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Clustering
@ Goal of clustering,
@ k-means clustering (prototype-based clustering)
@ Spectral clustering (graph-based clustering),
o Agglomerative and hierarchical clustering,
@ Density based clustering.

Clustering is one instance of unsupervised learning
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What is clustering 7

Clustering:
Construction of a grouping of the points into sets of similar points, the so

called clusters.
@ no generally accepted objective for clustering = without specifying
a suitable objective clustering is ill-defined,
@ clustering objective depends largely on application,

@ in clustering the modelling aspect is even more important than in
supervised learning = do not use a clustering method if you have
not understood what the objective implies !
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Hierarchical clustering

Hierarchical clustering
generates a hierarchical representation of the n data points.

o agglomerative: start with all n points as individual clusters and
consecutively join cluster which are most similar,

o divisive: start with one cluster containing all n points and
consecutively divide the clusters so that they are most dissimilar.

= generates a tree structure on the data - the dendrogram.
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Hierarchical clustering |

Definition

A dendrogram is a binary tree with a distinguished root, that has the
data points as its leaves. The height where two clusters are merged is
equal to their dissimilarity.

Dendrogram
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Agglomerative hierarchical clustering

Agglomerative hierarchical clustering
Requirement: a distance measure between point sets.

Definition
A dissimilarity measure D between finite subsets of X is defined as
D : 2% x 2% — R with

e D(A,B) >0 forall A,BC X,

e D(A,B) =0 if and only if A= B,

e D(A,B)=D(B,A).

Note: triangle inequality not required - not necessarily a metric.
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Agglomerative hierarchical clustering Il

Algorithm:
@ given: set of n points in X, dissimilarity D between subsets of X.
@ initialize: we have n clusters at level n, Cl(")7 ce C,(,") with
n
! = {x}.
e do
@ compute for all / clusters in Cl(/), ey C,(I) their dissimilarity

dj = D(c!", ")

@ merge the least dissimilar clusters, with indices (r,s) = argmin dj.
1<ij<I, i#j

Q@ fori#randi#s '™V =cand ' =cPuc.
@ height in the dendrogram of the merger between C,(/) and C) is

o) =d, = min dj;.
i

@ relabel the clusters of level /| — 1 from1to [ —1,
o while / > 1
@ output: the sets of clusters C() for each level I =1,...,n.
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Hierarchical clustering IlI

Agglomerative clustering:
consecutively join clusters which are most similar.

How to measure dissimilarity of clusters C; and G, ?
e Single-linkage: dmin(Ci, G) = minjcc, jec, d(xi,x;),
o Average-linkage: da(Ci, &) = m Yica.jec, d(xi,x),
o Complete-linkage: dmax(Ci, C2) = maxieq,,jec, d(xi,X;),

Two clusters are similar:

@ single linkage: if for all points in each cluster there exists a path so
that all points in the path are similar,

@ complete-linkage: if all points for both clusters are similar,

@ average-linkage: if on average the points of both clusters are similar.
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Compact, spherical clusters

Original data: Three Gaussians Single linkage clustering
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Non-compact clusters

Original data: Two moons
° °

Average linkage clustering

Single linkage clustering

Complete linkage clustering
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Hierarchical clustering

Problems of dendrograms
o instability small changes in the data can lead to huge changes in the
dendrogram,

@ hierarchy: multi-scale partitioning but different distance measures are
hard to interpret.

o dissimilarity: the dissimilarity of clusters at which one joins clusters
encodes their dissimilarity - this is a quite strange distance measure
= comparing data using this distance is highly non-intuitive.
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Ultrametric

Definition
An ultra-metric d on X is a metric d which satisfies for all x,y,z € X,

d(x,y) < max{d(x,z), d(y,2)}

This inequality is called strong triangle or ultrametric inequality.

The ultrametric inequality is stronger than the triangle inequality since

max{d(x, z), d(y,z)} < max{d(x, z), d(y,z)} + min{d(x, z), d(y, z)}
=d(x,z) + d(y, z).

= very strange effects for this metric !
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Ultrametric and hierarchical clustering

Theorem

Let D be a dissimilarity measure for sets in X and let C(") be the induced
hierarchical clustering on the set T = {x1,...,xn}. If the dissimilarity of
consecutively merged clusters is monotonically increasing, that is

al) < alm for | > m, then, d' : T x T — R, defined as

d'(i,j) = max p(c”, "y
| such that X,-GCr(I) and XjGCs(I) with r#s

= max a(l)

P
| such that X,-GC,(I) and XjGCs(I) with r#s

is an ultrametric.

— distance measure d’ integrates the hierarchical structure.
= need not be much related to original distances on the data.
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Ultrametric and hierarchical clustering

Proof: All properties except the triangle inequality follow from D.
Let x, y, z be three points in T. We denote by /; the level at which x and
z are merged and by / the level at which y and z are merged. Thus,

d'(x,z) = a™ and d'(y, z) = o(?).

Since the clusters are hierarchical, we have that x, y, z are in the same
cluster for the level min{/, h} = the level /3 where the points x and y
are merged is larger than or equal to min{/, h}.

Using that o)) is monotonically decreasing in /, we have that

a5 < max{a™) olk)} which yields,

d'(x,y) = oB) < max{a®™, a?)} = max{d'(x, 2), d'(z,y)}.
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Single-linkage clustering and MST

Single-linkage and minimal spanning trees:

In single-linkage clustering the merging of two clusters can be interpreted
as placing an edge into the graph which has as its vertex set all the data
points.

@ single linkage constructs a spanning tree,

@ It is a Euclidean minimal spanning tree if we use the Euclidean
distance for the weights.

— divisive clustering method by deleting the edge with the largest weight
(largest distance) in the MST.
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Single linkage and minimal spanning tree

The minimal spanning tree of a complete graph

Full graph Minimal Spanning Tree
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Clustering using minimal spanning trees

Transfer the method to arbitrary graphs:

Original data Full graph Minimal Spanning Tree

Divisive clustering:

@ construct hierarchical partioning of the graph by consecutively
eliminating the edge with the smallest/largest edge weight.
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Theoretical results

Consistency of single-linkage clustering:
Hartigan proves one of the first theoretical results for clustering (1981).

Clustering model:

o Statistical setting: data in RY is drawn from some probability
measure,

@ The clusters are the connected components of the level set L;
L = {x € RY| p(x) > t},

of the density to the level t.

@ Theorem: Given that the connected components of L; have a
sufficiently large distance, there exists a threshold for single linkage
such that the found clusters contain a large fraction of the
corresponding points in the level set L;.
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Pro:
@ nice hierarchical representation of the data,

@ single-linkage has a nice theoretical foundation,

@ computationally relatively cheap.

Contra:
@ single-linkage and complete very sensitive to data fluctuations,

@ complete linkage has problems with non-spherical clusters,
@ interpretation of the data requires profound understanding of the
cluster similarity measures.
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Density-based clustering

Statistical setting:
e sample {X;}"_; is drawn i.i.d. from probability measure in RY,

o the probability measure has a density in RY,

Clustering model: The clusters of the density p are the connected
components of the level set Ly,

Lo ={x e R?|p(x) > t},

of the density to the level t.
= the only general model for clustering.

Main difference to approaches up to now

@ we have clusters and “background noise” =- the clusters define not a
partitioning of the space !
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Level set of a density function

Level set of a density funct Level set of a density funct

@ Level set of a mixture of three Gaussians at three different level
t = 0.05,0.1,0.15,

o different level-sets lead to multi-scale cluster analysis.
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Density-based clustering |l

Naive approach:
@ estimate density p(x) at each point using a density estimator,
o we define the estimated level-set [; as [; = {x e RY|p(x) > t},

@ compute connected components of [t.

Main ingredients:
@ how to compute a density based on the sample {X;}7_;,
@ how to compute the connected components of L,.

= density based clustering is interesting for outlier-detection.
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Density estimation

Kernel density estimation:
We need a kernel function k : R — R and a bandwidth h, then

Brx) = 1 S K(lbx = Xl /)
i=1

N—X:|12
eg k(lx = Xill /h) = Ly exp (= Ldl).

(2m)2
With this choice, we have
/ pn(x) = 1.
Rd
= Py is a true density function.
= bandwidth parameter can be adjusted using cross-validation.
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Density estimation |l

Theoretical background for density estimation:
The expected value of the kernel density estimate is given as

. 1
Blpn()] = [ | 4ak(lx =y /1) ply) dy.
Rd
Given p € C3(R9), can prove using Taylor's theorem that,

1
[, (=1l /0 ply) dy = plox) + O(#2).
Using Bernstein's inequality one can show, for some constant C > 0
P(‘ﬁh( — E[pn(x ‘ > 5) < 2e” Cnhie?

= thus pp(x) converges (pointwise) towards the true density at x if
nh? — 0o as n — oo and h — 0.
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Density-based clustering

Connected components of the level set:

@ generate graph for all points with p,(X;) > t,
@ weights are generated using k-NN graph,
@ compute connected components of this graph,

@ generate partition of whole space by nearest neighbor partitioning.

= consistency of method including third step can be shown.

Other ones:
e DBSCAN,

@ one-class SVM.
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