
Machine Learning
Boosting

Paul Swoboda

Lecture 15, 10.12.2018

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 1 / 41



Roadmap of today and next lecture

Classification methods:

Boosting,

Decision Trees,

Neural Networks (aka Deep Learning),

Nearest Neighbor Methods, Parzen-Window,

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 2 / 41



Roadmap of today

Boosting

Given: a set of (bad) classifiers.
Question: Is there a way to combine them so that they yield a
reasonable classifier ?

Boosting “boosts” existing bad/weak classifiers.

Developed by Schapire and Freund (1996) - but concept is older.

Final classification can often be implemented quite efficiently -
interesting for real time application e.g. face detection on a video
sequence.

Boosting belongs to the ensemble methods

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 3 / 41



Boosting

History of Boosting

Freund and Schapire propose Adaboost in 1996,
Folklore result: Adaboost does not overfit !

Friedman, Hastie and Tibshirani (2000) provide interpretation of
Adaboost in terms of mimimization of empirical exponential loss
=⇒ provides a general scheme for boosting which leads to emergence
of new variants.

Lugosi and Vayatis (2004) prove for a regularized boosting variant
that it is Bayes consistent.

Bartlett and Traskin (2007) prove that Adaboost is Bayes consistent.

still ongoing discussion about interpretation after more than 10 years
of boosting (recent controversial JMLR article).

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 4 / 41



Boosting II

General scheme for boosting methods

1 For each training point (Xi ,Yi ) one has a weight γi .
2 A step of boosting method involves the following steps

1 one trains a classifier fk using a base method (weak learner) with the
weighted training data (Xi ,Yi , γi ),

2 one re-computes the weights γ, where usually the weights of wrongly
classified training points are increasing and the weights of correctly
classified points are decreasing.

3 One aggregates the classifiers fk to the final classifier
F (x) = sign(

∑
k=1 αk fk), where the coefficients αk are either one or

depend on the error of the classifier fk .

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 5 / 41



Variants of Boosting

Caution

Several boosting methods have been proposed (huge literature),

Differences are often very subtle,

Different requirements on the properties of the weak learner.

Note: Boosting heavily depends on the weak learner
=⇒ two boosting methods with different weak learner cannot be
compared !

Today: Adaboost and GentleBoost.

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 6 / 41



What is Adaboost ?

Properties

Adaboost stands for “Adaptive Boosting”

Many variants - we discuss Adaboost.M1 proposed by Freund and
Schapire in 1996.

Weak learner has to be binary-valued !

Depending on the weak learner - final classifier allows interpretation
(boosted decision stumps).

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 7 / 41



Adaboost

Input: Training data (Xi ,Yi )
n
i=1, binary-valued Weak Learner,

Number of iterations T .

Initialize weights: γ1i = 1
n , i = 1, . . . , n

For t = 1, . . . ,T ,
1) Fit the weak learner, ft : X → {−1, 1}, with weights γi .

The weak learner uses the weighted zero-one loss
L(f ) =

∑n
i=1 γi1f (Xi ) 6=Yi

2) compute the weighted error of ft , errt =
∑n

i=1 γi1f (Xi )6=Yi
,

3) define ct = log
(
1−errt
errt

)
,

4) update the weights γti ,

γt+1
i = γti exp(ct1Yi 6=ft(Xi )),

5) renormalize so that
∑n

i=1 γ
t+1
i = 1.

Output: final classifier f (x) = sign(
∑T

t=1 ct ft(x)).

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 8 / 41



Adaboost II

Idea of Adaboost:

in each step: fit weak learner to data,

data which is misclassified gets higher weight
=⇒ next weak learner will try harder to fit misclassified points,

contribution ct of each weak classifier ft to the final hypothesis,

ct = log
(1− errt

errt

)
=⇒ strictly monotonically decreasing with errt .

final classifier: f (x) = sign
(∑T

t=1 ct ft(x)
)
,

=⇒ Adaboost learns a point in the vector space of functions
generated by the weak learner.

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 9 / 41



Adaboost in action

Decision stump as weak learner:

ft(x) = 21xi+b>0 − 1 and ft(x) = 21−xi+b>0 − 1.

or more generally,
ft(x) = 21〈w ,x〉+b>0 − 1.

Selection of the weak learner:

random (e.g. randomly select coordinate or direction w)

compute for all choices weak learner (if possible) and take the one
with the smallest weighted error.

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 10 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 11 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 12 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 13 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 14 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 15 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 16 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 17 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 18 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 19 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 20 / 41



Adaboost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 21 / 41



Adaboost in action

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Training error (black) and test error (red)

Number of iterations

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 22 / 41



Adaboost in Computer Vision

final classification using decision stump can be done extremely fast
=⇒ very interesting for applications where real-time performance is
required.

Most successful application of Adaboost in face recognition by Viola
and Jones (2001).
They use more generally weak learner of the form,

ft(x) = 21〈w ,x〉+b>0 − 1

but coefficients w are restricted to be binary valued or zero (most
coefficients of the weight vector w are zero).

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 23 / 41



Face Recognition

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 24 / 41



Boosting as functional gradient descent

Interpretation of boosting

Iterative updates,
F (x) 7→ F (x) + ct ft(x),

can be understood as a descent in function space, where
1 ft is a descent direction based on the current F ,
2 ct is the stepsize of the descent step.

The objective which is minimized is the empirical exponential loss of
the final classifier F ,

L(F ) =
1

n

n∑
i=1

e−Yi F (Xi ).

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 25 / 41



Boosting as functional gradient descent II

Interpretation of boosting

initiated simultaneously in the statistics and machine learning
community,

following Proposition is a variation of the result of Friedman, Hastie
and Tibshirani (2000).

Proposition

Suppose the weak learner ft is binary-valued, ft : X → {−1, 1}. The
update step Ft+1 = Ft + ct ft of the Adaboost algorithm , where

ct = log
(
1−errt
errt

)
and errt is the weighted zero-one loss, is a descent step

in order to minimize the empirical exponential loss.

⇒ proof on blackboard !

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 26 / 41



Result for Adaboost

Corollary

After each update of the weights, the weighted misclassification error of
the most recent weak learner is 50%.

Proof: This follows directly from the optimality condition for the
parameter c derived in the last proof,

E[Y f (X ) e−Y F (X ) e−Y f (X )α] = 0.

Note, that the second factor corresponds to the new weights (up to
normalization) and the weighted zero one loss of f is given as

1
2E[(1− Y f (X ))e−Y F (X ) e−Y f (X )α]

E[e−Y F (X ) e−Y f (X )α]
=

1

2
.

Theory has motivated many variants of boosting =⇒ GentleBoost

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 27 / 41



GentleBoost

Input: Training data (Xi ,Yi )
n
i=1, real-valued Weak Learner,

Number of iterations T .

Initialize weights: γ1i = 1
n , i = 1, . . . , n.

For t = 1, . . . ,T ,
1) Fit the weak learner, ft : X → R, with weights γi .

The weak learner uses weighted squared loss
L(f ) =

∑n
i=1 γi (Yi − ft(Xi ))2,

2) update the weights γti ,

γt+1
i = γti exp(−Yi ft(Xi )),

5) renormalize so that
∑n

i=1 γ
t+1
i = 1.

Output: final classifier f (x) = sign
(∑T

t=1 ft(x)
)
.

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 28 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 29 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 30 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 31 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 32 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 33 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 34 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 35 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 36 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 37 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 38 / 41



GentleBoost in action

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 39 / 41



GentleBoost in action

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Training error (black) and test error (red)

Number of iterations

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 40 / 41



GentleBoost

Proposition

Suppose the weak learner ft is real-valued, ft : X → R. The update step
Ft+1 = Ft + ft of the GentleBoost algorithm is an approximate Newton
step in order to minimize the empirical exponential loss.

Proof: We can expand the risk of F + f up to second order,

R(F + f ) = E[e−Y (F (X )+f (X ))] ≈ E[e−Y F (X )(1− Y f (X ) +
1

2
f (X )2)].

The first term does not depend on f so we can modify it without changing
the minimizer,

E[e−Y F (X )(
1

2
− Y f (X ) +

1

2
f (X )2)] =

1

2
E[e−Y F (X )(Y − f (X ))2],

which is up to the normalization of the weights γi = e−Yi F (Xi ) equal to
the weighted squared loss minimized by the weak learner ⇒ weak learner
minimizes in each step a second order approximation of the exponential
loss.

Paul Swoboda (Lecture 15, 10.12.2018) Machine Learning 41 / 41


