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Problems we would be interested in...
Vertex Cover
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a subset V 1 Ď V of size at most k such that for
every edge (u, v) P E either u P V 1 or v P V 1?

Hamiltonian Path
Input: A graphG = (V, E)
Question: Does there exist a path P inG that spans all the vertices?

Path
Input: A graphG = (V, E) and a positive integer k.
Parameter: k
Question: Does there exist a path P inG of length at least k?
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Ham-Path

Dynamic Programming for Hamiltonian Path
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Example:

.

V[Paths of length i ending at vj]

.

SETS, NOT SEQUENCES.

.

Two paths that use the same set of vertices but

.

visit them in different orders are equivalent.

.

= V[Paths of length (i− 1) ending at u, avoiding vj.]

....

u P N(vj)

.

Valid:

.

Invalid:

.

Potentially storing
(n
i

)
sets.
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K-Path

Let us now turn to k-Path.

To find paths of length at least k,
we may simply use the DP table for Hamiltonian Path

restricted to the first k columns.
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Do we really need to store all these sets?

In the ith column, we are storing paths of length i.

Let P be a path of length k.

There may be several paths of length i that “latch on” to
the last (k− i) vertices of P.

We need to store just one of them.
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Example.

Suppose we have a path P on seven edges.

Consider it broken up into the first four and the last three edges.

..............

....
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A Fixed Future (vi+1 − ¨ ¨ ¨ − vk).

.
The Possibilities for Partial Solutions Compatible with vi+1 − ¨ ¨ ¨ − vk.
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For any possible ending of length (k− i), we want to be sure that we store
at least one among the possibly many “prefixes”.

This could also be
( n
k−i

)
.

The hope for “saving” comes from the fact that a single path of length i is
potentially capable of being a prefix to several distinct endings.
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For example...
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Why, What and How.
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Partial solutions: paths of length j ending at vi

.
A “small” representative family.

..........

If:

..

vi

.

(k− j) vertices

.

j vertices

..........

Then:

.

We would like to store at least one path of length j

.

that serves the same purpose.
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Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.
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Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

This is a valid patch into X.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Given: A (BIG) family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

This is a guaranteed replacement for S.
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Given: A ď (n
p

)
family F of p-sized subsets of [n].

S1, S2, . . . , St

Want: A (small) subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

The “second half” of a solution — can be any subset.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Given: A ď (n
p

)
family F of p-sized subsets of [n].

S1, S2, . . . , St

Known: D(kp
)
subfamily pF of F such that:

For any X Ď [n] of size (k− p),

if there is a set S in F such that X X S = H,
then there is a set pS in pF such that X X pS = H.

Bolobás, 1965.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is a subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Lovász, 1977
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Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is an efficiently computable subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Márx (2009) and Fomin, Lokshtanov, Saurabh (2013)
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Matroids

Definition

A pair M = (E, I), where E is a ground set and I is a family of
subsets (called independent sets) of E, is a matroid if it satisfies
the following conditions:

(I1) ' 2 I or I 6= ;.
(I2) If A0 ✓ A and A 2 I then A

0 2 I.
(I3) If A,B 2 I and |A| < |B|, then 9 e 2 (B \A) such that

A [ {e} 2 I.

The axiom (I2) is also called the hereditary property and a pair
M = (E, I) satisfying (I1) and (I2) is called hereditary family or
set-family.
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(I3) is called the exchange property.



Rank and Basis

Definition

A pair M = (E, I), where E is a ground set and I is a family of
subsets (called independent sets) of E, is a matroid if it satisfies
the following conditions:

(I1) ' 2 I or I 6= ;.
(I2) If A0 ✓ A and A 2 I then A

0 2 I.
(I3) If A,B 2 I and |A| < |B|, then 9 e 2 (B \A) such that

A [ {e} 2 I.

An inclusion wise maximal set of I is called a basis of the
matroid. Using axiom (I3) it is easy to show that all the bases
of a matroid have the same size. This size is called the rank of
the matroid M , and is denoted by rank(M).
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Examples Of Matroids

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Uniform Matroid

A pair M = (E, I) over an n-element ground set E, is called a
uniform matroid if the family of independent sets is given by

I =
n
A ✓ E | |A|  k

o
,

where k is some constant. This matroid is also denoted as Un,k.
Eg: E = {1, 2, 3, 4, 5} and k = 2 then

I =
n
{}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4},

{1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}
o
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A pair M = (E, I) over an n-element ground set E, is called a
uniform matroid if the family of independent sets is given by

I =
n
A ✓ E | |A|  k

o
,

where k is some constant. This matroid is also denoted as Un,k.
Eg: E = {1, 2, 3, 4, 5} and k = 2 then

I =
n
{}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4},

{1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}
o
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Graphic Matroid

Given a graph G, a graphic matroid is defined as M = (E, I)
where and

E = E(G) – edges of G are elements of the matroid

I =
n
F ✓ E(G) : F is a forest in the graph G

o
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Given a graph G, a graphic matroid is defined as M = (E, I)
where and

E = E(G) – edges of G are elements of the matroid
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Proof:

Given:
To show:



Graphic Matroid

Given a graph G, a graphic matroid is defined as M = (E, I)
where and

E = E(G) – edges of G are elements of the matroid

I =
n
F ✓ E(G) : F is a forest in the graph G

o
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To show:



Matroid Representation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Remark

Need compact representation to for the family of
independent sets.

Also to be able to test easily whether a set belongs to the
family of independent sets.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Linear Matroid

Let A be a matrix over an arbitrary field F and let E be the set
of columns of A. Given A we define the matroid M = (E, I) as
follows.
A set X ✓ E is independent (that is X 2 I) if the
corresponding columns are linearly independent over F.

A =

2

666664

⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
...

...
...

...
...

⇤ ⇤ ⇤ · · · ⇤

3

777775
⇤ are elements of F

The matroids that can be defined by such a construction are
called linear matroids.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Linear Matroid

Let A be a matrix over an arbitrary field F and let E be the set
of columns of A. Given A we define the matroid M = (E, I) as
follows.
A set X ✓ E is independent (that is X 2 I) if the
corresponding columns are linearly independent over F.

A =

2

666664

⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
⇤ ⇤ ⇤ · · · ⇤
...

...
...

...
...

⇤ ⇤ ⇤ · · · ⇤

3

777775
⇤ are elements of F

The matroids that can be defined by such a construction are
called linear matroids.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Linear Matroids and Representable Matroids

If a matroid can be defined by a matrix A over a field F, then
we say that the matroid is representable over F.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Linear Matroids and Representable Matroids

A matroid M = (E, I) is representable over a field F if there
exist vectors in F` that correspond to the elements such that
the linearly independent sets of vectors precisely correspond to
independent sets of the matroid.
Let E = {e1, . . . , em} and ` be a positive integer.

2

66664

e1 e2 e3 · · · em

1 ⇤ ⇤ ⇤ · · · ⇤
2 ⇤ ⇤ ⇤ · · · ⇤
3 ⇤ ⇤ ⇤ · · · ⇤
...

...
...

...
...

...
` ⇤ ⇤ ⇤ · · · ⇤

3

77775

`⇥m

A matroid M = (E, I) is called representable or linear if it is
representable over some field F.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Linear Matroids and Representable Matroids

A matroid M = (E, I) is representable over a field F if there
exist vectors in F` that correspond to the elements such that
the linearly independent sets of vectors precisely correspond to
independent sets of the matroid.
Let E = {e1, . . . , em} and ` be a positive integer.

2

66664

e1 e2 e3 · · · em

1 ⇤ ⇤ ⇤ · · · ⇤
2 ⇤ ⇤ ⇤ · · · ⇤
3 ⇤ ⇤ ⇤ · · · ⇤
...

...
...

...
...

...
` ⇤ ⇤ ⇤ · · · ⇤

3

77775

`⇥m

A matroid M = (E, I) is called representable or linear if it is
representable over some field F.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Uniform Matroid
Every uniform matroid is linear and can be represented over a
finite field by a k ⇥ n matrix AM where the AM [i, j] = j

i�1.

2

66664

e1 e2 e3 · · · en

1 1 1 1 · · · 1
2 1 2 3 · · · n

3 1 22 32 · · · n
2

...
...

...
...

...
...

k 1 2k�1 3k�1 · · · n
k�1

3

77775

k⇥n

Observe that for AM to be representable over a finite field F, we
need that the determinant of any k ⇥ k submatrix of AM must
not vanish over F.
The determinant of any k ⇥ k submatrix of AM is upper
bounded by k!⇥ n

k�1 (this follows from the Laplace expansion
of determinants). Thus, choosing a field F of size larger than
k!⇥ n

k�1 su�ces.
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Uniform Matroid
Every uniform matroid is linear and can be represented over a
finite field by a k ⇥ n matrix AM where the AM [i, j] = j

i�1.

2

66664

e1 e2 e3 · · · en

1 1 1 1 · · · 1
2 1 2 3 · · · n

3 1 22 32 · · · n
2

...
...

...
...

...
...
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k�1

3

77775

k⇥n

Observe that for AM to be representable over a finite field F, we
need that the determinant of any k ⇥ k submatrix of AM must
not vanish over F.
The determinant of any k ⇥ k submatrix of AM is upper
bounded by k!⇥ n

k�1 (this follows from the Laplace expansion
of determinants). Thus, choosing a field F of size larger than
k!⇥ n

k�1 su�ces.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Uniform Matroid: Size of the representation

2

66664

e1 e2 e3 · · · en

1 1 1 1 · · · 1
2 1 2 3 · · · n

3 1 22 32 · · · n
2

...
...

...
...

...
...

k 1 2k�1 3k�1 · · · n
k�1

3

77775

k⇥n

So the size of the representation: O((k log n)⇥ nk) bits.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Graphic Matroid

The graphic matroid is representable over any field of size at
least 2.
Consider the matrix AM with a row for each vertex i 2 V (G)
and a column for each edge e = ij 2 E(G). In the column
corresponding to e = ij, all entries are 0, except for a 1 in i or j
(arbitrarily) and a �1 in the other.

2

666664

e1 e2 e3 · · · em

1 1 0 1 · · · 0
2 0 0 0 · · · 1
3 �1 1 0 · · · 0
...

...
...

...
...

...
n 0 �1 �1 · · · �1

3

777775

n⇥|E(G)|

This is a representation over reals.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Graphic Matroid
The graphic matroid is representable over any field of size at
least 2.
Consider the matrix AM with a row for each vertex i 2 V (G)
and a column for each edge e = ij 2 E(G). In the column
corresponding to e = ij, all entries are 0, except for a 1 in i or j
(arbitrarily) and a �1 in the other.

2

66664

e1 e2 e3 · · · em

1 1 0 1 · · · 0
2 0 0 0 · · · 1
3 1�1 1 0 · · · 0
...

...
...

...
...

...
n 0 1�1 1�1 · · · 1�1

3

77775

n⇥|E(G)|

To obtain a representation over a field F, one simply needs to
take the representation given above over reals and simply
replace all �1 by the additive inverse of 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is an efficiently computable subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Márx (2009) and Fomin, Lokshtanov, Saurabh (2013)
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Summary.

We have at hand a p-uniform collection of independent sets, F and a number q.
Let X be any set of size at most q. For any set S P F, if:

a X is disjoint from S, and
b X and S together form an independent set,

then a q-representative family pF contains a set pS that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.
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Back to Why.
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We are going to compute representative families at every intermediate stage of
the computation.

For instance, in the ith column, we are storing i-uniform families.
Before moving on to column (i+ 1), we compute (k− i)-representative families.

This keeps the sizes small as we go along.
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EPT

algorithm
for kpath

emark Using more
efficient construction of representativefamilies

for uniform matroids one can design an 042.6191algorith
for k path



Let Pj
i be the set of all paths of length i ending at vj.

It can be shown that the families thus computed at the ith column, jth row are
indeed (k− i)-representative families for Pj

i .

The correctness is implicit in the notion of a representative family.
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A Different Why.notated
Remark The only known polynomial

kernel for the

Odd Cycle
Transversal problem is via

matroids and representative
sets

and

Kernelization



Vertex Cover
Can you delete k vertices to kill all edges?

..............

.......



Vertex Cover
Can you delete k vertices to kill all edges?

.....................



Let (G = (V, E), k) be an instance of Vertex Cover.

Note that E can be thought of as a 2-uniform family over the ground set V .

Goal: Kernelization.

In this context, we are asking if there is a small subset X of the edges such that

G[X] is a YES-instance↔G is a YES-instance.



Let (G = (V, E), k) be an instance of Vertex Cover.

Note that E can be thought of as a 2-uniform family over the ground set V .

Goal: Kernelization.

In this context, we are asking if there is a small subset X of the edges such that

G[X] is a YES-instance↔G is a YES-instance.

poly ink



Note: IfG is a YES-instance, thenG[X] is a YES-instance for any subset X Ď E.

We get one direction for free!

It is the NO-instances that we have to worry about preserving.

What is a NO-instance?
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....................

IfG is a NO-instance:

For any subset S of size at most k,
there is an edge that is disjoint from S.

Ring a bell?



....................

IfG is a NO-instance:

For any subset S of size at most k,
there is an edge that is disjoint from S.

Ring a bell?

in ECG



Recall.

We have at hand a p-uniform collection of independent sets, F and a number q.
Let X be any set of size at most q. For any set S P F, if:

a X is disjoint from S, and
b X and S together form an independent set,

then a q-representative family contains a set pS that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.



Claim: A k-representative family for E is in fact
anO(k2) kernel for vertex cover.
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Let us show that ifG[X] is a YES-instance, then so isG.

This time, by contradiction.
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Try the solution forG[X] onG.
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Suppose there is an uncovered edge.
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then there is a set pe in X such that pe X S = H.

.

Note that the green edges denoteG[X].

.

Contradiction!
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A k-representative family for E(G) is in fact
anO(k2) instance kernel for Vertex Cover!


