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Roadmap of today

Classification methods:

Boosting (how to get a good classifier from a set of simple ones)

Decision Trees,

Nearest Neighbor Methods, Parzen-Window,
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(Binary) Decision trees

Properties and questions:

Designed for categorical features (but real-valued ones are possible),

How to grow the tree, when to stop and how to prune the tree?
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Decision trees II

Why binary trees ?
Any tree can be rewritten in terms of a binary tree.

What is the binary decision if we have a group of attributes ?
We partition the group of attributes into two sets.

What is the binary decision for real-valued features ?
A simple split of the coordinate.

How to classify a node ?
Let pN(k) be the fraction of training points at node N of class k .
=⇒ Classification by majority vote: f (N) = argmax

k=1,...,K
pN(k).
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Decision trees III

How to grow a decision tree ?

Measures of node impurity I (N) of node N,

Entropy: I (N) = −
K∑

k=1

pN(k) log pN(k),

Gini Impurity: I (N) =
K∑

k=1

pN(k)
(
1− pN(k)

)
=

K∑
k=1

∑
l 6=k

pN(k)pN(l),

Zero one loss: I (N) = 1− max
k=1,...,K

pN(k).

Determine for each feature the best split by minimizing

NL

N
I (NL) +

NR

N
I (NR)

Take the feature and the corresponding split with minimal impurity.
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Decision trees IV

When to stop ?

cross validation,

minimal decrease in impurity or minimal number of training points in
each node.

Alternative: grow the tree until each leaf is maximal pure, then prune it.

How to prune ?

collapse successively the pair of leafs which leads to a minimal
increase of the complexity criterion

|T |∑
i=1

Ni I (Ni ) + α|T |.

choose α by cross validation.

Many variants: ID3, C4.5, CART - works also for regression.
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Decision trees V

Pro

if tree is small allows an easy interpretation (simple rules),

very fast classifiers (real-time performance).

Contra

often bad accuracy (the larger the tree (possibly better accuracy), the
less interpretable),

tree construction is quite unstable (greedy procedure),

complex decision boundaries are difficult to model,

forward/backward selection of features - no joint model.
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Bagging and Random forests

Bagging of Trees - key idea: Train very several decision trees (forest) by
subsampling the training set or bagging (sampling with replacement). This
reduces the typical high variance of deicison trees.

Final Decision: Averaging or majority vote

Random forests: in the training of the individual decision trees one uses
for each coordinate split a random subset of the features. This avoids that
a few features which are themselves strong predictors are used in all the
trees and thus leads to very similar decision trees. (rough rule of thumb:
for d features one samples

√
d features for each decision).
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Nearest neighbor methods

What is a nearest neighbor method ?
Classify or estimate the function value of a test point based on the nearest
neighbors in the training set.

Properties:

one of the most simple and oldest classification method,

despite its simplicity it often yields reasonable performance,

no training required - testing is more expensive,

well studied theory - many variants of such classifiers,

very flexible - can be applied to any kind of data !
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Nearest neighbor methods II

What is a nearest neighbor method ?
Let X(1), . . . ,X(k) be the k training points which have the smallest
distance to the given test point x , w(x)(i) the associated positive weights
and Y(1), . . . ,Y(k) their corresponding label.

Classification

f (x) =

{
1, if sign(

∑k
i=1 w(x)iYi ) > 0,

−1, else.

Simple: w(x)i = 1 =⇒ majority vote - use odd values of k to avoid
ties.

Regression:

f (x) =

∑k
i=1 w(x)iYi∑k
i=1 w(x)i

.

=⇒ simple weighted average - but choice of the weights w(x)i and
the number of neighbors can significantly influence the result.
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Nearest neighbor method - Classification

Classification in Euclidean space

f (x) =

{
1, if sign(

∑k
i=1 w(x)iYi ) > 0,

−1, else.

Choices for the weights:

Gaussian weights w(x)i = e−λ‖x−X(i)‖2 =⇒ λ is determined by
cross-validation (problems if high- and low density regions vary),

Adaptive Gaussian weights w(x)i = e
−‖x−X(i)‖2

r2
k , where

rk =
∥∥x − X(k)

∥∥ is the distance of the k-nearest neighbor.

Multi-class Extension: Classify test point by majority vote using the
labels of the k nearest neighbors - break ties either randomly (no weights)
or use weights for each point.
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Nearest neighbor - Voronoi diagram

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Voronoi-diagram shows the influence region for each point
corresponding to the nearest neighbor.
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Theoretical results for nearest neighbor classification

Theorem

Let Rn be the classification error made by the k-nearest neighbor classifier
in Rd . Assume that X has a density with respect to the Lebesgue
measure. If k →∞, k/ log n→∞ and k/n→ 0, then for every ε > 0
there exists an n0 such that for n ≥ n0,

P(Rn − R∗ > ε) ≤ 2 e
− n ε2

72γ2
d ,

where γd is a constant depending only on the dimension.

Basic idea:

as k →∞ and k/n→ 0, we have rk → 0.

One averages over decreasing neighborhoods and since k →∞ the
majority vote converges to argmax

m=1,...,K
P(Y = m|X = x).
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Theoretical results for nearest neighbor classification II

What happens when we keep k fixed and n→∞ ? One can compute
the asymptotic error

RkNN = lim
n→∞

Rn,

for a k nearest neighbor classifier with fixed k as

R1NN = 2E[P(Y = 1|X )(1− P(Y = 1|X )],

R3NN = E
[
P(Y = 1|X )

[
(1− P(Y = 1|X )) + 4(1− P(Y = 1|X ))2

]]
Reminder: the Bayes error

R∗ = EX [min{P(Y = 1|X ),P(Y = −1|X )}],

We have

R1NN = 2E[P(Y = 1|X )P(Y = −1|X )]

= 2E[min{P(Y = 1|X ),P(Y = −1|X )}max{P(Y = 1|X ),P(Y = −1|X )}]
≤ 2E[min{P(Y = 1|X ), 1− P(Y = 1|X )}] = 2R∗
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Metric space

Metric spaces:

Definition

A metric space is a set X with a distance function d : X × X → R such
that:

d(x , y) ≥ 0,

d(x , y) = 0 if and only if x = y ,

d(x , y) = d(y , x), (symmetry)

d(x , y) ≤ d(x , z) + d(z , y). (triangle inequality)

It is denoted as (X , d).

We can define nearest neighbor classifier on any metric space !

More general: we can define nearest neighbor classifier for any set
with a similarity function (instead of nearest neighbors take most
similar points).
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Examples of distances

Examples of distances on Rd :

For x , y ∈ Rd , use d(x , y) = ‖x − y‖p =
(∑d

i=1(xi − yi )
p
) 1

p
,

with the extreme case p =∞,

d(x , y) = ‖x − y‖∞ = max
1≤i≤d

|xi − yi |.

Mahalanobis distance - a weighted Euclidean distance,

d(x , y) =
( d∑

i ,j=1

Aij(xi − yi )(xj − yj)
) 1

2
=
√
〈x − y ,A(x − y)〉,

where A is a positive-definite matrix,

Distance on the sphere in Rd :

d(x , y) = arccos(〈x , y〉).

The famous cosine measure in text classification is a similarity measure !
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Tangent distance

A dissimilarity measure designed for a particular application
small changes of digit images =⇒ label does not change !
but: Euclidean distance changes dramatically !

Degrees of freedom:

Geometric transformations: 1+2) translation, 3) scaling, 4)
rotation,

Application specific: 5) line thickness, 6+7) shear.

Idea: build distance measure which is invariant under the transformations !
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Tangent distance II

Definition of general tangent distance

Definition

Let x , y be two instances in X and T (α),T (β) be a group action G on X ,

T : X × G 7→ X , (x , α)→ T (α)x ,

with which we want to be invariant. Then define the general tangent
distance on X as,

d ′(x , y) = min
α,β∈G

d(T (α) x ,T (β) y),

where d(x , y) is the original metric on X .

generally does not yield a metric (even if d is a metric !),
the tangent distance minimizes usually only over group elements close
to the identity (tangent elements),
quite expensive to compute.
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Nearest neighbor method - Regression

Regression:

f (x) =

∑k
i=1 w(x)iYi∑k
i=1 w(x)i

.

For the specific choice of weights,

w(x)i = k(‖x − Xi‖ /h),

where k : R+ → R satisfies

k(x) is monotonically decreasing,

k(x) is always positive,

the number of neighbors k is equal to n.

then f is called the Nadaraya-Watson estimator,

f (x) =

∑n
i=1 k(‖x − Xi‖ /h)Yi∑n
i=1 k(‖x − Xi‖ /h)

.
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Nearest neighbor method - Regression II

Motivation of the Nadaraya-Watson estimator:

Proposition

The Nadaraya-Watson estimator f (x) at x is the result of the following
optimization problem,

f (x) = argmin
c∈R

n∑
i=1

k(‖x − Xi‖ /h)(Yi − c)2.

Proof: The Functional F (c) =
∑n

i=1 k(‖x − Xi‖ /h)(Yi − c)2 is convex in
c , and thus we find the minimizer by solving,

∂F

∂c
= 2

n∑
i=1

k(‖x − Xi‖ /h)(Yi − c) = 0.

which yields,

c =

∑n
i=1 k(‖x − Xi‖ /h)Yi∑n
i=1 k(‖x − Xi‖ /h)

.
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Nadaraya-Watson - Choice of bandwidth

Parameters of the Nadaraya-Watson estimator:
h is the so called bandwidth and influences the smoothness of f ,

f (x) =

∑n
i=1 k(‖x − Xi‖ /h)Yi∑n
i=1 k(‖x − Xi‖ /h)

,

where k(r) = e−r
2
.
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Distances in high dimensions

Lemma

Let x , y ∈ Rd and ε1, ε2 ∼ N(0, σ2) and define X = x + ε1 and
Y = y + ε2, then

E ‖X − Y ‖2 = ‖x − y‖2 + 2 d σ2,

Var ‖X − Y ‖2 = 8σ2 ‖x − y‖2 + 8 d σ4.

Distances start to concentrate in high dimensions !
All points have almost all the same distance.
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Summary of nearest neighbor methods

Pro

easy to understand,

flexible, can be used with any user-specified similarity or distance,

often competitive in performance,

requires no training.

Contra

Problems in high dimensions - distances are almost all equal,

No interpretation,

Slow at test time (but depends heavily on the dimension and the use
of efficient data structures to compute the distances).
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