Machine Learning

Decision Trees and nonparametric Methods

Paul Swoboda

Lecture 16, 22.12.2018

Paul Swoboda (Lecture 16, 22.12.2018) Machine Learning



Roadmap of today

Classification methods:
@ Boosting (how to get a good classifier from a set of simple ones)
@ Decision Trees,
o Nearest Neighbor Methods, Parzen-Window,
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(Binary) Decision trees
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Properties and questions:

Round Curved Small

@ Designed for categorical features (but real-valued ones are possible),

@ How to grow the tree, when to stop and how to prune the tree?
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Decision trees ||

Why binary trees ?
Any tree can be rewritten in terms of a binary tree.

What is the binary decision if we have a group of attributes ?
We partition the group of attributes into two sets.

What is the binary decision for real-valued features ?
A simple split of the coordinate.

How to classify a node ?
Let py(k) be the fraction of training points at node N of class k.
— Classification by majority vote: f(N) = arg max py(k).

=1,...,
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Decision trees Il|

How to grow a decision tree ?

@ Measures of node impurity /(/N) of node N,

K
Entropy: 1(N) = — > pu(k) log pu (k).
k=1

K

Gini Impurity: /(N) = ZPN(k)(l — pn(k)) ZZpN

k=1 k=1 I£k

Z loss: I(N)=1-— k).
ero one loss: [(N) k:nl]f.)iK pn(k)

@ Determine for each feature the best split by minimizing

N N
WL’(NL)+i/(NR)

@ Take the feature and the corresponding split with minimal impurity.
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Decision trees |V

When to stop ?
@ cross validation,

@ minimal decrease in impurity or minimal number of training points in
each node.

Alternative: grow the tree until each leaf is maximal pure, then prune it.

How to prune ?

@ collapse successively the pair of leafs which leads to a minimal
increase of the complexity criterion

7|
> N (N + ol T,
i=1

@ choose « by cross validation.

Many variants: 1D3, C4.5, CART - works also for regression.
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Decision trees V

Pro

o if tree is small allows an easy interpretation (simple rules),

@ very fast classifiers (real-time performance).

Contra
@ often bad accuracy (the larger the tree (possibly better accuracy), the
less interpretable),
@ tree construction is quite unstable (greedy procedure),
@ complex decision boundaries are difficult to model,

o forward/backward selection of features - no joint model.
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Bagging and Random forests

Bagging of Trees - key idea: Train very several decision trees (forest) by
subsampling the training set or bagging (sampling with replacement). This
reduces the typical high variance of deicison trees.

Final Decision: Averaging or majority vote

Random forests: in the training of the individual decision trees one uses
for each coordinate split a random subset of the features. This avoids that
a few features which are themselves strong predictors are used in all the
trees and thus leads to very similar decision trees. (rough rule of thumb:
for d features one samples V/d features for each decision).
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Nearest neighbor methods

What is a nearest neighbor method ?
Classify or estimate the function value of a test point based on the nearest
neighbors in the training set.

Properties:

@ one of the most simple and oldest classification method,
despite its simplicity it often yields reasonable performance,
no training required - testing is more expensive,

well studied theory - many variants of such classifiers,

very flexible - can be applied to any kind of data !
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Nearest neighbor methods I

What is a nearest neighbor method ?

Let X1) - .-, X(k) be the k training points which have the smallest
distance to the given test point x, W(X)(,') the associated positive weights
and Y(y), ..., Y(x) their corresponding label.

o Classification

1, if si n(Ef-(: w(x);Yi) >0,
F(x) { -1, elsefg '

Simple: w(x); =1 = majority vote - use odd values of k to avoid
ties.

o Regression:
i W) i
>oiia wi(x);
= simple weighted average - but choice of the weights w(x); and
the number of neighbors can significantly influence the result.

f(x) =
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Nearest neighbor method - Classification

Classification in Euclidean space

|1, if sign(Y26, w(x);Y;) >0,
fx) _{ —1, else. 1

Choices for the weights:
2
e Gaussian weights w(x); = e M =Xoll" = X is determined by
cross-validation (problems if high- and low density regions vary),
sl
o Adaptive Gaussian weights w(x); = e ", where
re = Hx — X(k)H is the distance of the k-nearest neighbor.

Multi-class Extension: Classify test point by majority vote using the
labels of the k nearest neighbors - break ties either randomly (no weights)
or use weights for each point.
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Nearest neighbor - Voronoi diagram
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The Voronoi-diagram shows the influence region for each point
corresponding to the nearest neighbor.
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Theoretical results for nearest neighbor classification

Theorem

Let R, be the classification error made by the k-nearest neighbor classifier
in RY. Assume that X has a density with respect to the Lebesgue
measure. If k — oo, k/logn — oo and k/n — 0, then for every ¢ > 0
there exists an ng such that for n > ng,

2

P(R,— R*>¢)<2e ™%

)

where 4 is a constant depending only on the dimension.

Basic idea:
@ as k — oo and k/n — 0, we have ry, — 0.

@ One averages over decreasing neighborhoods and since kK — oo the

majority vote converges to argmax P(Y = m|X = x).
m=1,...,.K
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Theoretical results for nearest neighbor classification Il

What happens when we keep k fixed and n — oo ? One can compute
the asymptotic error

Rinn = lim Rj,
n—o0
for a k nearest neighbor classifier with fixed k as
e Riyy =2E[P(Y =1|X)(1 - P(Y = 1|X)],
o Rywy = E[P(Y = 1[X)[(1 ~ P(Y = 1[X)) +4(1 - P(¥ = 1|X))?]]

Reminder: the Bayes error
R* = Ex[min{P(Y = 1|X),P(Y = —-1|X)}],
We have

Riny = 2E[P(Y = 1[X)P(Y = —1|X)]
— 2E[min{P(Y = 1|X),P(Y = —1|X)} max{P(Y = 1|X), P(Y = —1|
< 2E[min{P(Y = 1|X),1 - P(Y = 1|X)}] = 2 R*
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Metric spaces:

Definition
A metric space is a set X with a distance function d : X x X — R such
that:

Vv

)

(x,y
d(x,y
(x,y

0,
0 if and only if x =
d(y, x), (symmetry)
e d(x,y) < d(x,z)+ d(z,y). (triangle inequality)
It is denoted as (X, d).

)

)
)
)
)<

@ We can define nearest neighbor classifier on any metric space !

@ More general: we can define nearest neighbor classifier for any set
with a similarity function (instead of nearest neighbors take most
similar points).
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Examples of distances

Examples of distances on R¢:

o For x,y € B, use d(x,y) = lIx = yll, = (X L1(x —)°)”.
with the extreme case p = oo,

T =

d0xy) = lIx = ylloo = max [xi —yil

@ Mahalanobis distance - a weighted Euclidean distance,

1

d(x,y) = (ZAU yJ)) =V {x—y, Alx—y)),

ij=1

where A is a positive-definite matrix,

Distance on the sphere in RY:

d(x,y) = arccos({x, y)).

The famous cosine measure in text classification is a similarity measure !
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Tangent distance

A dissimilarity measure designed for a particular application
small changes of digit images = label does not change !
but: Euclidean distance changes dramatically !

w0

X

3,33

Degrees of freedom:

e Geometric transformations: 1+2) translation, 3) scaling, 4)
rotation,

e Application specific: 5) line thickness, 6+7) shear.

Idea: build distance measure which is invariant under the transformations !
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Tangent distance |l

Definition of general tangent distance

Definition

Let x, y be two instances in X and T(«), T(53) be a group action G on X,
T:XxG — X, (x,a)— T(a)x,

with which we want to be invariant. Then define the general tangent
distance on X as,

d/(va) = oa?g’ienG d(T(O‘)Xv T(,B)y),

where d(x,y) is the original metric on X

o generally does not yield a metric (even if d is a metric !),
@ the tangent distance minimizes usually only over group elements close
to the identity (tangent elements),
@ quite expensive to compute.
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Nearest neighbor method - Regression

Regression:

For the specific choice of weights,
w(x)i = k(llx = Xill /h),

where k : Ry — R satisfies
@ k(x) is monotonically decreasing,
@ k(x) is always positive,
@ the number of neighbors k is equal to n.
then f is called the Nadaraya-Watson estimator,

>oica k(llx = Xil[ /h) Y
>ty k(llx = Xill /h)

f(x) =
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Nearest neighbor method - Regression |l

Motivation of the Nadaraya-Watson estimator:

Proposition
The Nadaraya-Watson estimator f(x) at x is the result of the following
optimization problem,

f(x) = argmin Y _ k(||lx — Xi|l /h)(Y; — c)*.
R
cER iz

v

Proof: The Functional F(c) = >""_; k(|lx — Xi|| /h)(Yi — ¢)? is convex in
¢, and thus we find the minimizer by solving,

g{ =2) k(llx =Xl /h)(Yi = c) = 0.
i=1

which yields,
S0 k(= Xl /W)Y
i k(llx = Xill /h)
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Nadaraya-Watson - Choice of bandwidth

Parameters of the Nadaraya-Watson estimator:
h is the so called bandwidth and influences the smoothness of f,

> iy k(Ilx = Xill /h)Yi

f(x) =<5 ;
Sy k(lx = Xil[ /h)
2
where k(r) =e™".
Nadaraya—-Watson Estimator
1 =
I e oo
0'81 —NW-Estimator h=0.1
NW-Estimator h=1
0.6 —True Function
i
0.2
o
-0.2
-0.4
-0.6[
—o0gl
ES = = 0 1 2 3
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Distances in high dimensions

Lemma
Let x,y € RY and €1, e5 ~ N(0,0?) and define X = x + €1 and
Y =y + e, then
EX = Y|? = Ilx = y[? +2do?,
Var | X — Y|?> =802 ||x — y||> + 8d o*.
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Distances in high dimensions

Lemma
Let x,y € RY and €1, e5 ~ N(0,0?) and define X = x + €1 and
Y =y + e, then
EX - Y|P = |Ix—y|?+2do?,
Var | X — Y|?> =802 ||x — y||> + 8d o*.

@ Distances start to concentrate in high dimensions !
@ All points have almost all the same distance.

Hisfggram of all squared Euclidean distances between two Gaussians in d=2 Histggram of all squared Euclidean distances between two Gaussians in d=100
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Summary of nearest neighbor methods

Pro
@ easy to understand,
o flexible, can be used with any user-specified similarity or distance,
@ often competitive in performance,
°

requires no training.

Contra
@ Problems in high dimensions - distances are almost all equal,

@ No interpretation,

@ Slow at test time (but depends heavily on the dimension and the use
of efficient data structures to compute the distances).
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