Vertex Connectivity

Danupon Nanongkai

Please ask questions anytime!

1. The Problem

<u>Problem</u>: Compute **k** = minimum number of nodes whose removals **disconnect** the input graph

Examples

Formally, we define k(G) for input graph G. We omit G since it's clear from the context.

Time	Best possible (O(m))	
Algorithm	Depth-first search [Tarjan'71]	

Found in

Time	Best possible (O(m))	Best possible (O(m))	
Algorithm	Depth-first search [Tarjan'71]	SPQR tree [Hopcroft-Tarjan'73]	
	Found in	Supported in Supported in Network Analysis in Python igraph	

m = number of edges, n = number of nodes

Time	Best possible (O(m))	Best possible (O(m))	Quadratic ($O(n^2)$)
Algorithm	Depth-first search [Tarjan'71]	SPQR tree [Hopcroft-Tarjan'73]	Kleitman'69
	Found in	Supported in Supported in Supported in Supported in Support Analysis in Python Support	Aho-Hopcroft-Ullman Conjecture (1974) O(m) time for k-connectivity, for any k

m = number of edges, n = number of nodes

Despite many ideas, quadratic time for $k \ge 3$ remains

Reference	k=3	General k
Kleitman'69, Podderyugin'73, Even Tarjan'75	n^2	$nk \cdot \max flow_{\geq k}$
Even'75, Galil'80, Esfahanian Hakimi'84, Matula'87	n^2	$(k^2 + n) \cdot \max flow_{\geq k}$
Becker et al'82	n^2	$n \cdot \max flow_{\geq k}$
Linial Lovasz Wigderson'88, Cheriyan Reif'91	$n^{2.37}$	$n^{\omega} + nk^{\omega}$
Nagamochi Ibaraki'92	n^2	Can assume $m = O(nk)$
Henzinger Rao Gabow'00	n^2	mn and $mn + mk^3 + mnk$
Gabow'06	n^2	$mn + mk^{2.5} + mn^{3/4}k$

m = number of edges, n = number of nodes, polylog(n) hidden

Our Result

Joint works with

- Thatchaphol Saranurak, Sorrachai Yingchareonthawornchai, STOC'19
- Sebastian Forster, Thatchaphol Saranurak, Liu Yang, Sorrachai Yingchareonthawornchai, SODA'20

Our algorithm (today)

Li, N, Panigrahi, Saranurak, Yingchareonthawornchai, STOC'21

Experimental confirmation

Results on graphs with 50,000 - 250,000 vertices.

HRG is the previously best result, LOCAL is our algorithm, LOCAL+ & LOCALh+ are algorithm with heuristics

2. Local Algorithm Paradigm

Key idea: Explore locally

Don't read the whole input!

Key idea: Explore locally

Don't read the whole input!

Example for vertex connectivity:

Try to start at **s** <u>near</u> the cut nodes \rightarrow find solution by exploring locally

Fast to find cut node

Take longer to find cut node

(More on this later)

Roles of the Local Paradigm

- Natural paradigm for distributed computing, property testing, etc.
- Relatively **new** paradigm for sequential algorithms (compared to, e.g., randomized and approximation algorithms)
- Recently led to many exciting results, e.g.
 - Fast linear system solver (Spielman-Teng'04)
 - Edge connectivity (Kawarabayashi-Thorup'18)
 - Dynamic minimum spanning tree (N., Saranurak, Wulff-Nilsen'17)
 - Vertex connectivity (today)
 - Fast max-flow (CKLPPS'22)

3. Algorithm (Sketch)

16 Skip to conclusion

The Framework (for k=O(1))

For **r=1, 2, 4, 8, ..., m/4** do these:

1. Sample nodes s_1, \ldots, s_r

Probability proportional to **degrees** <u>Goal</u>: "hit" smaller side of the cut

The Framework (for k=O(1))

For **r=1, 2, 4, 8, ..., m/4** do these:

1. Sample nodes s_1, \ldots, s_r

Probability proportional to **degrees**

2. Explore locally: For each s_i , call LocalVC(s_i , m/r) (next)

Subroutine (sketched): LocalVC(s, m/r)

- Spend O(m/r) time reading O(m/r) edges near s
- ... to find cut nodes

19 Skip to conclusion

 $\approx m/r$ edges

3. Sample stopping node t

4. Flip directions of all edges from s to t

23 Skip to conclusion

LocalVC for k=1

Skip to conclusion

The Pseudocode (for k=O(1))

Main algorithm

For **r=1, 2, 4, 8, ..., m/4** do these:

- **1.** Sample nodes S_1, \ldots, S_r Probability proportional to degrees
- **2.** Explore locally: For each S_i , call LocalVC(S_i , m/r)_{Also repeat this algorithm log(n) times}

$$\underline{\underline{\text{Time: }}}_{\text{For k=O(1)}} O(\mu k) = O\left(\frac{m}{r}\right)$$
$$\underline{\underline{\text{Time: }}}_{\text{For k=O(1)}} \tilde{O}\left(r \times \left(\frac{m}{r}\right)\right) = \tilde{O}(m)$$

Subroutine (sketched): LocalVC(s, μ)

Repeat k + 1 times on corresponding digraph G'

1. Grow **depth-first search tree** *T* from *s* for **4***µ* edges

m/r

- If get stuck, found the cut.
 Output & terminate
- **2.** Sample an edges (t', t) in T
- 3. Reverse the path P_{st} in T

Terminate with no cut.

Corner case: DFS gets stuck but visits all nodes, then sample all edges in the graph

Conclusion

Potential project examples

- <u>Theory projects</u>: Improve the state of the art in other settings or in special cases, e.g.
 - Distributed: improve Jiang-Mukhopadhyay STOC'23, tight lower bound, big k
 - Parallel: beat reachability computation
 - Cut query, communication, quantum
 - Directed edge connectivity, weighted vertex cut
- Implementation projects: Implement existing algorithms and improve with heuristics
 - Vertex connectivity
 - Negative-weight shortest paths
 - Mincut

Thank you. Question?