

Lecture 8:Testing Sparse images -Monotonicity

Themis Gouleakis

June 1, 2021

Definitions

Images:

- An image will be represented by a 0/1-valued $n \times n$ matrix M.
 - Dense if it contains $\Omega(n^2)$ 1-entries/pixels.

Access models:

- Dense image model: (analog to dense graph model)
 - Query access to entries
- Sparse image model: (analog to sparse graph model)
 - Query access to entries
 - Sample access to 1-entries

lanck institut

Distance:

- Dense image model: $\delta(M, M') = \frac{d_H(M, M')}{n^2}$
- Sparse image model: $\delta(M, M') = \frac{d_H(M, M')}{w(M)}$ where w(M) is the number of 1-pixels in M

Example properties

- Connectivity: Graph of *M* is connected
- Line imprint: ∃ a line segment such that M(i, j) = 1 iff the line intersects the pixel.
- Convexity: Similar for a convex shape
- Monotonicity: \forall (i_1, j_1) and (i_2, j_2) 1-pixels it holds: $i_1 < i_2 \Rightarrow j_1 \le j_2$.

Assumptions and warmup

- The algorithm is given an estimate of w(M)
 - Can be obtained using $\tilde{O}(\min\{\sqrt{w(M)}, \frac{n^2}{w(M)}\})$ queries.

Theorem (sampling only tester)

There exists a sampling-only property tester for monotonicity the requires an estimate $\hat{w} = \Theta(w(M))$ and has sample complexity and running time $O(\sqrt{w(M)/\epsilon})$

The algorithm is the following:

- 1. Take $\Theta(\sqrt{\hat{w}/\epsilon})$ samples of 1-pixels u.a.r
- 2. If some pair violates monotonicity **REJECT**, otherwise **ACCEPT Proof**:

Assumptions and warmup

Theorem (sampling lower bound)

There exists NO sampling-only property tester for monotonicity using $o(\sqrt{w(M)})$ samples and no queries.

Improved algorithm using gueries

Algorithm with gueries:

- (1) Take a sample S_1 of $t_1 = \Theta(g_1 \log n/\epsilon^2)$ 1-pixels. If S_1 contains a violating pair, then REJECT; otherwise, continue.
- (2) Take a sample S_2 of $t_2 = \Theta(1/\epsilon)$ 1-pixels. If there is a violating pair in $S_1 \cup S_2$, then REJECT. Otherwise, for each of the 1-pixels (a, b) in S_2 perform the following subtest: -For $\ell = 1$ to g_2 , where ℓ increases by a multiplicative factor of 2 in each iteration, uniformly select $t_3(\ell) = \Theta(\ell \cdot (n/w(M)) \cdot \log(n)/\epsilon^2)$ entries in the submatrix of dimensions $\ell \times \ell$ that (a, b) is the bottom-right corner of, and similarly for the $\ell \times \ell$ submatrix that (a, b) is the top-left corner of, and perform queries on all these pixels. If any is answered by '1', then REJECT.
- (3) If no step caused rejection, then accept.

Remarks:

- We try to decompose into a set of submatrices with the properties:
 - Captures most 1-pixels in M
 - No cross-violations
- Structural result: Either we detect a violation or the above holds

 Latter case: Use gueries to detect violations within submatrices. lanck institut

June 1, 2021

Improved algorithm using queries

We will show the following theorem for the above algorithm:

Theorem (sampling and query tester)

There exists an one-sided error property tester for monotonicity the requires an estimate $\hat{w} = \Theta(w(M))$ and has sample and query complexity as well as its running time is $\tilde{O}\left(\frac{n^{2/3}}{w(M)^{1/3}\epsilon^2}\right)$

Improved algorithm using queries

- Let S be a subset of 1-pixels obeying monotonicity.
- The picture below shows the corresponding set of submatrices *M*(*S*).

Improved algorithm using queries

Lemma With high constant probability over the choice of the sample S_1^1 , either S_1^1 contains a violating pair or there exists a subset of S_1^1 of size at most $6g_1 (= 6n^{2/3}/w(M)^{1/3})$, denoted \tilde{S}_1^1 such that at most an $(\epsilon/16)$ -fraction of the 1-pixels in M belong to heavy submatrices in $\mathcal{M}(\tilde{S}_1^1)$.

Proof:

