Consider the general balls-and-bins experiment, where \(m \) balls are thrown into \(n \) bins, where \(m > n \). Show that the highest loaded bin contains \(O(m/n + \ln n) \) balls with high probability.

Recall the Coupon Collector’s Problem, where we wish to obtain \(n \) different coupons by repeatedly and independently pulling for a random type of coupon (where each coupon appears with probability 1/\(n \)). Write \(X_C \) for the number of coupons pulled before obtaining (at least) one coupon of every type.

In this exercise, we prove the following sharp threshold of \(X_C \): for any constant \(c \in \mathbb{R} \), we have

\[
\lim_{n \to \infty} \Pr[X_C > n \ln n + cn] = 1 - e^{-e^{-c}}. \tag{1}
\]

In a first step, we reinterpret the Coupon Collector’s Problem as a balls-and-bins experiment. To that end, imagine that you have \(n \) bins and you throw balls into bins uniformly at random until every bin contains at least one ball.

a) Prove that after throwing \(m := n \ln n + cn \) balls, with probability at most \(e^{-c} \), there is a bin without any balls. \((Hint: \ You \ may \ use \ results \ from \ the \ lecture \ without \ repeating \ their \ proofs.)\)

b) Consider \(n \) independent Poisson random variables \(P_i \) with mean \((\ln n + c) \) each, with the idea that the \(i \)-th Poisson random variable approximates the number of balls in the \(i \)-th bin. Compute the probabilities that any fixed \(P_i \) is zero and prove that the probability that no \(P_i \) is zero is approximately \(e^{-e^{-c}} \) (for large \(n \)). What can you conclude for the balls-and-bins experiment?

In the next step, we show that the Poisson approximation is indeed accurate. To that end, write \(\mathcal{E} \) for the event that none of the Poisson random variables \(P_i \) is zero and write \(X = \sum_{i=1}^n P_i \).

c) Argue that \(\lim_{n \to \infty} \Pr[\mathcal{E}] = e^{-e^{-c}} \).

d) Write \(\Pr[\mathcal{E}] = \Pr[\mathcal{E} \cap (|X - m| \leq \sqrt{2m \ln m})] + \Pr[\mathcal{E} \cap (|X - m| > \sqrt{2m \ln m})] \) and argue that

\[
\Pr[|X - m| > \sqrt{2m \ln m}] = o(1) \quad \text{and} \quad \Pr[\mathcal{E} \cap |X - m| \leq \sqrt{2m \ln m}] - \Pr[\mathcal{E} \cap X = m] = o(1).
\]

\((Hint: \ You \ may \ use \ the \ following \ Chernoff \ bounds \ for \ a \ Poisson \ random \ variable \ X \ with \ mean \ \mu: \ for \ a > \mu, \ we \ have \ \Pr[X \geq a] \leq e^{-\mu}(e\mu)^a/a^a; \ for \ a < \mu, \ we \ have \ \Pr[X \leq a] \leq e^{-\mu}(e\mu)^a/a^a.)\)

e) Conclude that \(\Pr[\mathcal{E}] = \Pr[\mathcal{E} \cap X = m] (1 - o(1)) + o(1). \)

Finally, argue that \(\lim_{n \to \infty} \Pr[\mathcal{E}] = \lim_{n \to \infty} \Pr[\mathcal{E} \cap X = m] \) and derive (1).

For a positive integer \(n \) and a constant \(c \in \mathbb{R} \), write \(N = 1/2 \cdot (n \ln n + cn) \). Prove that any graph \(G \) generated in \(G_{n,N} \) (that is, starting with \(n \) isolated vertices, we pick a random non-edge \(N \) times) satisfies

\[
\lim_{n \to \infty} \Pr[G \text{ has at least one isolated vertex}] = e^{-e^{-c}}.
\]