Machine Learning Clustering II

Paul Swoboda

Lecture 19, 7.1.2018

Clustering

- Goal of clustering,
- k-means clustering (prototype-based clustering)
- Spectral clustering (graph-based clustering),
- Agglomerative and hierarchical clustering,
- Density based clustering.

Clustering is one instance of unsupervised learning

Clustering:

Construction of a grouping of the points into sets of *similar* points, the so called *clusters*.

- no generally accepted objective for clustering \implies without specifying a suitable objective clustering is **ill-defined**,
- clustering objective depends largely on application,
- in clustering the modelling aspect is even more important than in supervised learning ⇒ do not use a clustering method if you have not understood what the objective implies !

Hierarchical clustering

generates a hierarchical representation of the n data points.

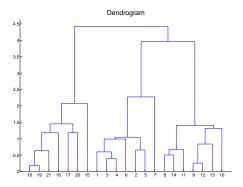
- **agglomerative:** start with all *n* points as individual clusters and consecutively join cluster which are *most similar*,
- **divisive:** start with one cluster containing all *n* points and consecutively divide the clusters so that they are *most dissimilar*.

 \Rightarrow generates a tree structure on the data - the **dendrogram**.

Hierarchical clustering II

Definition

A **dendrogram** is a binary tree with a distinguished root, that has the data points as its leaves. The height where two clusters are merged is equal to their dissimilarity.



Agglomerative hierarchical clustering

Requirement: a distance measure between point sets.

Definition

A dissimilarity measure *D* between finite subsets of \mathcal{X} is defined as $D: 2^{\mathcal{X}} \times 2^{\mathcal{X}} \to \mathbb{R}$ with

•
$$D(A,B) \ge 0$$
 for all $A,B \subseteq \mathcal{X}$,

•
$$D(A,B) = 0$$
 if and only if $A = B$,

•
$$D(A,B) = D(B,A)$$
.

Note: triangle inequality not required - not necessarily a metric.

Agglomerative hierarchical clustering II

Algorithm:

- given: set of n points in \mathcal{X} , dissimilarity D between subsets of \mathcal{X} .
- initialize: we have *n* clusters at level *n*, $C_1^{(n)}, \ldots, C_n^{(n)}$ with $C_i^{(n)} = \{x_i\}.$
- do
 - compute for all *l* clusters in $C_1^{(l)}, \ldots, C_l^{(l)}$ their dissimilarity $d_{ij} = D(C_i^{(l)}, C_i^{(l)})$
 - **2** merge the least dissimilar clusters, with indices $(r, s) = \underset{1 \le i, i \le l, i \ne i}{\operatorname{arg min}} d_{ij}$.
 - for $i \neq r$ and $i \neq s$, $C_i^{(l-1)} = C_i^{(l)}$ and $C_r^{(l-1)} = C_r^{(l)} \cup C_s^{(l)}$.
 - **(3)** height in the dendrogram of the merger between $C_r^{(1)}$ and $C^{(1)}$ is

$$\alpha^{(l)} = d_{rs} = \min_{i,j} d_{ij}.$$

() relabel the clusters of level l-1 from 1 to l-1,

- while *l* > 1
- output: the sets of clusters $C^{(l)}$ for each level l = 1, ..., n.

Agglomerative clustering:

consecutively join clusters which are most similar.

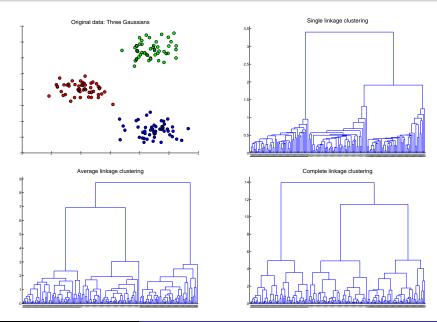
How to measure dissimilarity of clusters C_1 and C_2 ?

- Single-linkage: $d_{\min}(C_1, C_2) = \min_{i \in C_1, j \in C_2} d(x_i, x_j)$,
- Average-linkage: $d_{avg}(C_1, C_2) = \frac{1}{|C_1||C_2|} \sum_{i \in C_1, j \in C_2} d(x_i, x_j)$,
- Complete-linkage: $d_{\max}(C_1, C_2) = \max_{i \in C_1, j \in C_2} d(x_i, x_j)$,

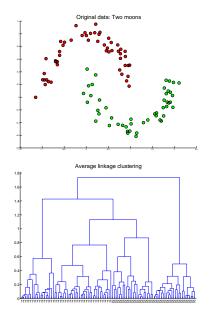
Two clusters are similar:

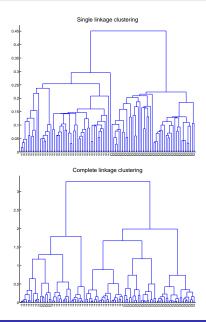
- single linkage: if for all points in each cluster there exists a path so that all points in the path are similar,
- complete-linkage: if all points for both clusters are similar,
- average-linkage: if on average the points of both clusters are similar.

Compact, spherical clusters



Non-compact clusters





Problems of dendrograms

- **instability** small changes in the data can lead to huge changes in the dendrogram,
- **hierarchy:** multi-scale partitioning but different distance measures are hard to interpret.
- dissimilarity: the dissimilarity of clusters at which one joins clusters encodes their dissimilarity - this is a quite strange distance measure ⇒ comparing data using this distance is highly non-intuitive.

Definition

An **ultra-metric** d on \mathcal{X} is a metric d which satisfies for all $x, y, z \in \mathcal{X}$,

$$d(x,y) \le \max\{d(x,z), d(y,z)\}$$

This inequality is called strong triangle or ultrametric inequality.

The ultrametric inequality is stronger than the triangle inequality since

 $\max\{d(x,z), d(y,z)\} \le \max\{d(x,z), d(y,z)\} + \min\{d(x,z), d(y,z)\} \\ = d(x,z) + d(y,z).$

 \Rightarrow very strange effects for this metric !

Theorem

Let D be a dissimilarity measure for sets in \mathcal{X} and let $C^{(l)}$ be the induced hierarchical clustering on the set $T = \{x_1, \ldots, x_n\}$. If the dissimilarity of consecutively merged clusters is monotonically increasing, that is $\alpha^{(l)} \leq \alpha^{(m)}$ for l > m, then, $d' : T \times T \to \mathbb{R}$, defined as

$$d'(i,j) = \max_{\substack{I \text{ such that } x_i \in C_r^{(I)} \text{ and } x_j \in C_s^{(I)} \text{ with } r \neq s}} D(C_r^{(I)}, C_s^{(I)})$$
$$= \max_{\substack{I \text{ such that } x_i \in C_r^{(I)} \text{ and } x_j \in C_s^{(I)} \text{ with } r \neq s}} \alpha^{(I)},$$

is an ultrametric.

 \implies distance measure d' integrates the hierarchical structure.

 \Longrightarrow need not be much related to original distances on the data.

Proof: All properties except the triangle inequality follow from D. Let x, y, z be three points in T. We denote by l_1 the level at which x and z are merged and by l_2 the level at which y and z are merged. Thus,

$$d'(x,z) = \alpha^{(l_1)}$$
, and $d'(y,z) = \alpha^{(l_2)}$.

Since the clusters are hierarchical, we have that x, y, z are in the same cluster for the level min $\{l_1, l_2\} \Longrightarrow$ the level l_3 where the points x and y are merged is larger than or equal to min $\{l_1, l_2\}$. Using that $\alpha^{(I)}$ is monotonically decreasing in I, we have that $\alpha^{(l_3)} \le \max\{\alpha^{(l_1)}, \alpha^{(l_2)}\}$ which yields,

$$d'(x,y) = \alpha^{(l_3)} \le \max\{\alpha^{(l_1)}, \alpha^{(l_2)}\} = \max\{d'(x,z), d'(z,y)\}.$$

Single-linkage and minimal spanning trees:

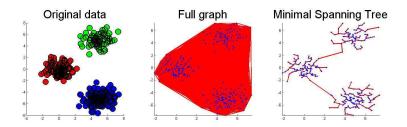
In single-linkage clustering the merging of two clusters can be interpreted as placing an edge into the graph which has as its vertex set all the data points.

- single linkage constructs a spanning tree,
- It is a Euclidean minimal spanning tree if we use the Euclidean distance for the weights.

 \Longrightarrow divisive clustering method by deleting the edge with the largest weight (largest distance) in the MST.

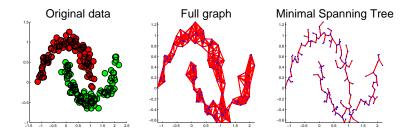
Single linkage and minimal spanning tree

The minimal spanning tree of a complete graph



Clustering using minimal spanning trees

Transfer the method to arbitrary graphs:



Divisive clustering:

• construct hierarchical partioning of the graph by consecutively eliminating the edge with the smallest/largest edge weight.

Consistency of single-linkage clustering:

Hartigan proves one of the first theoretical results for clustering (1981).

Clustering model:

- Statistical setting: data in \mathbb{R}^d is drawn from some probability measure,
- The clusters are the connected components of the level set L_t

$$L_t = \{x \in \mathbb{R}^d \mid p(x) \ge t\},\$$

of the density to the level t.

• **Theorem:** Given that the connected components of L_t have a sufficiently large distance, there exists a threshold for single linkage such that the found clusters contain a large fraction of the corresponding points in the level set L_t .

Pro:

- nice hierarchical representation of the data,
- single-linkage has a nice theoretical foundation,
- computationally relatively cheap.

Contra:

- single-linkage and complete very sensitive to data fluctuations,
- complete linkage has problems with non-spherical clusters,
- interpretation of the data requires profound understanding of the cluster similarity measures.

Statistical setting:

- sample $\{X_i\}_{i=1}^n$ is drawn i.i.d. from probability measure in \mathbb{R}^d ,
- the probability measure has a density in \mathbb{R}^d ,

Clustering model: The clusters of the density p are the connected components of the level set L_t ,

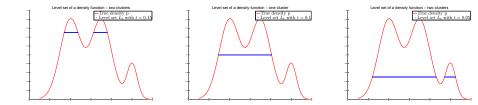
$$L_t = \{x \in \mathbb{R}^d \mid p(x) \ge t\},\$$

of the density to the level *t*.

 \implies the only general model for clustering.

Main difference to approaches up to now

 we have clusters and "background noise" ⇒ the clusters define not a partitioning of the space !



- Level set of a mixture of three Gaussians at three different level t = 0.05, 0.1, 0.15,
- different level-sets lead to multi-scale cluster analysis.

Naive approach:

- estimate density $\hat{p}(x)$ at each point using a density estimator,
- we define the estimated level-set \hat{L}_t as $\hat{L}_t = \{x \in \mathbb{R}^d \mid \hat{\rho}(x) \ge t\}$,
- compute connected components of \hat{L}_t .

Main ingredients:

- how to compute a density based on the sample $\{X_i\}_{i=1}^n$,
- how to compute the connected components of \hat{L}_t .
- \Rightarrow density based clustering is interesting for outlier-detection.

Kernel density estimation:

We need a kernel function $k : \mathbb{R} \to \mathbb{R}$ and a bandwidth h, then

$$\hat{p}_h(x) = \frac{1}{n \, h^d} \sum_{i=1}^n k(\|x - X_i\| / h).$$

e.g.
$$k(||x - X_i|| / h) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{||x - X_i||^2}{2h^2}\right).$$

With this choice, we have

$$\int_{\mathbb{R}^d} \hat{p}_h(x) = 1.$$

 $\Rightarrow \hat{p}_h$ is a true density function.

 \Rightarrow bandwidth parameter can be adjusted using cross-validation.

Density estimation II

Theoretical background for density estimation:

The expected value of the kernel density estimate is given as

$$\mathbb{E}[\hat{p}_h(x)] = \int_{\mathbb{R}^d} \frac{1}{h^d} k(\|x-y\|/h) p(y) \, dy.$$

Given $p \in C^3(\mathbb{R}^d)$, can prove using Taylor's theorem that,

$$\int_{\mathbb{R}^d} \frac{1}{h^d} k(\|x - y\| / h) \, p(y) \, dy = p(x) + O(h^2).$$

Using Bernstein's inequality one can show, for some constant ${\it C}>0$

$$\mathrm{P}\Big(\big|\hat{p}_h(x) - \mathbb{E}[\hat{p}_h(x)]\big| > \varepsilon\Big) \le 2e^{-C \, n \, h^d \varepsilon^2}$$

 \Rightarrow thus $\hat{p}_h(x)$ converges (pointwise) towards the true density at x if $nh^d \to \infty$ as $n \to \infty$ and $h \to 0$.

Connected components of the level set:

- generate graph for all points with $\hat{p}_h(X_i) \ge t$,
- weights are generated using k-NN graph,
- compute connected components of this graph,
- generate partition of whole space by nearest neighbor partitioning.
- \implies consistency of method including third step can be shown.

Other ones:

- DBSCAN,
- one-class SVM.