
Vertex Connectivity
Danupon Nanongkai

Please ask questions anytime!

1. The Problem

2

3

k=1 k=2 k=3

Problem: Compute
𝒌 = minimum number of nodes whose removals disconnect the
input graph

Examples

Formally, we define 𝑘(𝐺) for input graph G. We omit G since it’s clear from the context.

How fast can computers compute k?

4
4

How fast can computers compute k?

Time Best possible (O(m))

Algorithm Depth-first search [Tarjan’71]

m = number of edges, n = number of nodes

Found in

k=1

5

How fast can computers compute k?

Time Best possible (O(m)) Best possible (O(m))

Algorithm Depth-first search [Tarjan’71] SPQR tree [Hopcroft-Tarjan’73]

m = number of edges, n = number of nodes

Supported in

k=2k=1

6

Found in

How fast can computers compute k?

Time Best possible (O(m)) Best possible (O(m)) Quadratic (𝑂(𝑛!))
Algorithm Depth-first search [Tarjan’71] SPQR tree [Hopcroft-Tarjan’73] Kleitman’69

m = number of edges, n = number of nodes

Supported in

k=3k=2k=1

Found in Aho-Hopcroft-Ullman
Conjecture (1974)
O(m) time for k-connectivity,
for any k

Despite many ideas, quadratic time for k≥3 remains

8

Reference k=3 General k

Kleitman’69, Podderyugin’73, Even Tarjan’75 𝑛! 𝑛𝑘 ⋅ max'low%&

Even’75, Galil’80, Esfahanian Hakimi’84, Matula’87 𝑛! (𝑘' + 𝑛) ⋅ max'low%&

Becker et al’82 𝑛! 𝑛 ⋅ max'low%&

Linial Lovasz Wigderson’88, Cheriyan Reif’91 𝑛!.#$ 𝑛(+ 𝑛𝑘(

Nagamochi Ibaraki’92 𝑛! Can assume 𝑚 = 𝑂(𝑛𝑘)

Henzinger Rao Gabow’00 𝑛! 𝑚𝑛 and 𝑚𝑛 +𝑚𝑘) +𝑚𝑛𝑘

Gabow’06 𝑛! 𝑚𝑛 +𝑚𝑘'.+ +𝑚𝑛)/-𝑘

m = number of edges, n = number of nodes, polylog(n) hidden

Our Result

9

Joint works with

• Thatchaphol Saranurak, Sorrachai Yingchareonthawornchai, STOC’19

• Sebastian Forster, Thatchaphol Saranurak, Liu Yang, Sorrachai Yingchareonthawornchai, SODA’20

Our algorithm (today)

More generally,
"𝑂 𝑚𝑘! time for any 𝒌

10
m = number of edges, n = number of nodes, !𝑂 hides polylog(n)

“Best possible” (!𝑂 𝑚) time for k=3, 4, …, O(1)
%𝑂 hides polylog(n)

Follow-up result (not today)
𝑚'()(') time for any 𝒌

More general: max-flow time
Li, N, Panigrahi, Saranurak, Yingchareonthawornchai, STOC’21

Experimental confirmation

11Credit: Max Franck (Aalto University, Finland)

Results on graphs with 50,000 − 250,000 vertices.
HRG is the previously best result, LOCAL is our algorithm, LOCAL+ & LOCALh+ are algorithm with heuristics

2. Local Algorithm Paradigm

12

Key idea: Explore locally
Don’t read the
whole input!

14

cut nodescut node

Fast to find cut node Take longer to find cut node

(More on this later)

Key idea: Explore locally
Don’t read the
whole input!

Example for vertex connectivity:
Try to start at s near the cut nodes à find solution by exploring locally

Roles of the Local Paradigm

• Natural paradigm for distributed computing, property testing, etc.
• Relatively new paradigm for sequential algorithms

(compared to, e.g., randomized and approximation algorithms)

• Recently led to many exciting results, e.g.
• Fast linear system solver (Spielman-Teng’04)
• Edge connectivity (Kawarabayashi-Thorup’18)
• Dynamic minimum spanning tree (N., Saranurak, Wulff-Nilsen’17)
• Vertex connectivity (today)
• Fast max-flow (CKLPPS’22)

15

3. Algorithm (Sketch)

16
Skip to conclusion

The Framework (for k=O(1))

For r=1, 2, 4, 8, …, m/4 do these:
1. Sample nodes 𝑠%, … , 𝑠&

Probability proportional to degrees
Goal: “hit” smaller side of the cut

17

Example

Cut nodes

𝑠!

𝑠"

𝑠#

𝑠$

m = number of edges, n = number of nodes, !𝑂 hides polylog(n) Skip to conclusion

Claim The smaller side is hit if
it is incident to ≈ m/r edges

The Framework (for k=O(1))

For r=1, 2, 4, 8, …, m/4 do these:
1. Sample nodes 𝑠%, … , 𝑠&

Probability proportional to degrees

2. Explore locally: For each 𝑠', call
LocalVC(𝑠', m/r) (next)

18

Cut nodes

𝑠!

𝑠"

𝑠#

𝑠$

Found cut nodes

m = number of edges, n = number of nodes, !𝑂 hides polylog(n) Skip to conclusion

Example

Not found

Not found

Not found

Subroutine (sketched): LocalVC(𝑠, m/r)

• Spend O(m/r) time reading O(m/r) edges near s
• … to find cut nodes

Time: (𝑂 𝑟× "
#

= (𝑂(𝑚)

LocalVC for k=1

19

G

≈ 𝑚/𝑟 edges

Skip to conclusion

LocalVC for k=1

20

1. Convert G to digraph G’
For every edge (u,v)

G G’

≈ 𝑚/𝑟 edges

Skip to conclusion

Analogy:

LocalVC for k=1

21

G G’

≈ 𝑚/𝑟 edges

Skip to conclusion

Only way from s to
the bigger side

LocalVC for k=1

22

G G’
2. Depth-first search (DFS) over 𝟒𝒎

𝒓
edges

Observe At least 𝑚/𝑟 of these edges are on
the bigger side

≈ 𝑚/𝑟 edges

≥ 𝑚/𝑟 edges

Skip to conclusion

DFS

LocalVC for k=1

23

G G’

3. Sample stopping node t
4. Flip directions of all edges from s to t

𝑡

Skip to conclusion

≈ 𝑚/𝑟 edges

≥ 𝑚/𝑟 edges

LocalVC for k=1

24

G G’

𝑡

Stuck
DFS

5. Depth-first search (DFS)
once more
àGot stuck
à Found cut edge/vertex

Skip to conclusion

≈ 𝑚/𝑟 edges

≥ 𝑚/𝑟 edges

LocalVC for k=3

25

Stuck

Skip to conclusion

1

2

3

Corner case: DFS gets stuck but visits all nodes, then sample all edges in the graph

The Pseudocode (for k=O(1))

Main algorithm
For r=1, 2, 4, 8, …, m/4 do these:
1. Sample nodes 𝑠%, … , 𝑠&

Probability proportional to degrees

2. Explore locally: For each 𝑠', call
LocalVC(𝑠', m/r)

26
m = number of edges, n = number of nodes, polylog(n) omitted

Subroutine (sketched): LocalVC(𝑠, 𝜇)
Repeat 𝒌 + 𝟏 times on
corresponding digraph G’

1. Grow depth-first search
tree 𝑇 from 𝑠 for 𝟒𝝁 edges
• If get stuck, found the cut.

Output & terminate
2. Sample an edges (𝑡′, 𝑡) in T
3. Reverse the path 𝑃./ in 𝑇

Terminate with no cut.

Skip to conclusion

Time: O 𝜇𝑘 = 𝑂 %
&

Also repeat this algorithm log(n) times

Time: 0𝑂 𝑟× 0
&

= 0𝑂 (𝑚)

For k=O(1)

For k=O(1)

m/r

Conclusion

27

Potential project examples

• Theory projects: Improve the state of the art in other settings or in
special cases, e.g.
• Distributed: improve Jiang-Mukhopadhyay STOC’23, tight lower bound, big k
• Parallel: beat reachability computation
• Cut query, communication, quantum
• Directed edge connectivity, weighted vertex cut

• Implementation projects: Implement existing algorithms and improve
with heuristics
• Vertex connectivity
• Negative-weight shortest paths
• Mincut

28

Thank you. Question?

29

30

