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Kernelization

- Efficient pre-processing with guarantees for parameterized problems

∏ admits a kernel of size g(k).

If g(k) is a polynomial/exponential function, then ∏ admits a polynomial/exponential kernel.

 

Runs in 
polynomial 

time

I,k ∏

I’,k’ ∏

≡
|I’|, k’ ≤ g(k)



Reduction rules (RR)

 

Runs in 
polynomial 

time

I,k ∏

I’,k’ ∏

• A kernelization algorithm comprises of possibly several (polynomially many) safe reduction 
rules. 


• Each reduction rules should be applicable only a polynomial number of times. 

• This is followed by an analysis showing that if none of the designed reduction rules are 
applicable, then the size of the instance is bounded by some g(k).

≡ Reduction 
rule is safe.
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Vertex Cover: Deleting degree 1 vertices

(yellow to red): You can do what I can do, and at least one of us needs 
to do the job!

Essence of the safeness (Delegation principle):
v becomes isolated, 
So delete v too.

v

u

Be greedy and  
pick u in the solution  
to cover the (u,v) edge

vDrop budget by 1

Reduction rule:
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Vertex Cover:

You can do what I can do, and at least one of us needs to do the job!

Matching saturating red set

CROWN

HEAD

Remaining (BODY)

Independent Set

There exists an optimal 
solution that picks all of 
HEAD.

Claim:



Vertex Cover:

You can do what I can do, and at least one of us needs to do the job!

Matching saturating red set

CROWN

HEAD

Remaining (BODY)

Independent Set

Pick the HEAD in the solution.  
Decrease the budget by |HEAD|.  
CROWN becomes isolated, so 
deleted it too.

Reduction rule:



How to find crown decompositions?

Why should they exist in graphs?



Crown Decomposition Lemma
For every graph G with no isolated vertices and integer k, either

• G has a crown decomposition (with non-empty head and crown), or 
• G has a matching of size at least k+1, or 
• |V(G)|≤ 3k 
Such a decomposition can be found in polynomial time.



Crown Decomposition Lemma
For every graph G with no isolated vertices and integer k, either

• G has a crown decomposition (with non-empty head and crown), or 
• G has a matching of size at least k+1, or 
• |V(G)|≤ 3k 
Such a decomposition can be found in polynomial time.

Vertex Cover admits a kernel with 3k vertices.
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Remembering the Classics

In a bipartite graph, 
|minimum vertex cover|=  
|size of maximum matching|. 

Kőnig’s theorem
In a bipartite graph G=(A,B), 
there exists a matching saturating A (into B)  
if and only if 
|N(X)|≥ |X|, X ⊆ A.

Hall’s theorem

Given a bipartite graph G=(A,B) on n vertices and m edges, 
one can find in O(m n1/2) time a maximum matching and a minimum vertex cover in G. 
Moreover, one can also find a matching saturating A or an inclusion-wise minimal set X ⊆ A 
such that |N(X)| < |X|.

Hopcroft-Karp algorithm

Hall’s set
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Independent Set |I|> k

|V(M)| ≤ 2k

Find a maximum matching between V(M) and I. 
If size is at least k+1, return the matching.

Blue matching of size at most k. 
Vertex Cover of the red-yellow  
bipartite graph is at most k.

Vertex Cover vertices
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Independent Set |I|> k

|V(M)| ≤ 2k
Vertex Cover vertices

Proof of the crown Decomposition Lemma



Linear Programming 
(LP) based kernel for 

Vertex Cover
Vertex Cover admits a kernel with 2k vertices.
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LP for Vertex Cover

minimize
X

i2{1,...,n}
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xi + xj � 1 8(vi, vj) 2 E(G)

xi 2 {0, 1} 8vi 2 V (G)
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Linear Program (LP) for Vertex 
Cover 

NP-Complete P time

minimize
X

i2{1,...,n}

xi

OPTLPOPTILP
OPTILP ≥ OPTLP 

Graph G, V(G)={v1, …, vn}



V (G) = V<1/2 ] V=1/2 ] V>1/2

V<1/2 = {vi 2 V (G) : xi < 1/2}

V=1/2 = {vi 2 V (G) : xi = 1/2}

V>1/2 = {vi 2 V (G) : xi > 1/2}
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V=1/2

V<1/2

V>1/2

Show that there is a matching saturating V>1/2 into V<1/2.

Hall’s Set-𝞮 -𝞮 -𝞮

+𝞮 +𝞮

✏ = min{|xi � 1/2| : xi Red box and Yellow box}

N(Hall’s Set)



V=1/2

V<1/2

V>1/2

Independent Set

Matching saturating red set

Crown Decomposition



Reduction Rule using LP values

Nemhausser-Trotter’s Theorem:
There is a minimum vertex cover, say S, of G such 

V>1/2 ✓ S ✓ V>1/2 [ V=1/2



When N-T rule is not applicable?

All vertices have LP values =1/2. 8i 2 {1, . . . , n}xi = 1/2
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When N-T rule is not applicable?

All vertices have LP values =1/2.

OPTLP =
X

i2{1,...,n}

xi = n/2OPTILP �k �

n  2k

8i 2 {1, . . . , n}xi = 1/2



When N-T rule is not applicable?

All vertices have LP values =1/2.

OPTLP =
X

i2{1,...,n}

xi = n/2OPTILP �k �

n  2k

VC admits a kernel with 2k vertices.

8i 2 {1, . . . , n}xi = 1/2



Expansion Lemma



q-CROWN DECOMPOSITION

Independent Set

q-Matching saturating red set

CROWN

HEAD

Remaining (BODY)
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Bipartite graph G=(A,B),  
a set of edges M is a q-expansion of A into B if 
M is a disjoint union of |A| q-stars each with its centre vertex in A 
and the leaves in B.
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q-Expansion

Bipartite graph G=(A,B),  
a set of edges M is a q-expansion of A into B if 
M is a disjoint union of |A| q-stars each with its centre vertex in A 
and the leaves in B.

1-Expansion is a matching

A

B
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Bipartite graph G=(A,B), integer q such that  
|B| ≥ q |A|, no isolated vertices in B: 
then ∃ H ⊆ A and C ⊆ B such that there is a  
q-expansion from A into B and N(C)⊆ H. 



Expansion Lemma

Bipartite graph G=(A,B), integer q such that  
|B| ≥ q |A|, no isolated vertices in B: 
then ∃ H ⊆ A and C ⊆ B such that there is a  
q-expansion from A into B and N(C)⊆ H. 

Can be proved using arguments similar to the proof of Hall’s theorem.
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Parameter: k,p 
Question: Does there exist a set of at most k vertices, say S, such 
that each connected component of G-S has at most p vertices?



Component Order Connectivity (COC)
Input: A graph G, an integers k,p 
Parameter: k,p 
Question: Does there exist a set of at most k vertices, say S, such 
that each connected component of G-S has at most p vertices?

p=1 is the Vertex Cover problem.



Component Order Connectivity

Every solution hits a connected set of size at least p+1 in the graph.

Start by finding an approximate solution. 



Every solution sets a connected set of size at least p+1 in the graph. 

Greedily find a maximal collection C of connected sets of size  p+1.  
If C ≥ k+1, then return NO. 
Otherwise, A be the union of the vertices in the sets of C. 
Then |A| ≤ (p+1)k.

Approximate solution (A):

Component Order Connectivity



Approximate solution A, 
|A| ≤ (p+1)k

≤ p ≤ p ≤ p ≤ p ≤ p ≤ p ≤ p

If the number of connected components of G-A is at most p|A|-1, then 
we get a kernel with O(p^3 k) vertices.

Component Order Connectivity



Approximate solution A, 
|A| ≤ (p+1)k

≤ p ≤ p ≤ p ≤ p ≤ p ≤ p ≤ p
The number of connected components of G-A is at least p|A|.
Use p-Expansion Lemma.

Component Order Connectivity



Approximate solution A, 
|A| ≤ (p+1)k

≤ p ≤ p ≤ p ≤ p ≤ p ≤ p ≤ p
The number of connected components of G-A is at least p|A|.
Use p-Expansion Lemma.

Component Order Connectivity



Approximate solution A, 
|A| ≤ (p+1)k

≤ p ≤ p ≤ p ≤ p ≤ p ≤ p ≤ p
The number of connected components of G-A is at least p|A|.
Use p-Expansion Lemma.

p

Component Order Connectivity



Approximate solution A, 
|A| ≤ (p+1)k

≤ p ≤ p ≤ p ≤ p ≤ p ≤ p ≤ p

You can do what I can do, and at least one of us needs to do the job!

p

Component Order Connectivity



Approximate solution A, 
|A| ≤ (p+1)k

≤ p ≤ p ≤ p ≤ p ≤ p ≤ p ≤ p

p

When p-Expansion lemma is not applicable, the 
number of connected components is at most p|A|+1. Kernel with O(p3 k) vertices.

Component Order Connectivity


