Kernelization 111

Every block of stone has a statue inside it and it is the task of the sculptor to discover it.
— Michelangelo Buonarroti

Lecture #7

Roohani Sharma
November 30, 2021

Kernelization

- Efficient pre-processing with guarantees for para)neterized problems

= Runs in
—polynomial
~, time

/ \
///Il||\\\\

IT°l, K" < g(k)

T admits a kernel of size g(k).
If g(k) is a polynomial/exponential function, then T admits a polynomial/exponential kernel.

Reduction rules (RR)

I- Il I N = = =
\\\\\\lllll/l// 1 I k
\\ . // 1
= Runs in !
iPOlynomial Reduction
- time N rule is safe.

7 N\

”
-~
-
—
—
-
~

///I|I|\\\\
r------

I K

® A kernelization algorithm comprises of possibly several (polynomially many) safe reduction
rules.

® Each reduction rules should be applicable only a polynomial number of times.

® This is followed by an analysis showing that if none of the designed reduction rules are
applicable, then the size of the instance is bounded by some g(k).

Expansion Lemma

Iq—CROWN DECOMPOSITION I

HEAD % g-Matching saturating red set
o -

g-Expansion

Bipartite graph G=(A,B),
a set of edges M is a ?-expansion of A into B if
M is a disjoint union of |A| g-stars each with its centre vertex in A

and the leaves in B.

S I
AANA
FRYEYEEIR

Expansion Lemma

Bipartite graph G=(A,B), integer q such that
|IB] 2 q |Al, no isolated vertices in B:
then 3 H ¢ A and C ¢ B such that there is a

g-expansion from A into B and N(C)c H.

Can be proved using arguments similar to the proof of Hall’s theorem.

Feedback Vertex Set

Problem Dehnition

FEEDBACK VERTEX SET Parameter: k
Input: An undirected graph G and a positive
integer k.

Question: Does there exists a subset X of size
at most k such that G — X is acyclic?

X is called of G.
Goal is to obtain a polynomial kernel for
FEEDBACK VERTEX SET.

What reduction rules we
already know?

Reduction.FVS

If there is a loop at a vertex v, delete v from the
graph and decrease k by one.

What reduction rules we
already know?

Multiplicity of a multiple edge does not influence
the set of feasible solutions to the instance (G, k).

Reduction.FVS

If there 1s an edge of multiplicity larger than 2,
reduce 1ts multiplicity to 2.

What reduction rules we
already know?

Any vertex of degree at most 1 does not
participate in any cycle in G, so it can be deleted.

Reduction.FVS

If there 1s a vertex v of degree at most 1, delete v.

What reduction rules we
already know?

Concerning vertices of degree 2, observe that,
instead of including into the solution any such
vertex, we may as well include one of its
neighbors.

Reduction.FVS

If there 1s a vertex v of degree 2, delete v and
connect its two neighbors by a new edge.

What do we achieve after all
these”

After exhaustively applying these four reduction
rules, the resulting graph G

(P1) contains no loops,
(P2) has only single and double edges, and
(P3) has minimum vertex degree at least 3.

Stopping rule.

A rule that stops the algorithm if we already
exceeded our budget.

Reduction.FVS

If k < 0, terminate the algorithm and conclude
that (G, k) 7s a no-instance.

A picture :)

Maximum degree is d.

o

s

Y =V(G)\ X

Maximum degree is d.

Maximum degree is d.

Maximum degree is d.

X o

S

Y = V(G)\ X

1.5lV(G)| < [E(G)]

Maximum degree is d.

X D

S

Y = V(G)\ X

E(G)] < dIX[+ ([V(G)[—IX|—1)

Maximum degree is d.

X D

S

Y = V(G)\ X

1.5IV(G)| < [E(G)] < dIX| + (V(G)] —[X])

Maximum degree is d.

X D

S

Y = V(G)\ X

1.5V(G)| < [E(G)] < dIX| + (IV(G)] —[X])

— [V(G)| < 2(d - 1)IX| < 2(d — 1)k

Summarizing:

Lemma,
If a graph G has minimum degree at least 3,
maximum degree at most d, and feedback vertex

set of size at most k, then it has less than
2(d — 1)k vertices and less than 2(d — 1)dk edges.

50 what do we need to get the
polynomial kernel?

Bound the maximum degree of the
oraph by a polynomial in k.

50 what do we need to get the
polynomial kernel?

Bound the maximum degree of the
oraph by a polynomial in k.

Fix a vertex v such that deg(v)>=/ik.
The goal henceforth is to bound the degree of v.

« For VERTEX COVER — if a vertex has degree
k + 1 then we must have it in the solution.

What would be the analogous rule for FEEDBACK
VERTEX SET.

« For VERTEX COVER — if a vertex has degree
k + 1 then we must have it in the solution.

What would be the analogous rule for FEEDBACK
VERTEX SET.

For VERTEX COVER — wanted to hit edges and
for FEEDBACK VERTEX SET — want to hit cycles..

+1-FLOWER

l

k+ 1 — vertex disjoint
cycles passing through it

Flower Rule.

Reduction.F'VS
If there is a k + 1-flower passing through a verter

v then (G \{vl,k—1).

Flower Rule.

Reduction.F'VS
If there is a k + 1-flower passing through a verter

v then (G \{vl,k—1).

How to find a k+1-flower through v in polynomial time?

Flower Rule.

Reduction.F'VS
If there is a kK + 1-flower passing through a vertex

v then (G \{vl,k—1).

How to find a k+1-flower through v in polynomial time?
v’

Special k+1-flower through v: m

L

Finding flowers at v2

Given a vertex v and integer k,
either find a k+1-flower at v,

or find a solution Z, of size at most 3k that do not include v.

® Find an approximate solution T of size at most 2k (Classical result).
®IfveT, then Z,=T.

® Otherwise, let F=V(G)-T be the forest...

® |nitialize Z,=T}|{v3.
® | et u be a “lowest’ vertex in F such

that there is a cycle in G[v u Ty].
® Pick v in Z,, thatisZ,= v UZ,
root r ® Delete T, from F and repeat.

Forest

F=V(G) -T

rootr

® |nitialize Z,=T.

® Let u be a ‘lowest’ vertex in F such
that there is a cycle in G[v u T].

® Pick v in Z, thatisZ,=uv UZ,

® Delete T, from F and repeat.

®If |Z,] <|T|+k, then output S,.
® Otherwise, there is k+1-flower at v.

Forest

F=V(G) T

hlttl set that excludesv @ Z,,

(solution)

Focussing on the green Part

Consider the connected components

of V(G)\ (Z, Uv}).

forest

Could v have two neighbor in a
connected components of

V(G)\ (Z, U{v})?

]

forest

hitting set that excludesv = 2,

]

forest

hitting set that excludes v : 7,

forest

hitting set that excludes v

There could be components in
V(G)\ (Z, U{v}) that do not see

any neighbor of v. Important, for us
is that any component contains at
most one neighbor of v and we will
focus on them.

forest

hitting set that excludesv: Z,

To bound the degree of v or to delete
an edge incident to v we only focus
on those components that contain
some (exactly one) neighbor of v.

forest

hitting set that excludes v : Z,

To apply 2-expansion lemma we
need a bipartite graph. In one part
(say B) we will have a vertex for
every component in V(G) \ (Z, U{v})
that contains a neighbor of v.

hitting set that excludesv 7,

To apply 2-expansion lemma we
need a bipartite graph. In one part

(say B) we will have a vertex for
every component in V(G) \ (Z, U{v})
that contains a neighbor of v.

hitting set that excludesv : Z,

« So we have A and B. We put an edge
between a vertex x in A and a vertex w in B,
if x is adjacent to some vertex in the
component represented by the vertex w.
Eissentially, we have obtained this bipartite
graph by contracting the components.

« So we have A and B. We put an edge
between a vertex x in A and a vertex w in B,
if x is adjacent to some vertex in the
component represented by the vertex w.
Eissentially, we have obtained this bipartite
graph by contracting the components.

- If |B] < 2|A| £ 6k then v already has its
degree bounded by (kK8 assume that

B| > 2|A]

Now by expansion lemma (applied with q =2)
we have that there exist nonempty vertex sets
X C A and Y C B such that

« there is a 2-expansion of X into Y, and
- no vertex in Y has a neighbor outside X, that

is, N(Y) C X.

. by 2-expansion
lemma: / forest

hitting set that excludes v @ Z,

. by 2-expansion
lemma: / forest

hitting set that excludesv = "2,

S0 the reduction rule
IS:

. by 2-expansion
lemma: / forest

hitting set that excludes v ! Z,

... and add the
following edges it

already not present.

hitting set that excludes v - Z,

Let us argue correctness!

The Forward Direction

FVS <kin G= FVS <kin H

hitting set that excludes v ' Z,,

If G has a F'VS that either contains v or all of X,
we are in good shape.

Consider now a FVS that:
« Does not contain v,
- and omits at least one vertex of X.

Notice that this does not lead to a larger FVS:

For every vertex v in X that a FVS of G leaves
out,

it must pick a vertex u that kills no more than all
of X.

The Reverse Direction

FVS<kin G& FVS <kinH

The Reverse Direction

FVS<kin G& FVS <kinH

If FVS in H contains v then the same works for G
also as G \ {v} is isomorphic to H \ {v}. So assume
that F'VS in H does not contain v.

hitting set that excludes v

Let W be a FVS of H, the Only Danger for W to
be a FVS ot G:

Cycles that:
 pass through v,

 non-neighbors of v in H (neighbors in G,
however)

- and do not pass through X.

o . S o
PN JEE TN
4 L] S 8
o . .
Py Y S ss
-
' A Y - -
L . LY ¥ - hd
o N 1N e
o s s - [N -
4 ') - -
o M b s
. -
o . [N N -
P A [N A S e
. . . - A -~
< -

Let W be a FVS of H, the Only Danger for W to
be a FVS of G:

Cycles that:

 pass through v,

. non-neighbors of v in H (neighbors in G,
however)

- and do not pass through X.
However recall that N(Y) C X.

Wrapping Up

« A priori it is not obvious that previous
Reduction Rule actually makes some
simplification of the graph, since it
substitutes some set of edges with some other
set of double edges!

Wrapping Up

« A priori it is not obvious that previous
Reduction Rule actually makes some
simplification of the graph, since it
substitutes some set of edges with some other
set of double edges!

« We need to formally prove that the reduction
rules cannot be applied infinitely, or
superpolynomially many times.

Final Result

Theorem
FEEDBACK VERTEX SET admits a kernel with at
most O(k?) vertices and O(k?) edges.

