Vertex Connectivity

Danupon Nanongkai

1. The Problem

Problem: Compute

$\boldsymbol{k}=$ minimum number of nodes whose removals disconnect the input graph

Examples

$k=1$

How fast can computers compute k ?

How fast can computers compute k ?

Time	Best possible $(O(m))$
Algorithm	Depth-first search [Tarjan'71]

How fast can computers compute k ?

Time	Best possible $(O(m))$	Best possible $(O(m))$
Algorithm	Depth-first search [Tarjan'71]	SPQR tree [Hopcroft-Tarjan'73]

Found in

Supported in \&-O NetworkX
abo igraph
Maplesóoft

How fast can computers compute k?

k=3

Time	Best possible $(\mathrm{O}(\mathrm{m})$)
Algorithm	Depth-first search [Tarja
	Found in

Best possible $(O(m))$	Quadratic $\left(O\left(n^{2}\right)\right)$
SPQR tree [Hopcroft-Tarjan'73]	Kleitman'69

Despite many ideas, quadratic time for $k \geq 3$ remains

Reference	$\mathrm{k}=3$	General k
Kleitman'69, Podderyugin'73, Even Tarjan'75	n^{2}	$n k \cdot$ maxflow $_{\geq k}$
Even'75, Galil'80, Esfahanian Hakimi'84, Matula'87	n^{2}	$\left(k^{2}+n\right) \cdot$ maxflow $_{\geq k}$
Becker et al'82	n^{2}	$n \cdot$ maxflow $_{\geq k}$
Linial Lovasz Wigderson'88, Cheriyan Reif'91	$n^{2.37}$	$n^{\omega}+n k^{\omega}$
Nagamochi Ibaraki'92	n^{2}	Can assume $m=0(n k)$
Henzinger Rao Gabow'00	n^{2}	$m n$ and $m n+m k^{3}+m n k$
Gabow'06	n^{2}	$m n+m k^{2.5}+m n^{3 / 4} k$

$m=$ number of edges, $n=$ number of nodes, polylog (n) hidden

Our Result

Joint works with

- Thatchaphol Saranurak, Sorrachai Yingchareonthawornchai, STOC'19
- Sebastian Forster, Thatchaphol Saranurak, Liu Yang, Sorrachai Yingchareonthawornchai, SODA'20

Our algorithm (today)

"Best possible" ($\widetilde{O}(m)$) time for $k=3,4, \ldots, \mathrm{O}(1)$

\tilde{o} hides polylog(n)

More generally,
$\tilde{O}\left(m k^{2}\right)$ time for any k

Follow-up result (not today)

$$
m^{1+o(1)} \text { time for any } k
$$

More general: max-flow time

Experimental confirmation

Results on graphs with 50,000-250,000 vertices.
HRG is the previously best result, LOCAL is our algorithm, LOCAL+ \& LOCALh+ are algorithm with heuristics

2. Local Algorithm Paradigm

Key idea: Explore locally

Key idea: Explore locally

Example for vertex connectivity:

Try to start at \mathbf{s} near the cut nodes \rightarrow find solution by exploring locally

Fast to find cut node

Take longer to find cut node

Roles of the Local Paradigm

- Natural paradigm for distributed computing, property testing, etc.
- Relatively new paradigm for sequential algorithms (compared to, e.g., randomized and approximation algorithms)
- Recently led to many exciting results, e.g.
- Fast linear system solver (Spielman-Teng’04)

- Edge connectivity (Kawarabayashi-Thorup'18)
- Dynamic minimum spanning tree (N., Saranurak, Wulff-Nilsen'17)
- Vertex connectivity (today)
- Fast max-flow (CKLPPS'22)

3. Algorithm (Sketch)

\triangle WARNING
TECHNICAL CONTENT
AHEAD

The Framework (for $k=0(1))$

For $r=1,2,4,8, \ldots, m / 4$ do these:

1. Sample nodes S_{1}, \ldots, S_{r}

Probability proportional to degrees
Goal: "hit" smaller side of the cut

Example

The Framework (fork=0(1))

For $r=1,2,4,8, \ldots, m / 4$ do these:

1. Sample nodes s_{1}, \ldots, s_{r}

Probability proportional to degrees
2. Explore locally: For each s_{i}, call LocalVC($s_{i}, \mathrm{~m} / \mathrm{r}$) (next)

Subroutine (sketched): LocalVC($s, \mathrm{~m} / \mathrm{r}$)

- Spend $\mathbf{O}(\mathrm{m} / \mathrm{r})$ time reading $\mathbf{O}(\mathrm{m} / \mathrm{r})$ edges near \mathbf{s}
- ... to find cut nodes

Example

LocalVC for $\mathrm{k}=1$

LocalVC for $\mathrm{k}=3$

(3)

The Pseudocode (for $k=0(1)$)

m / r

Main algorithm

For $r=1,2,4,8, \ldots, m / 4$ do these:

1. Sample nodes s_{1}, \ldots, s_{r}

Probability proportional to degrees
2. Explore locally: For each s_{i}, call $\operatorname{LocalVC}\left(s_{i}, \mathrm{~m} / \mathrm{r}\right)_{\text {Ass repeat this agorithm }}$ Iogn) inmes

$$
\underset{\text { Tor } \mathrm{T}=\mathrm{O}(1)}{ } \mathrm{O}(\mu k)=O\left(\frac{m}{r}\right)
$$

$\frac{\text { Time: }}{\text { For } k=0(1)}: \tilde{O}\left(r \times\left(\frac{m}{r}\right)\right)=\tilde{O}(m)$

Subroutine (sketched): LocalVC(s, μ)
Repeat $k+1$ times on corresponding digraph \mathbf{G}^{\prime}

1. Grow depth-first search tree T from s for 4μ edges

- If get stuck, found the cut. Output \& terminate

2. Sample an edges $\left(t^{\prime}, t\right)$ in T
3. Reverse the path $P_{s t}$ in T

Terminate with no cut.

Conclusion

Potential project examples

- Theory projects: Improve the state of the art in other settings or in special cases, e.g.
- Distributed: improve Jiang-Mukhopadhyay STOC'23, tight lower bound, big k
- Parallel: beat reachability computation
- Cut query, communication, quantum
- Directed edge connectivity, weighted vertex cut
- Implementation projects: Implement existing algorithms and improve with heuristics
- Vertex connectivity
- Negative-weight shortest paths
- Mincut

Thank you. Question?

