Tomasz Kociumaka

Randomized Algorithms and Probabilistic Analysis of Algorithms

February 8, 2023
Definition

The *Longest Common Extension* $\text{LCE}(i, j)$ of positions i, j of a string T (of length n) is the length of the longest common prefix of the suffixes $T[i \ldots n]$ and $T[j \ldots n]$ of T.

$LCE(16, 7) = 4$
The Longest Common Extension $LCE(i, j)$ of positions i, j of a string T (of length n) is the length of the longest common prefix of the suffixes $T[i..n]$ and $T[j..n]$ of T.

$$LCE(16, 7) = 4$$

Used as a subroutine in many algorithms and data structures such as: approximate pattern matching (the kangaroo method), discovery of repetitions in strings, construction of text indexing data structures.
The **Longest Common Extension** $\text{LCE}(i, j)$ of positions i, j of a string T (of length n) is the length of the longest common prefix of the suffixes $T[i..n]$ and $T[j..n]$ of T.

\[
\begin{array}{cccccccccccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}
\]

$\text{LCE}(16, 7) = 4$
Definition

The *Longest Common Extension* $\text{LCE}(i, j)$ of positions i, j of a string T (of length n) is the length of the longest common prefix of the suffixes $T[i..n]$ and $T[j..n]$ of T.

\[
\text{LCE}(16, 7) = 4
\]
Definition

The *Longest Common Extension* \(\text{LCE}(i, j) \) of positions \(i, j \) of a string \(T \) (of length \(n \)) is the length of the longest common prefix of the suffixes \(T[i..n] \) and \(T[j..n] \) of \(T \).

![Diagram showing LCE(16, 7) = 4](image.png)
The Longest Common Extension \(\text{LCE}(i, j) \) of positions \(i, j \) of a string \(T \) (of length \(n \)) is the length of the longest common prefix of the suffixes \(T[i..n] \) and \(T[j..n] \) of \(T \).

\[
\begin{aligned}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\end{aligned}
\]

\[
\text{LCE}(16, 7) = 4
\]

Used as a subroutine in many algorithms and data structures such as:

- approximate pattern matching (the kangaroo method),
- discovery of repetitions in strings,
- construction of text indexing data structures.
Components:

```
1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0
```
Components:

1. Lexicographic rank of each suffix,
Classic Data Structure for LCE Queries

Components:
1. Lexicographic rank of each suffix,
Classic Data Structure for LCE Queries

Components:

1. Lexicographic rank of each suffix,
2. LCP lengths for subsequent suffixes.

<table>
<thead>
<tr>
<th>LCP[i]</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>0010100</td>
<td>0</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>2</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>3</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>4</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>5</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>6</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>7</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>8</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>9</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>10</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>11</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>12</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>13</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>14</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>15</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>16</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>17</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>18</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>19</td>
</tr>
<tr>
<td>00101010100101000</td>
<td>20</td>
</tr>
</tbody>
</table>

Tomasz Kociumaka
Longest Common Extension Queries via String Synchronizing Sets
Classic Data Structure for LCE Queries

Components:

1. Lexicographic rank of each suffix,
2. LCP lengths for subsequent suffixes.

<table>
<thead>
<tr>
<th>i</th>
<th>LCP[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
</tr>
<tr>
<td>2</td>
<td>0010100</td>
</tr>
<tr>
<td>3</td>
<td>0010101</td>
</tr>
<tr>
<td>4</td>
<td>0010101010010100</td>
</tr>
<tr>
<td>5</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>6</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>7</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>8</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>9</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>10</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>11</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>12</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>13</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>14</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>15</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>16</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>17</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>18</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>19</td>
<td>001010101010010100</td>
</tr>
<tr>
<td>20</td>
<td>11010010101001010010010100</td>
</tr>
</tbody>
</table>

Tomasz Kociumaka Longest Common Extension Queries via String Synchronizing Sets 3/10
Classic Data Structure for LCE Queries

Components:
1. Lexicographic rank of each suffix,
2. LCP lengths for subsequent suffixes.

Queries: $\text{LCE}(i, j) = \min \text{LCP}(\text{rank}[i] \ldots \text{rank}[j])$
Classic Data Structure for LCE Queries

Components:
1. Lexicographic rank of each suffix,
2. LCP lengths for subsequent suffixes.

Queries: \(\text{LCE}(i, j) = \min \text{LCP}(\text{rank}[i]..\text{rank}[j]) \)

LCE(16, 7) =

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>00</th>
<th>00101010010100100100</th>
<th>00101010010100100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>10100100</td>
<td>10100100</td>
<td></td>
</tr>
</tbody>
</table>
Components:

1. Lexicographic rank of each suffix,
2. LCP lengths for subsequent suffixes.

Queries: \(\text{LCE}(i, j) = \min \text{LCP}([\text{rank}[i], \ldots, \text{rank}[j]]) \)

\[
\text{LCE}(16, 7) =
\]
Classic Data Structure for LCE Queries

Components:
1. Lexicographic rank of each suffix,
2. LCP lengths for subsequent suffixes.

Queries: \(\text{LCE}(i, j) = \min \text{LCP}(\text{rank}[i] \ldots \text{rank}[j]) \)

\(\text{LCE}(16, 7) = \)

\[\begin{array}{cccccccccccccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
20 & 17 & 7 & 14 & 4 & 11 & 19 & 10 & 18 & 9 & 16 & 6 & 13 & 3 & 8 & 15 & 5 & 12 & 2 & 1 \\
\end{array} \]
Classic Data Structure for LCE Queries

Components:
1. Lexicographic rank of each suffix,
2. LCP lengths for subsequent suffixes.

Queries: \(\text{LCE}(i, j) = \min \text{LCP}\left(\text{rank}[i] .. \text{rank}[j]\right) \)

\(\text{LCE}(16, 7) = 4 \)

Efficiency:
- Query time: \(O(1) \);
- Data structure size: \(O(n) \);
- Construction time: \(O(n) \).
Classic Data Structure for LCE Queries

Components:
1. Lexicographic rank of each suffix,
2. LCP lengths for subsequent suffixes.

Queries: \(\text{LCE}(i, j) = \min \text{LCP}(\text{rank}[i], \ldots, \text{rank}[j]) \)

\(\text{LCE}(16, 7) = 4 \)

Efficiency:
- query time: \(O(1) \);
- data structure size: \(O(n) \);
- construction time: \(O(n) \).
Space-Efficient Data Structures for LCE Queries

Is $\mathcal{O}(n)$ space optimal?

The string T can be encoded in $\mathcal{O}(n \log \sigma)$ bits, where σ is the alphabet size. This is $\mathcal{O}(n / \log \sigma)$ words in the word RAM model. For example, if $\sigma = 2$, then 64 characters (bits) can be stored in an integer variable.

The arrays rank and LCP take approximately $n \log n$ bits each.

Questions:

1. What query time can be achieved in $\mathcal{O}(n \log \sigma)$ bits of space?

 Still $\mathcal{O}(1)$ query time, with $\mathcal{O}(n / \log \sigma)$ construction time.

2. What about s extra space on top of T for $1 \leq s \leq n / \log \sigma$?

 $\mathcal{O}(n / (s \log \sigma n))$ query time!
Is $\mathcal{O}(n)$ space optimal?

- The string T can be encoded in $\mathcal{O}(n \log \sigma)$ bits, where σ is the alphabet size.
 - This is $\mathcal{O}(n/\log_\sigma n)$ words in the word RAM model.
 - For example, if $\sigma = 2$, then 64 characters (bits) can be stored in an integer variable.
Is $O(n)$ space optimal?

- The string T can be encoded in $O(n \log \sigma)$ bits, where σ is the alphabet size.
 - This is $O(n/\log \sigma n)$ words in the word RAM model.
 - For example, if $\sigma = 2$, then 64 characters (bits) can be stored in an integer variable.
- The arrays rank and LCP take approximately $n \log n$ bits each.
Space-Efficient Data Structures for LCE Queries

Is $O(n)$ space optimal?
- The string T can be encoded in $O(n \log \sigma)$ bits, where σ is the alphabet size.
 - This is $O(n/ \log \sigma n)$ words in the word RAM model.
 - For example, if $\sigma = 2$, then 64 characters (bits) can be stored in an integer variable.
- The arrays rank and LCP take approximately $n \log n$ bits each.

Questions:
1. What query time can be achieved in $O(n \log \sigma)$ bits of space?
Space-Efficient Data Structures for LCE Queries

Is $\mathcal{O}(n)$ space optimal?

- The string T can be encoded in $\mathcal{O}(n \log \sigma)$ bits, where σ is the alphabet size.
 - This is $\mathcal{O}(n/\log_\sigma n)$ words in the word RAM model.
 - For example, if $\sigma = 2$, then 64 characters (bits) can be stored in an integer variable.
- The arrays rank and LCP take approximately $n \log n$ bits each.

Questions:

1. What query time can be achieved in $\mathcal{O}(n \log \sigma)$ bits of space?
 - Still $\mathcal{O}(1)$ query time, with $\mathcal{O}(n/\log_\sigma n)$ construction time.
Is $O(n)$ space optimal?

- The string T can be encoded in $O(n \log \sigma)$ bits, where σ is the alphabet size.
 - This is $O(n/\log \sigma n)$ words in the word RAM model.
 - For example, if $\sigma = 2$, then 64 characters (bits) can be stored in an integer variable.
- The arrays rank and LCP take approximately $n \log n$ bits each.

Questions:

1. What query time can be achieved in $O(n \log \sigma)$ bits of space?
 - Still $O(1)$ query time, with $O(n/\log \sigma n)$ construction time.
2. What about s extra space on top of T for $1 \leq s \leq n/\log \sigma n$?
Space-Efficient Data Structures for LCE Queries

Is $O(n)$ space optimal?

- The string T can be encoded in $O(n \log \sigma)$ bits, where σ is the alphabet size.
 - This is $O(n/\log \sigma n)$ words in the word RAM model.
 - For example, if $\sigma = 2$, then 64 characters (bits) can be stored in an integer variable.
- The arrays rank and LCP take approximately $n \log n$ bits each.

Questions:

1. What query time can be achieved in $O(n \log \sigma)$ bits of space?
 - Still $O(1)$ query time, with $O(n/\log \sigma n)$ construction time.
2. What about s extra space on top of T for $1 \leq s \leq n/\log \sigma n$?
 - $O(n/(s \log \sigma n))$ query time!
A naive algorithm computes $\ell = \text{LCE}(i, j)$ in $O(1 + \ell)$ time (no data structure needed).
A naive algorithm computes \(\ell = \text{LCE}(i, j) \) in \(\mathcal{O}(1 + \ell) \) time (no data structure needed).

If the machine word fits \(\alpha \) characters, this can be improved to \(\mathcal{O}(1 + \ell/\alpha) \) time.

This is always \(\mathcal{O}(1 + \ell / \log_\sigma n) \) time because \(\alpha = \Omega(\log_\sigma n) \).
A naive algorithm computes $\ell = \text{LCE}(i, j)$ in $O(1 + \ell)$ time (no data structure needed).

If the machine word fits α characters, this can be improved to $O(1 + \ell/\alpha)$ time.

- This is always $O(1 + \ell/\log_\sigma n)$ time because $\alpha = \Omega(\log_\sigma n)$.

\[
\text{LCE}(2, 9) =
\]

\[
\begin{array}{cccccccccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
\]
A naive algorithm computes $\ell = \text{LCE}(i, j)$ in $O(1 + \ell)$ time (no data structure needed).

If the machine word fits α characters, this can be improved to $O(1 + \ell/\alpha)$ time.

This is always $O(1 + \ell/\log_\sigma n)$ time because $\alpha = \Omega(\log_\sigma n)$.

\[
\begin{array}{cccccccccccccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}
\]

$\text{LCE}(2, 9) =$

Extract $T[i \ldots i + \alpha]$: $1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1$

Extract $T[j \ldots j + \alpha]$: $1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1$
A naive algorithm computes $\ell = \text{LCE}(i, j)$ in $O(1 + \ell)$ time (no data structure needed).

- If the machine word fits α characters, this can be improved to $O(1 + \ell/\alpha)$ time.
 - This is always $O(1 + \ell/\log\sigma n)$ time because $\alpha = \Omega(\log\sigma n)$.

$$
\begin{array}{cccccccccccccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

$$
\text{LCE}(2, 9) =
$$

Extract $T[i \ldots i + \alpha]$: 1 0 1 0 0 1 0 1
Extract $T[j \ldots j + \alpha]$: 1 0 1 0 1 0 0 1
A naive algorithm computes $\ell = \text{LCE}(i, j)$ in $O(1 + \ell)$ time (no data structure needed).

If the machine word fits α characters, this can be improved to $O(1 + \ell/\alpha)$ time.

This is always $O(1 + \ell/\log_\sigma n)$ time because $\alpha = \Omega(\log_\sigma n)$.
A naive algorithm computes $\ell = \text{LCE}(i, j)$ in $O(1 + \ell)$ time (no data structure needed).

If the machine word fits α characters, this can be improved to $O(1 + \ell/\alpha)$ time.

This is always $O(1 + \ell/\log_\sigma n)$ time because $\alpha = \Omega(\log_\sigma n)$.

$L\text{CE}(2, 9) = 4$

Extract $T[i \ldots i + \alpha]$: 1 0 1 0 0 1 0 1 0 1 0 1 0 0

Extract $T[j \ldots j + \alpha]$: 1 0 1 0 1 0 0 1

xor: 0 0 0 0 1 1 0 0

clz: 4
LCE Queries with a String Synchronizing Set

1. Build the rank and LCP tables only for suffixes starting at synchronizing positions (set S).

```
1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0
```
Build the rank and LCP tables only for suffixes starting at *synchronizing positions* (set S).

This would guarantee runtime $O(1 + \frac{n}{|S| \log \sigma n})$.

Desired properties of a τ-synchronizing set S:
- **Consistency**: $T[i..i+2\tau]$ determines if $i \in S$.
- **Density**: $S \cap [i..i+\tau) = \emptyset$ for every i.
- **Small size**: $|S| = O(\frac{n}{\tau})$.
LCE Queries with a String Synchronizing Set

1. Build the rank and LCP tables only for suffixes starting at *synchronizing positions* (set S).

2. Reduce arbitrary $\text{LCE}(i, j)$ to $\text{LCE}(i + \delta, j + \delta)$ for $i + \delta, j + \delta \in S$.

$LCE(16, 7) =$

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10 7 4 9 3 8 2 6 1 5

-  1 010100
  2 010100101000
  3 010100101000
  4 0101010100010100
  5 100
  6 10010100
  7 100101010100010100
  8 101010010100
  9 10101010010100
 10 11010010101010010100
```
LCE Queries with a String Synchronizing Set

1. Build the rank and LCP tables only for suffixes starting at *synchronizing positions* (set S).
2. Reduce arbitrary $\text{LCE}(i, j)$ to $\text{LCE}(i + \delta, j + \delta)$ for $i + \delta, j + \delta \in S$.

$LCE(16, 7) = LCE(18, 9) + 2 =$
LCE Queries with a String Synchronizing Set

1. Build the rank and LCP tables only for suffixes starting at synchronizing positions (set S).
2. Reduce arbitrary LCE(i, j) to LCE$(i + \delta, j + \delta)$ for $i + \delta, j + \delta \in S$.

$LCE(16, 7) = LCE(18, 9) + 2 = 4$
LCE Queries with a String Synchronizing Set

1. Build the rank and LCP tables only for suffixes starting at synchronizing positions (set S).
2. Reduce arbitrary LCE\((i, j)\) to LCE\((i + \delta, j + \delta)\) for \(i + \delta, j + \delta \in S\).

LCE(16, 7) = LCE(18, 9) + 2 = 2 + 2 = 4
LCE Queries with a String Synchronizing Set

1. Build the rank and LCP tables only for suffixes starting at \textit{synchronizing positions} (set S).
2. Reduce arbitrary LCE(i, j) to LCE$(i + \delta, j + \delta)$ for $i + \delta, j + \delta \in S$.
3. Make sure that LCE$(i, j) = \mathcal{O}(n/|S|)$ or there is $\delta = \mathcal{O}(n/|S|)$ with $i + \delta, j + \delta \in S$.
 - This would guarantee runtime $\mathcal{O}(1 + n/(|S| \log_\sigma n))$.

Let $S = \{1, 4, 5, 10, 16, 17, 18, 19, 20\}$.

\[
\begin{array}{cccccccccccccccc}
10 & 7 & 4 & 9 & 3 & 8 & 2 & 6 & 1 & \color{red}5 & & & & & & & & & & \\
\end{array}
\]

LCE(16, 7) = LCE(18, 9) + 2 = 2 + 2 = 4
LCE Queries with a String Synchronizing Set

1. Build the rank and LCP tables only for suffixes starting at *synchronizing positions* (set S).
2. Reduce arbitrary $\text{LCE}(i, j)$ to $\text{LCE}(i + \delta, j + \delta)$ for $i + \delta, j + \delta \in S$.
3. Make sure that $\text{LCE}(i, j) = \mathcal{O}(n/|S|)$ or there is $\delta = \mathcal{O}(n/|S|)$ with $i + \delta, j + \delta \in S$.
 - This would guarantee runtime $\mathcal{O}(1 + n/(|S| \log_{\sigma} n))$.

$LCE(16, 7) = LCE(18, 9) + 2 = 2 + 2 = 4$

Desired properties of a τ-synchronizing set S:

- **Consistency** $T[i \ldots i + 2\tau)$ determines if $i \in S$.
- **Density** $S \cap [i \ldots i + \tau) = \emptyset$ for every i.
- **Small size** $|S| = \mathcal{O}(n/\tau)$.
Issues with Periodic Regions

Desired properties of a τ-synchronizing set S:

- **consistency** $T[i \ldots i + 2\tau)$ determines if $i \in S$.
- **density** $S \cap [i \ldots i + \tau) = \emptyset$ for every i.
- **small size** $|S| = \mathcal{O}(n/\tau)$.

Issue: Such a set S cannot always exist.

The problematic case is when T contains length-τ substrings with period $o(\tau)$.

Workarounds:

1. Relax the density condition for periodic regions, slightly adapt the query algorithm. The actual solution with worst-case guarantees.
2. Give up on the small size if T has many periodic regions. Reasonable for most real-life strings. Simple to explain and analyze.
Issues with Periodic Regions

Desired properties of a τ-synchronizing set S:

- **consistency** $T[i..i + 2\tau)$ determines if $i \in S$.
- **density** $S \cap [i..i + \tau) = \emptyset$ for every i.
- **small size** $|S| = \mathcal{O}(n/\tau)$.

Issue: Such a set S cannot always exist.

The problematic case is when T contains length-τ substrings with period $o(\tau)$.

Workarounds:

1. Relax the density condition for periodic regions, slightly adapt the query algorithm.
2. Give up on the small size if T has many periodic regions.
 - Reasonable for most real-life strings.
 - Simple to explain and analyze.
Issues with Periodic Regions

Desired properties of a τ-synchronizing set S:

- **consistency** $T[i..i+2\tau)$ determines if $i \in S$.
- **density** $S \cap [i..i+\tau) = \emptyset$ for every i.
- **small size** $|S| = \mathcal{O}(n/\tau)$.

Issue: Such a set S cannot always exist.

![Example string pattern](image-url)
Issues with Periodic Regions

Desired properties of a τ-synchronizing set S:

- **consistency**: $T[i \ldots i + 2\tau)$ determines if $i \in S$.
- **density**: $S \cap [i \ldots i + \tau) = \emptyset$ for every i.
- **small size**: $|S| = \mathcal{O}(n/\tau)$.

Issue: Such a set S cannot always exist.

The problematic case is when T contains length-τ substrings with period $o(\tau)$.

![Example sequence](example_sequence.png)
Issues with Periodic Regions

Desired properties of a \(\tau \)-synchronizing set \(S \):

- **consistency** \(T[i..i+2\tau) \) determines if \(i \in S \).
- **density** \(S \cap [i..i+\tau) = \emptyset \) for every \(i \).
- **small size** \(|S| = \mathcal{O}(n/\tau) \).

Issue: Such a set \(S \) cannot always exist.

![Periodic String Example](image)

The problematic case is when \(T \) contains length-\(\tau \) substrings with period \(o(\tau) \).

Workarounds:

1. Relax the density condition for periodic regions, slightly adapt the query algorithm.
2. Give up on the small size if \(T \) has many periodic regions.
 Reasonable for most real-life strings.
 Simple to explain and analyze.
Issues with Periodic Regions

Desired properties of a τ-synchronizing set S:

- **consistency** $T[i..i+2\tau)$ determines if $i \in S$.
- **density** $S \cap [i..i+\tau) = \emptyset$ for every i.
- **small size** $|S| = \mathcal{O}(n/\tau)$.

Issue: Such a set S cannot always exist.

```
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

The problematic case is when T contains length-τ substrings with period $o(\tau)$.

Workarounds:

1. Relax the density condition for periodic regions, slightly adapt the query algorithm.
 - The actual solution with worst-case guarantees.
Issues with Periodic Regions

Desired properties of a τ-synchronizing set S:

- **consistency** $T[i..i + 2\tau)$ determines if $i \in S$.
- **density** $S \cap [i..i + \tau) = \emptyset$ for every i.
- **small size** $|S| = \mathcal{O}(n/\tau)$.

Issue: Such a set S cannot always exist.

The problematic case is when T contains length-τ substrings with period $o(\tau)$.

Workarounds:

1. Relax the density condition for periodic regions, slightly adapt the query algorithm.
 - The actual solution with worst-case guarantees.
2. Give up on the small size if T has many periodic regions.
 - Reasonable for most real-life strings.
 - Simple to explain and analyze.
String Synchronizing Sets: Construction

Draw a random linear order on the set of length-\(\tau\) substrings of \(T\):

\[100 \prec 110 \prec 101 \prec 001 \prec 010\]

Add \(i\) to \(S\) if the earliest length-\(\tau\) substring of \(T[i..i+2\tau]\) is the prefix \(T[i..i+\tau]\), or the suffix \(T[i+\tau..i+2\tau]\).

Consistency and density are easy to argue.

If no length-\(\tau\) substrings of \(T[i..i+2\tau]\) has period \(o(\tau)\), then \(\Pr[i \in S] = O(1/\tau)\).

\(T[i..i+2\tau]\) contains \(\Omega(\tau)\) distinct length-\(\tau\) substrings.
Draw a random linear order on the set of length-τ substrings of T:

$$100 \prec 110 \prec 101 \prec 001 \prec 010$$
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-τ substrings of T:

 $100 \prec 110 \prec 101 \prec 001 \prec 010$

2. Add i to S if the earliest length-τ substring of $T[i..i+2\tau)$ is
 - the prefix $T[i..i+\tau)$, or
 - the suffix $T[i+\tau..i+2\tau)$.
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-τ substrings of T:

$$100 \prec 110 \prec 101 \prec 001 \prec 010$$

2. Add i to S if the earliest length-τ substring of $T[i..i+2\tau)$ is
 - the prefix $T[i..i+\tau)$, or
 - the suffix $T[i+\tau..i+2\tau)$.

$T[i..i+2\tau)$ contains $\Omega(\tau)$ distinct length-τ substrings.
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-\(\tau\) substrings of \(T\):

\[
100 \prec 110 \prec 101 \prec 001 \prec 010
\]

2. Add \(i\) to \(S\) if the earliest length-\(\tau\) substring of \(T[i \ldots i+2\tau]\) is
 - the prefix \(T[i \ldots i+\tau]\), or
 - the suffix \(T[i+\tau \ldots i+2\tau]\).
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-τ substrings of T:

 $100 \prec 110 \prec 101 \prec 001 \prec 010$

2. Add i to S if the earliest length-τ substring of $T[i \ldots i+2\tau)$ is
 - the prefix $T[i \ldots i+\tau)$, or
 - the suffix $T[i+\tau \ldots i+2\tau)$.
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-τ substrings of T:

 100 ≺ 110 ≺ 101 ≺ 001 ≺ 010

2. Add i to S if the earliest length-τ substring of $T[i..i+2\tau)$ is
 - the prefix $T[i..i+\tau)$, or
 - the suffix $T[i+\tau..i+2\tau)$.

Consistency and density are easy to argue.
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-τ substrings of T:

\[
100 \prec 110 \prec 101 \prec 001 \prec 010
\]

2. Add i to S if the earliest length-τ substring of $T[i..i+2\tau)$ is
 - the prefix $T[i..i+\tau)$, or
 - the suffix $T[i+\tau..i+2\tau)$.

Consistency and density are easy to argue.
Draw a random linear order on the set of length-τ substrings of T:

$100 \prec 110 \prec 101 \prec 001 \prec 010$

Add i to S if the earliest length-τ substring of $T[i \ldots i + 2\tau)$ is

- the prefix $T[i \ldots i + \tau)$, or
- the suffix $T[i + \tau \ldots i + 2\tau)$.
1. Draw a random linear order on the set of length-τ substrings of T:

$$100 \prec 110 \prec 101 \prec 001 \prec 010$$

2. Add i to S if the earliest length-τ substring of $T[i..i+2τ)$ is

- the prefix $T[i..i+τ)$, or
- the suffix $T[i+τ..i+2τ)$.
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-τ substrings of T:

 \[100 \prec 110 \prec 101 \prec 001 \prec 010\]

2. Add i to S if the earliest length-τ substring of $T[i..i+2\tau)$ is
 - the prefix $T[i..i+\tau)$, or
 - the suffix $T[i+\tau..i+2\tau)$.
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-τ substrings of T:

 $100 \prec 110 \prec 101 \prec 001 \prec 010$

2. Add i to S if the earliest length-τ substring of $T[i..i + 2\tau)$ is
 - the prefix $T[i..i + \tau)$, or
 - the suffix $T[i + \tau..i + 2\tau)$.

Consistency and density are easy to argue.
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-τ substrings of T:

$$100 \prec 110 \prec 101 \prec 001 \prec 010$$

2. Add i to S if the earliest length-τ substring of $T[i..i+2τ)$ is
 - the prefix $T[i..i+τ)$, or
 - the suffix $T[i+τ..i+2τ)$.

3. Consistency and density are easy to argue.
String Synchronizing Sets: Construction

1. Draw a random linear order on the set of length-τ substrings of T:

 \[100 \prec 110 \prec 101 \prec 001 \prec 010\]

2. Add i to S if the earliest length-τ substring of $T[i \ldots i + 2\tau]$ is
 - the prefix $T[i \ldots i + \tau]$, or
 - the suffix $T[i + \tau \ldots i + 2\tau]$.

3. Consistency and density are easy to argue.

4. If no length-τ substrings of $T[i \ldots i + 2\tau]$ has period $o(\tau)$, then $\Pr[i \in S] = \Theta(1/\tau)$.
 - $T[i \ldots i + 2\tau]$ contains $\Omega(\tau)$ distinct length-τ substrings.
LCE queries in small space:

- A \(\tau \)-synchronizing \(S \) set with \(\tau = \Theta(n/s) \).
- Expected size \(\text{Exp}[|S|] = \mathcal{O}(n/\tau) \).
 - Requires adaptations for periodic regions or assuming no length-\(\tau \) substring has period \(o(\tau) \).
Summary

LCE queries in small space:

- A τ-synchronizing S set with $\tau = \Theta(n/s)$.
- Expected size $\text{Exp}[|S|] = O(n/\tau)$.
 - Requires adaptations for periodic regions or assuming no length-τ substring has period $o(\tau)$.
- Worst-case size $O(n/\tau)$ after $O(1)$ attempts (in expectation).
Summary

LCE queries in small space:

- A τ-synchronizing S set with $\tau = \Theta(n/s)$.
- Expected size $\text{Exp}[|S|] = \mathcal{O}(n/\tau)$.
 - Requires adaptations for periodic regions or assuming no length-τ substring has period $o(\tau)$.
- Worst-case size $\mathcal{O}(n/\tau)$ after $\mathcal{O}(1)$ attempts (in expectation).
- The construction can be derandomized using the method of pessimistic estimators.
Summary

LCE queries in small space:

- A τ-synchronizing S set with $\tau = \Theta(n/s)$.
- Expected size $\text{Exp}[|S|] = O(n/\tau)$.
 - Requires adaptations for periodic regions or assuming no length-τ substring has period $o(\tau)$.
- Worst-case size $O(n/\tau)$ after $O(1)$ attempts (in expectation).
- The construction can be derandomized using the method of pessimistic estimators.

Final data structure:

$$
\begin{align*}
\text{size} & \quad O(|S|) = O(n/\tau) \\
\text{query time} & \quad O(1 + \tau/\log_\sigma n)
\end{align*}
$$

for $\tau = \Theta(\log_\sigma n)$

$$
\begin{align*}
O(n/\log_\sigma n) & \quad O(1)
\end{align*}
$$

Open question:

$O(n/\log_\sigma n)$ construction time for $\tau = \Omega(\log_\sigma n)$.
Summary

LCE queries in small space:

- A τ-synchronizing S set with $\tau = \Theta(n/s)$.
- Expected size $\text{Exp}[|S|] = O(n/\tau)$.
 - Requires adaptations for periodic regions or assuming no length-τ substring has period $o(\tau)$.
- Worst-case size $O(n/\tau)$ after $O(1)$ attempts (in expectation).
- The construction can be derandomized using the method of pessimistic estimators.

Final data structure:

<table>
<thead>
<tr>
<th></th>
<th>for $\tau = \Theta(\log_\sigma n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>size $O(</td>
<td>S</td>
</tr>
<tr>
<td>query time $O(1 + \tau/\log_\sigma n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>construction time $O(n)$</td>
<td>$O(n/\log_\sigma n)$</td>
</tr>
</tbody>
</table>
Summary

LCE queries in small space:
- A τ-synchronizing S set with $\tau = \Theta(n/s)$.
- Expected size $\text{Exp}[|S|] = \mathcal{O}(n/\tau)$.
- Requires adaptations for periodic regions or assuming no length-τ substring has period $o(\tau)$.
- Worst-case size $\mathcal{O}(n/\tau)$ after $\mathcal{O}(1)$ attempts (in expectation).
- The construction can be derandomized using the method of pessimistic estimators.

Final data structure:
- size $\mathcal{O}(|S|) = \mathcal{O}(n/\tau)$
- query time $\mathcal{O}(1 + \tau / \log_\sigma n)$
- construction time $\mathcal{O}(n)$

for $\tau = \Theta(\log_\sigma n)$

$\mathcal{O}(n/\log_\sigma n)$

$\mathcal{O}(1)$

$\mathcal{O}(n/\log_\sigma n)$

Open question:
- $\mathcal{O}(n/\log_\sigma n)$ construction time for $\tau = \Omega(\log_\sigma n)$.
Bigger Picture

Further applications of synchronizing sets:

- **KRRW, SODA’15** Internal Pattern Matching queries, Period queries
- **KK, STOC’19** Burrows–Wheeler Transform construction (bzip2, etc.)
- **CKPR, ESA’21** Longest Common Substring problem
Further applications of synchronizing sets:

KRRW, SODA’15 Internal Pattern Matching queries, Period queries

KK, STOC’19 Burrows–Wheeler Transform construction (bzip2, etc.)

CKPR, ESA’21 Longest Common Substring problem

KK, STOC’22 dynamic suffix array

Implementations:

DFH, ESA’20 LCE queries, ignoring the periodic case

in progress LCE queries, with worst-case guarantees

Related techniques in applications (w/o theoretical guarantees):

Bioinformatics (minimizers)
Plagiarism detection (winnowing)
Storage systems (content-based chunking)
Further applications of synchronizing sets:

- **KRRW, SODA’15** Internal Pattern Matching queries, Period queries
- **KK, STOC’19** Burrows–Wheeler Transform construction (bzip2, etc.)
- **CKPR, ESA’21** Longest Common Substring problem
- **KK, STOC’22** dynamic suffix array
- **AJ, SODA’22** quantum algorithm for Longest Common Substring
- **JN, SODA’23** quantum data structure for LCE queries
Further applications of synchronizing sets:

KRRW, SODA’15 Internal Pattern Matching queries, Period queries

KK, STOC’19 Burrows–Wheeler Transform construction (bzip2, etc.)

CKPR, ESA’21 Longest Common Substring problem

KK, STOC’22 dynamic suffix array

AJ, SODA’22 quantum algorithm for Longest Common Substring

JN, SODA’23 quantum data structure for LCE queries

KK, SODA’23 compressed suffix arrays and text indexes
Further applications of synchronizing sets:

- **KRRW, SODA’15** Internal Pattern Matching queries, Period queries
- **KK, STOC’19** Burrows–Wheeler Transform construction (bzip2, etc.)
- **CKPR, ESA’21** Longest Common Substring problem
- **KK, STOC’22** dynamic suffix array
- **AJ, SODA’22** quantum algorithm for Longest Common Substring
- **JN, SODA’23** quantum data structure for LCE queries
- **KK, SODA’23** compressed suffix arrays and text indexes

Implementations:

- **DFHKK, ESA’20** LCE queries, ignoring the periodic case
- **in progress** LCE queries, with worst-case guarantees
Further applications of synchronizing sets:

KRRW, SODA’15 Internal Pattern Matching queries, Period queries

KK, STOC’19 Burrows–Wheeler Transform construction (bzip2, etc.)

CKPR, ESA’21 Longest Common Substring problem

KK, STOC’22 dynamic suffix array

AJ, SODA’22 quantum algorithm for Longest Common Substring

JN, SODA’23 quantum data structure for LCE queries

KK, SODA’23 compressed suffix arrays and text indexes

Implementations:

DFHKK, ESA’20 LCE queries, ignoring the periodic case

in progress LCE queries, with worst-case guarantees

Related techniques in applications (w/o theoretical guarantees):

- Bioinformatics (minimizers)
- Plagiarism detection (winnowing)
- Storage systems (content-based chunking)