
Representative sets and
Matroids

Lecture #09
December 13, 2021

Roohani Sharma
Slides courtesy: Neeldhara Misra, Saket Saurabh, Pranabendu Misra

AH

Problems we would be interested in...
Vertex Cover
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a subset V 1 Ď V of size at most k such that for
every edge (u, v) P E either u P V 1 or v P V 1?

Hamiltonian Path
Input: A graphG = (V, E)
Question: Does there exist a path P inG that spans all the vertices?

Path
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a path P inG of length at least k?

ate

Ham-Path

Dynamic Programming for Hamiltonian Path

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

.....

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

....

.

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

....

.

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

....

.

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

.....

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

.....

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

....

.

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

.....

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

.....

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

....

.

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

....

.

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

t

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

....

.

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

t

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

....

.

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

f

Ham-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

n− 1

.

n

.

v1

.

...

.

vj

.

...

.

vn

..

vj

....

.

Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.

t

K-Path

Let us now turn to k-Path.

To find paths of length at least k,
we may simply use the DP table for Hamiltonian Path

restricted to the first k columns.

K-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

if Keng

O d if K

K-Path
...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!(nk)

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.

Example.

Suppose we have a path P on seven edges.

Consider it broken up into the first four and the last three edges.

..............

....

Example.

Suppose we have a path P on seven edges.

Consider it broken up into the first four and the last three edges.

..................

..............

..

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

.
The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

...

.

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

.
The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

..

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

.
The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

..

A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

.
The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.

For any possible ending of length (k− i), we want to be sure that we store
at least one among the possibly many “prefixes”.

This could also be
(n
k−i

)
.

The hope for “saving” comes from the fact that a single path of length i is
potentially capable of being a prefix to several distinct endings.

For any possible ending of length (k− i), we want to be sure that we store
at least one among the possibly many “prefixes”.

This could also be
(n
k−i

)
.

The hope for “saving” comes from the fact that a single path of length i is
potentially capable of being a prefix to several distinct endings.

For any possible ending of length (k− i), we want to be sure that we store
at least one among the possibly many “prefixes”.

This could also be
(n
k−i

)
.

The hope for “saving” comes from the fact that a single path of length i is
potentially capable of being a prefix to several distinct endings.

For example...

..

ª'24'5'06#6+8' ²'65

Why, What and How.

as

..

Partial solutions: paths of length j ending at vi

.
A “small” representative family.

..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.

..

Partial solutions: paths of length j ending at vi
.

A “small” representative family.

..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.

..

Partial solutions: paths of length j ending at vi
.

A “small” representative family.
..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.

..

Partial solutions: paths of length j ending at vi
.

A “small” representative family.
..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.

..

Partial solutions: paths of length j ending at vi
.

A “small” representative family.
..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.

..

Partial solutions: paths of length j ending at vi
.

A “small” representative family.
..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.

..

Partial solutions: paths of length j ending at vi
.

A “small” representative family.
..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.

..

Partial solutions: paths of length j ending at vi
.

A “small” representative family.
..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.

..

Partial solutions: paths of length j ending at vi
.

A “small” representative family.
..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

This is a valid patch into X.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

This is a guaranteed replacement for S.

Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A ď (n
p

)
family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

Given: A ď (n
p

)
family F of p-sized subsets of [n].

S1, S2, . . . , St

Known: D(kp
)
subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

Bolobás, 1965.

Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is a subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Lovász, 1977

HE

Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is an efficiently computable subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Márx (2009) and Fomin, Lokshtanov, Saurabh (2013)

HE
representable

Matroids

Definition

A pair M = (E, I), where E is a ground set and I is a family of
subsets (called independent sets) of E, is a matroid if it satisfies
the following conditions:

(I1) ' 2 I or I 6= ;.
(I2) If A0 ✓ A and A 2 I then A

0 2 I.
(I3) If A,B 2 I and |A| < |B|, then 9 e 2 (B \A) such that

A [{e} 2 I.

The axiom (I2) is also called the hereditary property and a pair
M = (E, I) satisfying (I1) and (I2) is called hereditary family or
set-family.

0tIbD

Matroids

Definition

A pair M = (E, I), where E is a ground set and I is a family of
subsets (called independent sets) of E, is a matroid if it satisfies
the following conditions:

(I1) ' 2 I or I 6= ;.
(I2) If A0 ✓ A and A 2 I then A

0 2 I.
(I3) If A,B 2 I and |A| < |B|, then 9 e 2 (B \A) such that

A [{e} 2 I.

The axiom (I2) is also called the hereditary property and a pair
M = (E, I) satisfying (I1) and (I2) is called hereditary family or
set-family.

ÉEITE

(I3) is called the exchange property.

Rank and Basis

Definition

A pair M = (E, I), where E is a ground set and I is a family of
subsets (called independent sets) of E, is a matroid if it satisfies
the following conditions:

(I1) ' 2 I or I 6= ;.
(I2) If A0 ✓ A and A 2 I then A

0 2 I.
(I3) If A,B 2 I and |A| < |B|, then 9 e 2 (B \A) such that

A [{e} 2 I.

An inclusion wise maximal set of I is called a basis of the
matroid. Using axiom (I3) it is easy to show that all the bases
of a matroid have the same size. This size is called the rank of
the matroid M , and is denoted by rank(M).

iEEI__

Examples Of Matroids

Uniform Matroid

A pair M = (E, I) over an n-element ground set E, is called a
uniform matroid if the family of independent sets is given by

I =
n
A ✓ E | |A| k

o
,

where k is some constant. This matroid is also denoted as Un,k.
Eg: E = {1, 2, 3, 4, 5} and k = 2 then

I =
n
{}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4},

{1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}
o

I
n

Uniform Matroid

A pair M = (E, I) over an n-element ground set E, is called a
uniform matroid if the family of independent sets is given by

I =
n
A ✓ E | |A| k

o
,

where k is some constant. This matroid is also denoted as Un,k.
Eg: E = {1, 2, 3, 4, 5} and k = 2 then

I =
n
{}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4},

{1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}
o

I
n

Graphic Matroid

Given a graph G, a graphic matroid is defined as M = (E, I)
where and

E = E(G) – edges of G are elements of the matroid

I =
n
F ✓ E(G) : F is a forest in the graph G

o

Graphic Matroid

Given a graph G, a graphic matroid is defined as M = (E, I)
where and

E = E(G) – edges of G are elements of the matroid

I =
n
F ✓ E(G) : F is a forest in the graph G

o

A BEI LAI LIBI
Fe EB such that Ave EI

Exchange property?

Proof:

Given:
To show:

Graphic Matroid

Given a graph G, a graphic matroid is defined as M = (E, I)
where and

E = E(G) – edges of G are elements of the matroid

I =
n
F ✓ E(G) : F is a forest in the graph G

o

A BEI LAI LIBI
Fe EB such that Ave EI

I

Exchange property?
Given:

Proof:
To show:

Matroid Representation

Remark

Need compact representation to for the family of
independent sets.

Also to be able to test easily whether a set belongs to the
family of independent sets.

Linear Matroid

Let A be a matrix over an arbitrary field F and let E be the set
of columns of A. Given A we define the matroid M = (E, I) as
follows.
A set X ✓ E is independent (that is X 2 I) if the
corresponding columns are linearly independent over F.

A =

2

666664

⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
...

...
...

...
...

⇤ ⇤ ⇤ · · · ⇤

3

777775
⇤ are elements of F

The matroids that can be defined by such a construction are
called linear matroids.

Linear Matroid

Let A be a matrix over an arbitrary field F and let E be the set
of columns of A. Given A we define the matroid M = (E, I) as
follows.
A set X ✓ E is independent (that is X 2 I) if the
corresponding columns are linearly independent over F.

A =

2

666664

⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
...

...
...

...
...

⇤ ⇤ ⇤ · · · ⇤

3

777775
⇤ are elements of F

The matroids that can be defined by such a construction are
called linear matroids.

Linear Matroids and Representable Matroids

If a matroid can be defined by a matrix A over a field F, then
we say that the matroid is representable over F.

Linear Matroids and Representable Matroids

A matroid M = (E, I) is representable over a field F if there
exist vectors in F` that correspond to the elements such that
the linearly independent sets of vectors precisely correspond to
independent sets of the matroid.
Let E = {e1, . . . , em} and ` be a positive integer.

2

66664

e1 e2 e3 · · · em

1 ⇤ ⇤ ⇤ · · · ⇤
2 ⇤ ⇤ ⇤ · · · ⇤
3 ⇤ ⇤ ⇤ · · · ⇤
...

...
...

...
...

...
` ⇤ ⇤ ⇤ · · · ⇤

3

77775

`⇥m

A matroid M = (E, I) is called representable or linear if it is
representable over some field F.

Linear Matroids and Representable Matroids

A matroid M = (E, I) is representable over a field F if there
exist vectors in F` that correspond to the elements such that
the linearly independent sets of vectors precisely correspond to
independent sets of the matroid.
Let E = {e1, . . . , em} and ` be a positive integer.

2

66664

e1 e2 e3 · · · em

1 ⇤ ⇤ ⇤ · · · ⇤
2 ⇤ ⇤ ⇤ · · · ⇤
3 ⇤ ⇤ ⇤ · · · ⇤
...

...
...

...
...

...
` ⇤ ⇤ ⇤ · · · ⇤

3

77775

`⇥m

A matroid M = (E, I) is called representable or linear if it is
representable over some field F.

Uniform Matroid
Every uniform matroid is linear and can be represented over a
finite field by a k ⇥ n matrix AM where the AM [i, j] = j

i�1.

2

66664

e1 e2 e3 · · · en

1 1 1 1 · · · 1
2 1 2 3 · · · n

3 1 22 32 · · · n
2

...
...

...
...

...
...

k 1 2k�1 3k�1 · · · n
k�1

3

77775

k⇥n

Observe that for AM to be representable over a finite field F, we
need that the determinant of any k ⇥ k submatrix of AM must
not vanish over F.
The determinant of any k ⇥ k submatrix of AM is upper
bounded by k!⇥ n

k�1 (this follows from the Laplace expansion
of determinants). Thus, choosing a field F of size larger than
k!⇥ n

k�1 su�ces.

Un k

Uniform Matroid
Every uniform matroid is linear and can be represented over a
finite field by a k ⇥ n matrix AM where the AM [i, j] = j

i�1.

2

66664

e1 e2 e3 · · · en

1 1 1 1 · · · 1
2 1 2 3 · · · n

3 1 22 32 · · · n
2

...
...

...
...

...
...

k 1 2k�1 3k�1 · · · n
k�1

3

77775

k⇥n

Observe that for AM to be representable over a finite field F, we
need that the determinant of any k ⇥ k submatrix of AM must
not vanish over F.
The determinant of any k ⇥ k submatrix of AM is upper
bounded by k!⇥ n

k�1 (this follows from the Laplace expansion
of determinants). Thus, choosing a field F of size larger than
k!⇥ n

k�1 su�ces.

Uniform Matroid: Size of the representation

2

66664

e1 e2 e3 · · · en

1 1 1 1 · · · 1
2 1 2 3 · · · n

3 1 22 32 · · · n
2

...
...

...
...

...
...

k 1 2k�1 3k�1 · · · n
k�1

3

77775

k⇥n

So the size of the representation: O((k log n)⇥ nk) bits.

Graphic Matroid

The graphic matroid is representable over any field of size at
least 2.
Consider the matrix AM with a row for each vertex i 2 V (G)
and a column for each edge e = ij 2 E(G). In the column
corresponding to e = ij, all entries are 0, except for a 1 in i or j
(arbitrarily) and a �1 in the other.

2

666664

e1 e2 e3 · · · em

1 1 0 1 · · · 0
2 0 0 0 · · · 1
3 �1 1 0 · · · 0
...

...
...

...
...

...
n 0 �1 �1 · · · �1

3

777775

n⇥|E(G)|

This is a representation over reals.

Graphic Matroid
The graphic matroid is representable over any field of size at
least 2.
Consider the matrix AM with a row for each vertex i 2 V (G)
and a column for each edge e = ij 2 E(G). In the column
corresponding to e = ij, all entries are 0, except for a 1 in i or j
(arbitrarily) and a �1 in the other.

2

66664

e1 e2 e3 · · · em

1 1 0 1 · · · 0
2 0 0 0 · · · 1
3 1�1 1 0 · · · 0
...

...
...

...
...

...
n 0 1�1 1�1 · · · 1�1

3

77775

n⇥|E(G)|

To obtain a representation over a field F, one simply needs to
take the representation given above over reals and simply
replace all �1 by the additive inverse of 1

Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is an efficiently computable subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Márx (2009) and Fomin, Lokshtanov, Saurabh (2013)

man I
representable

Summary.

We have at hand a p-uniform collection of independent sets, F and a number q.
Let X be any set of size at most q. For any set S P F, if:

a X is disjoint from S, and
b X and S together form an independent set,

then a q-representative family pF contains a set pS that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.

ª'24'5'06#6+8' ²'65

Back to Why.

Baddyk-path
and

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

[RECALL]

..

(k
i

)

.

Representative Set Computation

Nj

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

[RECALL]

.

(n
k

)

.

(k
i

)

.

Representative Set Computation

Underlying
matroid is th

in uniformmatroi
Un K

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

[RECALL]

.

(n
k

)

.

(k
i

)

.

Representative Set Computation

Underlying
matroid isthe

E uniformmatroid

Un K

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

Not so fast!

.

(n
k

)

.

(k
i

)

.

Representative Set Computation

Underlying
matroid isth

Uniformmatroid

Un K

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

Not so fast!

.

(n
k

)
is too big!

.

(k
i

)

.

Representative Set Computation

Bit

We are going to compute representative families at every intermediate stage of
the computation.

For instance, in the ith column, we are storing i-uniform families.
Before moving on to column (i+ 1), we compute (k− i)-representative families.

This keeps the sizes small as we go along.

We are going to compute representative families at every intermediate stage of
the computation.

For instance, in the ith column, we are storing i-uniform families.
Before moving on to column (i+ 1), we compute (k− i)-representative families.

This keeps the sizes small as we go along.

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2k

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2k

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2k

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2k

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2k

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2k

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2k

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2k

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2k

...............

1

.

2

.

3

.

¨ ¨ ¨

.

i

.

¨ ¨ ¨

.

k− 1

.

k

.

v1

.

...

.

vj

.

...

.

vn

.

Worst case running time: O!
((n

k

))

.

RECALL

.

Blah blah.

.

(k
i

)

.

Representative Set Computation

.

n

.

(k
1

)

.

(k
1

)
n

.

(k
2

)

.

(k
2

)
n

.

(k
3

)

.

¨ ¨ ¨

.

(k
i−1

)
n

.

(k
i

)

.

¨ ¨ ¨

.

2kn

.

2kBoss
EPT

algorithm
for kpath

emark Using more
efficient construction of representativefamilies

for uniform matroids one can design an 042.6191algorith
for k path

Let Pj
i be the set of all paths of length i ending at vj.

It can be shown that the families thus computed at the ith column, jth row are
indeed (k− i)-representative families for Pj

i .

The correctness is implicit in the notion of a representative family.

ª'24'5'06#6+8' ²'65

A Different Why.notated
Remark The only known polynomial

kernel for the

Odd Cycle
Transversal problem is via

matroids and representative
sets

and

Kernelization

Vertex Cover
Can you delete k vertices to kill all edges?

..............

.......

Vertex Cover
Can you delete k vertices to kill all edges?

.....................

Let (G = (V, E), k) be an instance of Vertex Cover.

Note that E can be thought of as a 2-uniform family over the ground set V .

Goal: Kernelization.

In this context, we are asking if there is a small subset X of the edges such that

G[X] is a YES-instance↔G is a YES-instance.

Let (G = (V, E), k) be an instance of Vertex Cover.

Note that E can be thought of as a 2-uniform family over the ground set V .

Goal: Kernelization.

In this context, we are asking if there is a small subset X of the edges such that

G[X] is a YES-instance↔G is a YES-instance.

poly ink

Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?

Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?

Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?

Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?

....................

IfG is a NO-instance:

For any subset S of size at most k,
there is an edge that is disjoint from S.

Ring a bell?

....................

IfG is a NO-instance:

For any subset S of size at most k,
there is an edge that is disjoint from S.

Ring a bell?

in ECG

Recall.

We have at hand a p-uniform collection of independent sets, F and a number q.
Let X be any set of size at most q. For any set S P F, if:

a X is disjoint from S, and
b X and S together form an independent set,

then a q-representative family contains a set pS that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.

Claim: A k-representative family for E is in fact
anO(k2) kernel for vertex cover.

..E(G) = {e1, e2, . . . , em}

.

{f1, f2, . . . , fr}

.

k-Representative Family

.

O(k2)

.

Is there a Vertex Cover of size at most k?

..E(G) = {e1, e2, . . . , em}.

{f1, f2, . . . , fr}

.

k-Representative Family

.

O(k2)

.

Is there a Vertex Cover of size at most k?

X E ECG

..E(G) = {e1, e2, . . . , em}.

{f1, f2, . . . , fr}

.

”

.

O(k2)

.

Is there a Vertex Cover of size at most k?

X E ECG

Let us show that ifG[X] is a YES-instance, then so isG.

This time, by contradiction.

..............

......

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

.....................

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

..

.

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

....................

.

Try the solution forG[X] onG.

.

Suppose there is an uncovered edge.

.

Since X is a k-representative family, for ANY S Ď V , where |S| ď k:

.

if there is a set e in E such that e X S = H,

...

then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!

A k-representative family for E(G) is in fact
anO(k2) instance kernel for Vertex Cover!

