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Roadmap

Clustering

Goal of clustering,

k-means clustering (prototype-based clustering)

Spectral clustering (graph-based clustering),

Agglomerative and hierarchical clustering,

Density based clustering.

Clustering is one instance of unsupervised learning
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What is clustering ?

Clustering:
Construction of a grouping of the points into sets of similar points, the so
called clusters.

no generally accepted objective for clustering =⇒ without specifying
a suitable objective clustering is ill-defined,

clustering objective depends largely on application,

in clustering the modelling aspect is even more important than in
supervised learning =⇒ do not use a clustering method if you have
not understood what the objective implies !
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Hierarchical clustering

Hierarchical clustering
generates a hierarchical representation of the n data points.

agglomerative: start with all n points as individual clusters and
consecutively join cluster which are most similar,

divisive: start with one cluster containing all n points and
consecutively divide the clusters so that they are most dissimilar.

=⇒ generates a tree structure on the data - the dendrogram.
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Hierarchical clustering II

Definition

A dendrogram is a binary tree with a distinguished root, that has the
data points as its leaves. The height where two clusters are merged is
equal to their dissimilarity.
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Agglomerative hierarchical clustering

Agglomerative hierarchical clustering
Requirement: a distance measure between point sets.

Definition

A dissimilarity measure D between finite subsets of X is defined as
D : 2X × 2X → R with

D(A,B) ≥ 0 for all A,B ⊆ X ,

D(A,B) = 0 if and only if A = B,

D(A,B) = D(B,A).

Note: triangle inequality not required - not necessarily a metric.
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Agglomerative hierarchical clustering II

Algorithm:

given: set of n points in X , dissimilarity D between subsets of X .

initialize: we have n clusters at level n, C
(n)
1 , . . . ,C

(n)
n with

C
(n)
i = {xi}.

do
1 compute for all l clusters in C

(l)
1 , . . . ,C

(l)
l their dissimilarity

dij = D(C
(l)
i ,C

(l)
j )

2 merge the least dissimilar clusters, with indices (r , s) = argmin
1≤i,j≤l, i 6=j

dij .

3 for i 6= r and i 6= s, C
(l−1)
i = C

(l)
i and C

(l−1)
r = C

(l)
r ∪ C

(l)
s .

4 height in the dendrogram of the merger between C
(l)
r and C (l) is

α(l) = drs = min
i,j

dij .

5 relabel the clusters of level l − 1 from 1 to l − 1,

while l > 1

output: the sets of clusters C (l) for each level l = 1, . . . , n.
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Hierarchical clustering III

Agglomerative clustering:
consecutively join clusters which are most similar.

How to measure dissimilarity of clusters C1 and C2 ?

Single-linkage: dmin(C1,C2) = mini∈C1, j∈C2 d(xi , xj),

Average-linkage: davg(C1,C2) = 1
|C1| |C2|

∑
i∈C1, j∈C2

d(xi , xj),

Complete-linkage: dmax(C1,C2) = maxi∈C1, j∈C2 d(xi , xj),

Two clusters are similar:

single linkage: if for all points in each cluster there exists a path so
that all points in the path are similar,

complete-linkage: if all points for both clusters are similar,

average-linkage: if on average the points of both clusters are similar.
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Compact, spherical clusters
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Top, left: dataset are three Gaussians, Top, right: single-linkage clustering
Bottom, left: average-linkage clustering Bottom, right: complete-linkage clustering.
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Non-compact clusters
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Top, left: Two moons dataset, Top, right: single-linkage clustering
Bottom, left: average-linkage clustering Bottom, right: complete-linkage clustering.
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Hierarchical clustering

Problems of dendrograms

instability small changes in the data can lead to huge changes in the
dendrogram,

hierarchy: multi-scale partitioning but different distance measures are
hard to interpret.

dissimilarity: the dissimilarity of clusters at which one joins clusters
encodes their dissimilarity - this is a quite strange distance measure
=⇒ comparing data using this distance is highly non-intuitive.
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Ultrametric

Definition

An ultra-metric d on X is a metric d which satisfies for all x , y , z ∈ X ,

d(x , y) ≤ max{d(x , z), d(y , z)}

This inequality is called strong triangle or ultrametric inequality.

The ultrametric inequality is stronger than the triangle inequality since

max{d(x , z), d(y , z)} ≤ max{d(x , z), d(y , z)}+ min{d(x , z), d(y , z)}
= d(x , z) + d(y , z).

⇒ very strange effects for this metric !
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Ultrametric and hierarchical clustering

Theorem

Let D be a dissimilarity measure for sets in X and let C (l) be the induced
hierarchical clustering on the set T = {x1, . . . , xn}. If the dissimilarity of
consecutively merged clusters is monotonically increasing, that is
α(l) ≤ α(m) for l > m, then, d ′ : T × T → R, defined as

d ′(i , j) = max
l such that xi∈C

(l)
r and xj∈C

(l)
s with r 6=s

D(C
(l)
r ,C

(l)
s )

= max
l such that xi∈C

(l)
r and xj∈C

(l)
s with r 6=s

α(l),

is an ultrametric.

=⇒ distance measure d ′ integrates the hierarchical structure.
=⇒ need not be much related to original distances on the data.
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Ultrametric and hierarchical clustering

Proof: All properties except the triangle inequality follow from D.
Let x , y , z be three points in T . We denote by l1 the level at which x and
z are merged and by l2 the level at which y and z are merged. Thus,

d ′(x , z) = α(l1), and d ′(y , z) = α(l2).

Since the clusters are hierarchical, we have that x , y , z are in the same
cluster for the level min{l1, l2} =⇒ the level l3 where the points x and y
are merged is larger than or equal to min{l1, l2}.
Using that α(l) is monotonically decreasing in l , we have that
α(l3) ≤ max{α(l1), α(l2)} which yields,

d ′(x , y) = α(l3) ≤ max{α(l1), α(l2)} = max{d ′(x , z), d ′(z , y)}.
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Single-linkage clustering and MST

Single-linkage and minimal spanning trees:
In single-linkage clustering the merging of two clusters can be interpreted
as placing an edge into the graph which has as its vertex set all the data
points.

single linkage constructs a spanning tree,

It is a Euclidean minimal spanning tree if we use the Euclidean
distance for the weights.

=⇒ divisive clustering method by deleting the edge with the largest weight
(largest distance) in the MST.
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Single linkage and minimal spanning tree

The minimal spanning tree of a complete graph
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Clustering using minimal spanning trees

Transfer the method to arbitrary graphs:
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Minimal Spanning Tree

Divisive clustering:

construct hierarchical partioning of the graph by consecutively
eliminating the edge with the smallest/largest edge weight.
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Theoretical results

Consistency of single-linkage clustering:
Hartigan proves one of the first theoretical results for clustering (1981).

Clustering model:

Statistical setting: data in Rd is drawn from some probability
measure,

The clusters are the connected components of the level set Lt

Lt = {x ∈ Rd | p(x) ≥ t},

of the density to the level t.

Theorem: Given that the connected components of Lt have a
sufficiently large distance, there exists a threshold for single linkage
such that the found clusters contain a large fraction of the
corresponding points in the level set Lt .
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Summary

Pro:

nice hierarchical representation of the data,

single-linkage has a nice theoretical foundation,

computationally relatively cheap.

Contra:

single-linkage and complete very sensitive to data fluctuations,

complete linkage has problems with non-spherical clusters,

interpretation of the data requires profound understanding of the
cluster similarity measures.
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Density-based clustering

Statistical setting:

sample {Xi}ni=1 is drawn i.i.d. from probability measure in Rd ,

the probability measure has a density in Rd ,

Clustering model: The clusters of the density p are the connected
components of the level set Lt ,

Lt = {x ∈ Rd | p(x) ≥ t},

of the density to the level t.
=⇒ the only general model for clustering.

Main difference to approaches up to now

we have clusters and “background noise” ⇒ the clusters define not a
partitioning of the space !
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Level set of a density function
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True density p
Level set Lt with t = 0.15
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True density p
Level set Lt with t = 0.1
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True density p
Level set Lt with t = 0.05

Level set of a mixture of three Gaussians at three different level
t = 0.05, 0.1, 0.15,

different level-sets lead to multi-scale cluster analysis.
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Density-based clustering II

Naive approach:

estimate density p̂(x) at each point using a density estimator,

we define the estimated level-set L̂t as L̂t = {x ∈ Rd | p̂(x) ≥ t},
compute connected components of L̂t .

Main ingredients:

how to compute a density based on the sample {Xi}ni=1,

how to compute the connected components of L̂t .

⇒ density based clustering is interesting for outlier-detection.
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Density estimation

Kernel density estimation:
We need a kernel function k : R→ R and a bandwidth h, then

p̂h(x) =
1

n hd

n∑
i=1

k(‖x − Xi‖ /h).

e.g. k(‖x − Xi‖ /h) = 1

(2π)
d
2

exp
(
− ‖x−Xi‖2

2h2

)
.

With this choice, we have ∫
Rd

p̂h(x) = 1.

⇒ p̂h is a true density function.
⇒ bandwidth parameter can be adjusted using cross-validation.
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Density estimation II

Theoretical background for density estimation:
The expected value of the kernel density estimate is given as

E[p̂h(x)] =

∫
Rd

1

hd
k(‖x − y‖ /h) p(y) dy .

Given p ∈ C 3(Rd), can prove using Taylor’s theorem that,∫
Rd

1

hd
k(‖x − y‖ /h) p(y) dy = p(x) + O(h2).

Using Bernstein’s inequality one can show, for some constant C > 0

P
(∣∣p̂h(x)− E[p̂h(x)]

∣∣ > ε
)
≤ 2e−C n hdε2 .

⇒ thus p̂h(x) converges (pointwise) towards the true density at x if
nhd →∞ as n→∞ and h→ 0.
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Density-based clustering

Connected components of the level set:

generate graph for all points with p̂h(Xi ) ≥ t,

weights are generated using k-NN graph,

compute connected components of this graph,

generate partition of whole space by nearest neighbor partitioning.

=⇒ consistency of method including third step can be shown.

Other ones:

DBSCAN,

one-class SVM.
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