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Roadmap

What is semi-supervised learning (SSL) ? What is transduction ?

The cluster/manifold assumption

Graph-based SSL using regularized least squares
1 Interpretation in terms of label propagation
2 Interpretation in terms of a data-dependent kernel

Experiments
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Why semi-supervised learning ?

Human labels can be expensive and time consuming,

There is a lot of unlabeled data around us e.g. images and text on
the web. The knowledge about the unlabeled data “should” be
helpful to build better classifiers,

Distinction from weakly supervised learning

one uses weaker information than full supervision e.g. instead of
pixel-wise accurate object labels you just have bounding box
containing the object.
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What is semi-supervised learning ?

Input space X , Output: {−1, 1} (binary classification):

a small set L of labeled data (Xl ,Yl),

a large set U of unlabeled data Xu.

notation: n=l+u, total number of data points. T denotes the set of
all points.

e.g. a small number of labeled images and a huge number of unlabeled
images from the internet.

Definition:

Transduction: Prediction of the labels Yu of the unlabeled data Xu,

SSL: Construction of a classifier f : X → {−1, 1} on the whole input
space (using the unlabeled data).
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Is it always helpful ?

No !

Because:

in order to deal with a small amount of labeled data we have to make
strong assumptions about the underlying joint probability measure
P(X ,Y ) e.g. a relation of P(X ) and P(Y |X ).

But:

empirical success of SSL methods shows that unlabeled data can
improve performance.

nice application of SSL (Levin et al. 2006) in user-guided image
segmentation (foreground / background).
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Matting

Left: Input Image with user labels, Right: Image segmentation
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Approaches to SSL

The obvious one - Self Training

use labeled data to build classifier,

the unlabeled points on which the classifier is most “confident” are
added to the label set,

repeat until all points are labeled.

Problem:

Wrongly assigned labels in the beginning can spoil the whole
performance.

How should we measure the confidence in the labels ?
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Approaches to SSL II

Other more principled approaches to SSL:

Co-Training,

Transductive SVM,

Harmonic function,
Regularized least squares with the graph Laplacian,
Label Propagation
=⇒ Different aspects of the same graph based method

Low Density Separation

⇒ in this lecture we treat the graph-based methods using Laplacian
regularization.
⇒ graph-based methods are very flexible (can be applied on any kind of
data).
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The cluster assumption

Cluster assumption: points which can be connected via (many) paths
through high-density regions are likely to have the same label.
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The manifold-assumption

Manifold assumption: each class lies on a separate manifold.
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The cluster/manifold-assumption

Cluster/Manifold assumption: points which can be connected via a
path through high density regions on the data manifold are likely to have
the same label.

=⇒ Use regularizer which prefers functions which vary smoothly along
the manifold and do not vary in high density regions.
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The cluster/manifold-assumption II

Problem: We have only (a lot of) unlabeled and some labeled points and
no information about the density and the manifold.

Paul Swoboda (Lecture 17, 17.12.2018) Machine Learning 12 / 28



The cluster/manifold-assumption III

Approach: Use a graph to approximate the manifold (and density).
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How to build such graphs ?

Neighborhood graphs:
Given similarity s : X × X → R+ or dissimilarity measure d : X × X → R.
Denote by kNN(Xi ) the k most similar or least dissimilar points.

k-nearest neighbor graphs: connect points Xi to Xj if
I Xj ∈ knn(Xi ) ⇒ kNN-graph (directed)
I Xi ∈ kNN(Xj) and Xj ∈ kNN(Xi ) (mutual) ⇒ mutual kNN-graph.
I Xi ∈ kNN(Xj) or Xj ∈ kNN(Xi ) ⇒ symmetric kNN-graph.

The symmetric and mutual kNN-graph are undirected.

epsilon-graphs: connect points Xi and Xj if
I dissimilarity: d(Xi ,Xj) ≤ ε,
I similarity: s(Xi ,Xj) ≥ 1− ε,

Assumption: maxx,y s(x , y) = maxx s(x , x) = 1.

The epsilon-graph is undirected.
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How to build such graphs ?

Weighted neighborhood graph:

Gaussian weights (single scale):

w(Xi ,Xj) = e−
d(Xi ,Xj )

2

σ2 ,

where σ2 = 1
n(n−1)

∑
i 6=j d(Xi ,Xj)

2 or chosen by cross-validation.

Gaussian weights (adaptive scaling)

w(Xi ,Xj) = e
−λ

d(Xi ,Xj )
2

σ2
k ,

where e.g. σ2k = 1
2(distk(Xi ) + distk(Xj)) and distk(Xi ) is the

distance of Xi to its k-nearest neighbor and λ is either one or chosen
by cross-validation.

Other user-defined measures...
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The cluster/manifold-assumption IV

Define a regularization functional which penalizes functions which vary in
high-density regions.

〈f ,∆ f 〉 = 〈f , (D −W )f 〉 =
1

2

n∑
i ,j=1

wij(fi − fj)
2,

where D = diδij with di =
∑n

j=1 wij and the graph Laplacian is defined as
∆ = D −W .

For the ε-neighborhood graph one can show (Bousquet, Chapelle and
H.(2003), H.(2006)) under certain technical conditions that as ε→ 0 and
nεm →∞ ( m is dimension of the manifold).

lim
n→∞

1

nεm+2

n∑
i ,j=1

wij(fi − fj)
2 ∼

∫
M
‖∇f ‖2 p(x)2dx

Paul Swoboda (Lecture 17, 17.12.2018) Machine Learning 16 / 28



Regularized least squares

Transductive Learning via regularized least squares:
Zhu, Ghahramani, Lafferty (2002,2003):

argmin
f ∈Rn, fL=YL

n∑
i ,j∈T

wij(fi − fj)
2 .

Belkin and Niyogi (2003):

argmin
f ∈Rn

∑
i∈L

(yi − fi )
2 + λ

2

∑
i ,j∈T

wij(fi − fj)
2 .

Zhou, Bousquet, Lal, Weston and Schoelkopf (2003):

argmin
f ∈Rn

∑
i∈T

(yi − fi )
2 + λ

2

∑
i ,j∈T

wij

(
fi√
di
− fj√

dj

)2

,

where yi = 0 if i ∈ U.
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Regularized least squares

argmin
f ∈Rn

∑
i∈T

(yi − fi )
2 + λ

∑
i ,j∈T

wij

(
fi√
di
− fj√

dj

)2

,

where yi = 0 if i ∈ U. Note that

f T (1− D−1/2WD−1/2)f =
1

2

∑
i ,j∈T

wij

(
fi√
di
−

fj√
dj

)2

.

The solution f ∗ can be found as:

f ∗ =
(
1 + λ(1− D−1/2WD−1/2)

)−1
Y

or with S = D−1/2WD−1/2 and α = λ
1+λ (0 < α < 1),

f ∗ = 1
1+λ

[
1− λ

1+λS
]−1

Y = (1− α)[1− αS ]−1Y , .
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Label Propagation

Interpretation of the solution f ∗ in terms of label propagation:

f ∗ = (1− α)
[
1− αS

]−1
Y

One can show [1− αS ]−1 =
∑∞

r=0 α
rS r if |α| ‖S‖ < 1.

f ∗ = (1− α)
[
1− αS

]−1
Y =

∑∞
r=0 α

rS r∑∞
r=0 α

r Y

Solution f ∗ can be interpreted as the limit f ∗ = limt→∞ ft of the iterative
scheme ft , typically f0 = Y ,

ft+1 = αSft + (1− α)Y ⇒ ft+1 = αtS t f0 + (1− α)
∑t

r=0(αS)rY ,

where limt→∞ α
tS t f0 = 0.
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Random walks on a graph

Given a weighted, undirected graph with n vertices we define the matrix P,

P = D−1W ,

P is a stochastic matrix :

P is a n × n-matrix,

Pij ≥ 0, ∀ 1 ≤ i , j ≤ n,∑n
j=1 Pij = 1.

Interpretation:
Pij is the probability to go to vertex j when the current vertex is i .

Pij = P(Xt+1 = j |Xt = i).
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Random walks on a graph II

Probability measure pi (t) = P(Xt = i) on the graph at time t:∑n
i=1 pi (t) = 1. One step of the random walk:

P(Xt+1 = j) = pj(t+1) =
n∑

i=1

pi (t)Pij =
n∑

i=1

P(Xt+1 = j |Xt = i)P(Xt = i).

This is again a probability measure,

n∑
j=1

pj(t + 1) =
n∑

j=1

n∑
i=1

pi (t)Pij =
n∑

i=1

pi (t)
n∑

j=1

Pij

=
n∑

i=1

pi (t) = 1.

This is a Markov stochastic process since the probability to do the next
step just depends on the current probability measure on the graph and not
on previous states.
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Random walks on a graph III

Stationary distribution π: A probability distribution π is stationary if

πj =
n∑

i=1

πiPij .

Results:

For an undirected graph there exists a not necessarily unique
stationary distribution,

πi =
di
d
, where d =

n∑
i=1

di ,

and di =
∑n

j=1 wij (degree function).

For an undirected graph the random walk converges to the stationary
distribution if the graph is connected and non-bipartite. In this case
the stationary distribution is unique.
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Relation to random walks

The solution is given by

f ∗ = (1− α)
[
1− αS

]−1
Y =

∑∞
r=0 α

rS r∑∞
r=0 α

r Y

Using S = D−1/2WD−1/2 we get with the stochastic matrix P = D−1W ,

S = D1/2PD−1/2 and S r = D1/2P rD−1/2 .

Plugging the expression for S r into the equation for the solution f ,

f ∗ = D1/2
∑∞

r=0 α
rPr∑∞

r=0 α
r D−1/2Y
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Harmonic function

Semi-supervised learning as finding a harmonic function with boundary
conditions:

argmin
f ∈Rn, fL=YL

n∑
i ,j∈T

wij(fi − fj)
2 = 〈f ,∆f 〉 .

The solution can be found as:

fL = YL, ∆f = 0.

This leads to

fU = (DUU −WUU)−1WULYL = (1UU − PUU)−1PULYL.

where P = D−1W is the stochastic matrix of the random walk associated
to the undirected graph.
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Label Propagation

Interpretation of the solution in terms of a random walk:

fU = (DUU −WUU)−1WULYL = (1UU − PUU)−1PULYL.

We will use (1UU −PUU)−1 =
∑∞

s=0(Ps
UU). Then we get for a point i ∈ U,

(fU)i =
∑
k∈L

∑
j∈U

(1UU − PUU)−1ij (PUL)jk(YL)k

=
∑
k∈L

∑
j∈U

∞∑
s=0

(Ps
UU)ij(PUL)jk(YL)k

=
∑
k∈L+

∑
j∈U

∞∑
s=0

(Ps
UU)ij(PUL)jk −

∑
k∈L−

∑
j∈U

∞∑
s=0

(Ps
UU)ij(PUL)jk

= P(hits positive points | started in i)− P(hits negative points | started in i).
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Do you trust all your labels ?

Relaxed version of the approach of Belkin et al:

argmin
f ∈Rn

∑
i∈L

(yi − fi )
2 + λ

2

∑
i ,j∈T

wij(fi − fj)
2,

where λ > 0 is the regularization parameter.

Extremal equations with ∆ = D −W :

(1 + λ∆)f = Y , on the labeled points,

λ∆f = 0, on the unlabeled points.

With Yi = 0 if i-th point and (1L)ij =

{
1 if i = j and i is labeled,
0 if i is unlabeled.

,

(1L + λ∆)f = Y .
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Comments

All approaches can also be interpreted as kernel machines. Let ∆† be
the pseudo-inverse of the graph Laplacian. Then

K = ∆†,

is a (data-dependent) kernel on n points. Let fi =
∑n

j=1 αjk(xi , xj).
Then

f >∆f = α>KT∆Kα = α>Kα.

The structure of the graph influences significantly the result. For
high-dimensional data one can improve the performance by using
“Manifold Denoising” as a preprocessing method.
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Experiments

DemoSSL

Graph structure has large influence on result (mainly unexplored area
in machine learning),

Result “can” be pretty stable with respect to the location of the
labeled points,

If cluster assumption is not valid then SSL does not help (in the worst
case it yields even a worse performance).

for a few labeled points (say 10 times the number of classes) cross
validation works already pretty well.
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