices	
	Edge Clique Cover	2 ^k -1 vertices	Polynomial kernel
	d-Hitting Set	O(k ^d) sets and elements	O(k ^d -ε) size
r	d-Set Packing	O(k ^d) sets and elements	O(k ^d -ε) size

Vertex Cover	k²+k ve
Feedback Arc Set in Tournaments	
Edge Clique Cover	
d-Hitting Set	O(k°
d-Set Packing	O(k°

Vertex Cover	k²+k ve
Feedback Arc Set in Tournaments	
Edge Clique Cover	
d-Hitting Set	O(k°
d-Set Packing	O(k°

Vertex Cover	k ² +k vertices ar e
Feedback Arc Set in	O(k²) ver
Edge Clique Cover	2 ^k -1 ver
d-Hitting Set	O(k ^d) sets elen
d-Set Packing	O(k ^d) sets elem

Vertex Cover	k ² +k vertices ar e
Feedback Arc Set in	O(k²) ver
Edge Clique Cover	2 ^k -1 ver
d-Hitting Set	O(k ^d) sets elen
d-Set Packing	O(k ^d) sets elem

Vertex Cover	k ² +k vertices ar e
Feedback Arc Set in	O(k²) ver
Edge Clique Cover	2 ^k -1 ver
d-Hitting Set	O(k ^d) sets elen
d-Set Packing	O(k ^d) sets elem

Vertex Cover	k ² +k vertices ar e
Feedback Arc Set in	O(k²) ver
Edge Clique Cover	2 ^k -1 ver
d-Hitting Set	O(k ^d) sets elen
d-Set Packing	O(k ^d) sets elem

$$\begin{array}{c} \text{minimize} \sum_{i \in \{1, \dots, n\}} x_i \\ m \rightarrow 1 \end{array}$$

$$x_i + x_j \ge 1$$

 $0 \le x_i \le 1$

Linear Programming based kernels

VERTEX COVER admits a kernel with 3k vertices.

$$\begin{array}{c} \text{minimize} \sum_{i \in \{1, \dots, n\}} x_i \\ \end{array}$$

$$x_i + x_j \ge 1$$

 $0 \le x_i \le 1$

Linear Programming based kernels

VERTEX COVER admits a kernel with 3k vertices.

$$\begin{array}{l} \text{minimize} \sum_{i \in \{1, \dots, n\}} x_i \\ x_i + x_j \ge 1 \end{array}$$

 $0 \le x_i \le 1$

Linear Programming based kernels

VERTEX COVER admits a kernel with 2k vertices.

VERTEX COVER admits a kernel with 3k vertices.

Reduction rule: Be greedy and pick u in the solution to cover the (u,v) edge

Drop budget by 1

Reduction rule: Be greedy and pick u in the solution to cover the (u,v) edge

Drop budget by 1

v becomes isolated, So delete v too.

to do the job!

(yellow to red): You can do what I can do, and at least one of us needs

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

You can do what I can do, and at least one of us needs to do the job!

Independent Set

You can do what I can do, and at least one of us needs to do the job!

Independent Set

You can do what I can do, and at least one of us needs to do the job!

Independent Set

Matching saturating red set

You can do what I can do, and at least one of us needs to do the job!

Independent Set

Matching saturating red set

You can do what I can do, and at least one of us needs to do the job!

CROWN

HEAD

REMAINING (BODY)

Independent Set

Matching saturating red set

You can do what I can do, and at least one of us needs to do the job!

CROWN

HEAD

REMAINING (BODY)

Independent Set

Matching saturating red set

Claim:

There exists an optimal solution that picks all of HEAD.

You can do what I can do, and at least one of us needs to do the job!

CROWN

HEAD

REMAINING (BODY)

Independent Set

Matching saturating red set

Reduction rule:

Pick the HEAD in the solution. Decrease the budget by [HEAD]. CROWN becomes isolated, so deleted it too.

How to find crown decompositions?

Why should they exist in graphs?

CROWN DECOMPOSITION LEMMA

 $|V(G)| \leq 3k$ Such a decomposition can be found in polynomial time.

- For every graph G with no isolated vertices and integer k, either
- G has a crown decomposition (with non-empty head and crown), or
 G has a matching of size at least k+1, or

CROWN DECOMPOSITION LEMMA

 $|V(G)| \leq 3k$ Such a decomposition can be found in polynomial time.

VERTEX COVER admits a kernel with 3k vertices.

- For every graph G with no isolated vertices and integer k, either
- G has a crown decomposition (with non-empty head and crown), or
 G has a matching of size at least k+1, or

REMEMBERING THE CLASSICS

In a bipartite graph, minimum vertex cover = size of maximum matching.

REMEMBERING THE CLASSICS

In a bipartite graph, minimum vertex cover = size of maximum matching.

REMEMBERING THE CLASSICS

Hall's theorem

In a bipartite graph G=(A,B), there exists a matching saturating A (into B) if and only if $|N(X)| \geq |X|, X \subseteq A.$

In a bipartite graph, minimum vertex cover = size of maximum matching.

Hopcroft-Karp algorithm

Given a bipartite graph G=(A,B) on n vertices and m edges, one can find in $O(m n^{1/2})$ time a maximum matching and a minimum vertex cover in G. Moreover, one can also find a matching saturating A or an inclusion-wise minimal set $X \subseteq A$ such that |N(X)| < |X|.

REMEMBERING THE CLASSICS

Hall's theorem

In a bipartite graph G=(A,B), there exists a matching saturating A (into B) if and only if $|N(X)| \ge |X|, X \subseteq A.$

In a bipartite graph, minimum vertex cover = size of maximum matching.

Hopcroft-Karp algorithm

Given a bipartite graph G=(A,B) on n vertices and m edges, one can find in $O(m n^{1/2})$ time a maximum matching and a minimum vertex cover in G. Moreover, one can also find a matching saturating A or an inclusion-wise minimal set $X \subseteq A$ such that |N(X)| < |X|.

REMEMBERING THE CLASSICS

Hall's theorem

In a bipartite graph G=(A,B), there exists a matching saturating A (into B) if and only if $|N(X)| \ge |X|, X \subseteq A.$

Hall's set

If its size is $\geq k+1$, then return the matching M.

Approximate Vertex Cover: Find a maximal matching M. Otherwise, get vertex cover (V(M)) of size at most 2k.

Independent Set

Approximate Vertex Cover: Find a maximal matching M. Otherwise, get vertex cover (V(M)) of size at most 2k.

Independent Set

|||> k

|V(M)| ≤ 2k

Independent Set

Find a maximum matching between V(M) and I. If size is at least k+1, return the matching.

|||> k

|V(M)**|** ≤ 2k

Independent Set

Blue matching of size at most k. Vertex Cover of the red-yellow bipartite graph is at most k.

Find a maximum matching between V(M) and I. If size is at least k+1, return the matching.

Independent Set

Blue matching of size at most k. Vertex Cover of the red-yellow bipartite graph is at most k.

Vertex Cover vertices

Find a maximum matching between V(M) and I. If size is at least k+1, return the matching.

Independent Set

Vertex Cover vertices

$|V(M)| \leq 2k$

Independent Set

• Vertex Cover vertices

|||> k

|V(M)| ≤ 2k

Linear Programming (LP) based kernel for VERTEX COVER

VERTEX COVER admits a kernel with 2k vertices.

LP for Vertex Cover Graph G, $V(G)=\{v_1, ..., v_n\}$

LP for Vertex Cover Graph G, $V(G)=\{v_1, ..., v_n\}$

$$\begin{array}{c} \text{minimize} \quad \sum_{i \in \{1, \dots, n\}} x_i \\ \end{array}$$

 $x_i + x_j \ge 1 \quad \forall (v_i, v_j) \in E(G)$

 $x_i \in \{0, 1\} \qquad \forall v_i \in V(G)$

LP for Vertex Cover Graph G, V(G)={v₁, ..., v_n}

$$\begin{array}{ll} \text{minimize} & \sum x_i \\ i \in \{1, \dots, n\} \end{array}$$

$$x_i + x_j \ge 1 \qquad \forall (v_i, v_j) \in E(G$$

 $x_i \in \{0, 1\} \qquad \forall v_i \in V(G)$

Integer Linear Program (ILP) for Vertex Cover

NP-Complete

LP for Vertex Cover Graph G, $V(G)=\{v_1, ..., v_n\}$

$$\begin{array}{ll} \text{minimize} & \sum x_i \\ i \in \{1, \dots, n\} \end{array}$$

$$x_i + x_j \ge 1 \qquad \forall (v_i, v_j) \in E(G$$

 $x_i \in \{0, 1\} \qquad \forall v_i \in V(G)$

Integer Linear Program (ILP) for Vertex Cover

NP-Complete

LP for Vertex Cover Graph G, $V(G)=\{v_1, ..., v_n\}$

$$\begin{array}{ll} \text{minimize} & \sum x_i \\ i \in \{1, \dots, n\} \end{array}$$

$$x_i + x_j \ge 1 \qquad \forall (v_i, v_j) \in E(G$$

 $x_i \in \{0, 1\} \qquad \forall v_i \in V(G)$

Integer Linear Program (ILP) for Vertex Cover

NP-Complete

P time

LP for Vertex Cover Graph G, V(G)={v₁, ..., v_n}

$$\begin{array}{ll} \text{minimize} & \sum x_i \\ i \in \{1, \dots, n\} \end{array}$$

$$x_i + x_j \ge 1 \qquad \forall (v_i, v_j) \in E(G$$

 $x_i \in \{0, 1\} \qquad \forall v_i \in V(G)$

Integer Linear Program (ILP) for Vertex Cover

NP-Complete

Cover

P time

LP for Vertex Cover Graph G, V(G)={v₁, ..., v_n}

 $x_i + x_j \ge 1 \quad \forall (v_i, v_j) \in E(G)$

 $x_i \in \{0, 1\}$ $\forall v_i \in V(G)$

Integer Linear Program (ILP) for Vertex Cover

NP-Complete

Cover

P time

NP-Complete

I P for Vertex Cover Graph G, V(G)= $\{v_1, ..., v_n\}$ $OPT_{ILP} \ge OPT_{LP}$ OPTIP minimize x_i $\sum_{i \in \{1, \dots, n\}}$ $x_i + x_j \ge 1 \quad \forall (v_i, v_j) \in E(G)$ $0 \le x_i \le 1 \quad \forall v_i \in V(G)$ $x_i \in \{0, 1\}$ $\forall v_i \in V(G)$ Linear Program (LP) for Vertex Cover P time

Integer Linear Program (ILP) for Vertex Cover

NP-Complete

 $V_{>1/2} = \{ v_i \in V(G) : x_i > 1/2 \}$

 $V(G) = V_{<1/2} \uplus V_{=1/2} \amalg V_{>1/2}$

$V_{<1/2} = \{ v_i \in V(G) : x_i < 1/2 \}$

$V_{\equiv 1/2} = \{ v_i \in V(G) : x_i = 1/2 \}$

 $V_{<1/2}$

$V_{<1/2}$

Independent Set

Independent Set

 $V_{=1/2}$

N(Hall's Set)

Hall's Set

 $V_{=1/2}$

N(Hall's Set)

Hall's Set

 $V_{=1/2}$

N(Hall's Set)

Hall's Set

 $V_{=1/2}$

N(Hall's Set)

Hall's Set

$\epsilon = \min\{|x_i - 1/2| : x_i \text{ Red box and Yellow box}\}$

Crown Decomposition

Independent Set

Matching saturating red set

Reduction Rule using LP values

Nemhausser-Trotter's Theorem: There is a minimum vertex cover, say S, of G such

$V_{>1/2} \subseteq S \subseteq V_{>1/2} \cup V_{=1/2}$

All vertices have LP values =1/2. $\forall i \in \{1, \ldots, n\} x_i = 1/2$

All vertices have LP values =1/2. $\forall i \in \{1, \ldots, n\} x_i = 1/2$

 $OPT_{LP} = \sum x_i = n/2$ $i \in \{1, ..., n\}$

All vertices have LP values =1/2. $\forall i \in \{1, \ldots, n\} x_i = 1/2$

 $OPT_{ILP} \ge OPT_{LP} = \sum x_i = n/2$ $i \in \{1, ..., n\}$

All vertices have LP values =1/2. $\forall i \in \{1, \ldots, n\} x_i = 1/2$

 $k \ge OPT_{ILP} \ge OPT_{LP} = \sum x_i = n/2$ $i \in \{1, ..., n\}$

n < 2k

All vertices have LP values =1/2. $\forall i \in \{1, \ldots, n\} x_i = 1/2$

 $k \ge OPT_{ILP} \ge OPT_{LP} = \sum x_i = n/2$ $i \in \{1, ..., n\}$

All vertices have LP values =1/2. $\forall i \in \{1, \ldots, n\} x_i = 1/2$

n < 2k

VC admits a kernel with 2k vertices.

$k \ge OPT_{ILP} \ge OPT_{LP} = \sum x_i = n/2$ $i \in \{1, ..., n\}$

Expansion Lemma

q-CROWN DECOMPOSITION

HEAD

REMAINING (BODY)

Independent Set

q-Matching saturating red set

Bipartite graph G=(A,B), a set of edges M is a q-expansion of A into B if M is a disjoint union of |A| q-stars each with its centre vertex in A and the leaves in B.

Bipartite graph G=(A,B), a set of edges M is a q-expansion of A into B if M is a disjoint union of |A| q-stars each with its centre vertex in A and the leaves in B.

Bipartite graph G=(A,B), a set of edges M is a q-expansion of A into B if M is a disjoint union of |A| q-stars each with its centre vertex in A and the leaves in B.

1-Expansion is a matching

Expansion Lemma

Bipartite graph G=(A,B), integer q such that $|B| \ge q |A|$, no isolated vertices in B: then $\exists H \subseteq A$ and $C \subseteq B$ such that there is a q-expansion from A into B and N(C) \subseteq H.

Expansion Lemma

Bipartite graph G=(A,B), integer q such that $|B| \ge q |A|$, no isolated vertices in B: then $\exists H \subseteq A$ and $C \subseteq B$ such that there is a q-expansion from A into B and $N(C) \subseteq H$.

Expansion Lemma

Can be proved using arguments similar to the proof of Hall's theorem.

COMPONENT ORDER CONNECTIVITY (COC) Input: A graph G, an integers k,p

Input: A graph G, an integers k,p Parameter: k,p Question: Does there exist a set of at most k vertices, say S, such that each connected component of G-S has at most p vertices?

COMPONENT ORDER CONNECTIVITY (COC) Input: A graph G, an integers k,p

Parameter: k,p Question: Does there exist a set of at most k vertices, say S, such that each connected component of G-S has at most p vertices?

p=1 is the VERTEX COVER problem.

Every solution hits a connected set of size at least p+1 in the graph.

Start by finding an approximate solution.

Every solution sets a connected set of size at least p+1 in the graph.

Approximate solution (A): Greedily find a maximal collection \mathcal{C} of connected sets of size p+1. If $\mathcal{C} \ge k+1$, then return NO. Otherwise, A be the union of the vertices in the sets of \mathcal{C} . Then $|A| \leq (p+1)k$.

If the number of connected components of G-A is at most p|A|-1, then we get a kernel with $O(p^3 k)$ vertices.

Approximate solution A, |A| ≤ (p+1)k

You can do what I can do, and at least one of us needs to do the job!

When p-Expansion lemma is not applicable, the Kernel with O(p³ k) vertices. number of connected components is at most p|A|+1.

