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Unsupervised learning

Unsupervised Learning:
Given a set of input points (Xi )

n
i=1:

Clustering: Construction of a grouping of the points into sets of
similar points, the so called clusters.

Density Estimation: Estimation of the distribution of the input
points over the input space X . Related problem: Outlier detection.

Dimensionality Reduction: Construction of a mapping φ : X → Rm,
where the dimensionality m of the target space is usually much
smaller than that of the input space X . Generally, the mapping
should preserve properties of the input space X e.g. distances.
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Roadmap

Clustering

Goal of clustering,

k-means clustering (prototype-based clustering)

Spectral clustering (graph-based clustering),

Agglomerative and hierarchical clustering,

Density based clustering.

Clustering is one instance of unsupervised learning
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What is clustering ?

Clustering:
Construction of a grouping of the points into sets of similar points, the so
called clusters.

no generally accepted objective for clustering =⇒ without specifying
a suitable objective clustering is ill-defined,

clustering objective depends usually on application,

in clustering the modeling aspect is even more important than in
supervised learning =⇒ do not use a clustering method if you have
not understood what the objective implies !
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Prototype based clustering

K-means clustering

Goal: find prototypes µi , i = 1, . . . , k which represent the data in an
optimal way (what does that mean ?),

Objective: denote by Ci the i-th cluster (set of points) which is
represented by the prototype µi ,

argmin
(C1,µ1),...,(Ck ,µk )

k∑
i=1

∑
xj∈Ci

‖xj − µi‖2 ,

where ‖·‖ is the Euclidean norm,

True Goal:
1 finds sphere-like clusters in the data,
2 heavily influenced by outliers,
3 non-sphere like clusters are hard to fit.
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K-means II

K-means clustering:

k-means is combinatorial optimization problem,

simple iterative algorithm - converges fast but finds only local
minimum.

Lloyd’s algorithm for k-means clustering:

1 initialize centers µi ,

2 do classify all samples according to closest µi , i = 1, . . . , k

3 recompute µi as the mean of the points in cluster Ci for
i = 1, . . . , k

4 while no change in µi , i = 1, . . . , k,

5 return µ1, . . . , µk ,

Steps are optimal for fixed clusters resp. fixed centers
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K-Means III
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Problems of K-Means
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Middle: k is chosen too large.

Right: The two moons dataset - clusters are not of spherical shape.

J(k) = min
(C1,µ1),...,(Ck ,µk )

k∑
i=1

∑
xj∈Ci

‖xj − µi‖2 ,

=⇒ monotonically decreasing in k - not useful for choosing k !
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Spectral Clustering

Spectral Clustering:

an instance of graph-based clustering,

First attempts can be traced back to Donath and Hoffman and
Fiedler in 1973,

very popular clustering algorithm since it can find clusters of almost
arbitrary shape,

rich theoretical background.

=⇒ based on eigenvectors of the graph Laplacian.

In the following: we deal with weighted, undirected graphs G = (V ,W )
⇒ symmetric weight matrix wij = wji ,
⇒ degree of vertex i , d(i) =

∑n
j=1 wij , degree matrix Dij = diδij .

Paul Swoboda (Lecture 18, 18.12.2018) Machine Learning 9 / 27



Graph Laplacian - Definition

In the literature one can find three types of graph Laplacians:

unnormalized: (∆(u)f )(i) = d(i)f (i)−
n∑

j=1

wij f (j),

(∆(u)f )= (D −W )f ,

normalized: (∆(n)f )(i) = f (i)−
n∑

j=1

wij√
di dj

f (j),

(∆(n)f )= (1− D−1/2WD−1/2)f .

Caution: often no distinction in the literature - each of them is just called
graph Laplacian.
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Relation to the continuous Laplacian

The continuous Laplacian is a second-order differential operator,

∆f =
d∑

i=1

∂2f

∂x2i
.

It is invariant under rotations and translations (⇒ image processing).

Correspondence: For a grid in Rd the unnormalized graph Laplacian,
∆(u) = D −W , corresponds up to the sign to the finite difference
approximation of the continuous Laplacian.
For the real line with an equidistant discretization of size size h, we get,

d2f

dx2
≈ 1

h2

(
f (i+1)+f (i−1)−2f (i)

)
= −d(i)f (i)+

m∑
j=1

wij f (j) = −(∆(u)f )(i),

where in the grid each point connects to its nearest neighbors and the
weights are 1/h2 ⇒ degree of each grid point is 2/h2.
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Properties of the graph Laplacian

All graph Laplacians are positive semi-definite and self-adjoint,

〈f ,∆g〉HV
= 〈g ,∆f 〉HV

.

Associated regularization functionals (useful for SSL),

〈
f ,∆(u)f

〉
=

n∑
i ,j=1

wij(fi − fj)
2,

〈
f ,∆(n)f

〉
=

n∑
i ,j=1

wij

( fi√
di
−

fj√
dj

)2
.

The eigenvectors of ∆(u) and ∆(n) define an orthonormal basis on RV .
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Key property for Spectral Clustering

Algebraic connectivity of the graph:

Theorem (Fiedler)

The multiplicity of the first eigenvalue (the first eigenvalue is zero) of the
graph Laplacians is equivalent to the number of connected components of
the graph.

Let Ai , i = 1, . . . ,K be the connected components of the graph.
1j∈Ai

are eigenvectors of ∆(u) to the eigenvalue 0.√
dj1j∈Ai

are eigenvectors of ∆(n) to the eigenvalue 0.

Caution: there is no “first eigenvector” but we have an eigenspace to
the eigenvalue zero which has dimension K .

A graph which resolves into disconnected components is the ideal
clustering (already the graph reveals the cluster structure - no other
clustering method necessary).
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Spectral Clustering - Variant I

Chooose the graph Laplacian: unnormalized or normalized and the number
of clusters k .

compute the graph Laplacian,

compute the first k eigenvectors {ui}ki=1 (each eigenvector is
normalized, ‖ui‖2 = 1, i = 1, . . . , k),

Embedding φ : V → Rk , of the n vertices into Rk by
i → zi = (u1(i), . . . , uk(i)),

clustering of the resulting n points {zi}ni=1 by k-means into clusters
C1, . . . ,Ck .

The embedding: φ : V → Rk , i → φ(i) = (u1(i), . . . , uk(i)) is basically
the Laplacian eigenmap.
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Spectral Clustering - Variant I

Central Questions

Is the mapped data in the new space suited for k-means ?

Why should this yield a good clustering ?

Three different motivations for spectral clustering:

1 Relaxation of graph cuts,

2 Markov random walks,

3 Perturbation theory of the eigenvectors.
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Motivation I - Graph Cuts

Partitioning of weighted, undirected graphs
Define: Ci = V \Ci and vol(Ci ) =

∑
j∈Ci

dj and

cut(C ,D) =
∑

i∈C ,j∈D
wij .

Let (C1, . . . ,Ck) be a partition of V (∪ki=1Ci = V and Ci ∩ Cj = ∅, i 6= j)

Graph Cut Criteria:

MinCut: MinCut(C1, . . . ,Ck) =
∑k

i=1 cut(Ci ,Ci ).

RatioCut: RatioCut(C1, . . . ,Ck) =
∑k

i=1
cut(Ci ,Ci )
|Ci | .

NCut (normalized Cut): NCut(C1, . . . ,Ck) =
∑k

i=1
cut(Ci ,Ci )
vol(Ci )

.

Goal: find optimal (minimal) Min/Ratio/Normalized-cut among all
possible partitions.
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Motivation I - Graph Cuts II

Partitioning of weighted, undirected graphs

MinCut: yields often unbalanced partitions in particular single points
become clusters.

Ratio Cut and Normalized Cut are instances of balanced graph cut
criteria
=⇒ enforces balanced partitions (what does balanced mean ?)
=⇒ Ratio Cut prefers clusters of equal size,
=⇒ Normalized Cut prefers clusters of equal volume.

Problem: All balanced graph cut criteria are NP-hard.

Spectral clustering is a relaxation of ratio/normalized cut !
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Relaxation of Ratio Cut

Given a partition (C ,C ) (two clusters, k = 2) define f C : V → R,

f Ci =

{ √
|C |/|C | if i ∈ C ,

−
√
|C |/|C | if i ∈ C .

〈
f C ,∆(u)f C

〉
=

1

2

n∑
i,j=1

wij(f
C
i − f Cj )2 =

∑
i∈C ,j∈C

wij

(√
|C |
|C |

+

√
|C |
|C |

)2

=cut(C ,C )

(
|C |
|C |

+
|C |
|C |

+ 2

)
= cut(C ,C )

(
|C |+ |C |
|C |

+
|C |+ C

|C |

)
=|V |cut(C ,C )

( 1

|C |
+

1

C

)
= |V | RatioCut(C ,C )

n∑
i=1

f Ci =
∑
i∈C

√
|C |
|C |
−
∑
i∈C

√
|C |
|C |

= 0,
∥∥f C∥∥2

2
=

n∑
i=1

(f Ci )2 = |C | |C |
|C |

+ |C | |C |
|C |

= n.
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Relaxation of ratio cut II

With the specific form of the function f C the optimal ratio cut can be
written as:

min
C⊂V

{〈
f C ,∆(u)f C

〉
|
〈
f C ,1

〉
= 0,

∥∥∥f C∥∥∥ =
√
n
}
.

This is a discrete combinatorial optimization problem and is NP-hard
⇒ relax problem by allowing f to take arbitrary real values.

min
f ∈RV

{〈
f ,∆(u)f

〉
| 〈f ,1〉 = 0, ‖f ‖ =

√
n
}
.

Rayleigh-Ritz principle ⇒ If graph is connected, minimum is the
second eigenvalue λ2 and the minimizer is the second eigenvector u2
of ∆(u) = D −W .
Partitioning using optimal threshold t

Ct = {j ∈ V | u2(j) > t},

by optimizing the Ratio-Cut or alternatively k-means in the
embedding.
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Relaxation of normalized cut

Given a partition (C ,C ) define the function,

f Ci =

{ √
vol(C )/ vol(C ), i ∈ C ,

−
√
vol(C )/ vol(C ), i ∈ C .

〈
f C ,∆(u)f C

〉
= vol(V ) NCut(C ,C ),

〈
f C ,Df C

〉
= vol(V ) = n,

〈
1,Df C

〉
= 0.

The optimal normalized cut:

min
C⊂V

{〈
f C ,∆(u)f C

〉
|
〈
Df C ,1

〉
= 0,

〈
f C ,Df C

〉
= n

}
.

Relaxation of the normalized cut:

min
f∈RV

{〈
f ,∆(u)f

〉
| 〈Df ,1〉 = 0, 〈f ,Df 〉 = n

}
.

⇒ generalized eigenproblem ∆(u)f = λDf .
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The general case for the ratio cut

Given a partition (C1, . . . ,Ck) define the functions hi ,

hi (j) =

{
1√
|Ci |

j ∈ Ci ,

0 j ∈ Ci .

General ratio cut:

min
C1,...,Ck

{ Tr(H∆(u)HT ) | HHT = 1k , }

The minimizer of the relaxation to arbitrary H = {h1, . . . , hk}, that is
H ∈ Rk×n, yields the smallest k eigenvectors {ui}ki=1 of the
unnormalized graph Laplacian ∆(u). The minimum is the sum of the
k-smallest eigenvalues of ∆(u).

The conversion of H = {u1, . . . , uk} into a partition (C1, . . . ,Ck) can
be done by k-means clustering of the rows of H ⇒ no approximation
guarantees
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Theoretical results for k = 2

Let φ∗ = minC RCut(C ,C ) and denote by φSPECTRAL the cut
obtained by optimal thresholding of the second eigenvector. It holds

φ∗ ≤ φSPECTRAL ≤ 2
√

max
i

di
√
φ∗

There exist graphs which get close to upper bound.

Better worst case guarantees for normalized/ratio cut for relaxation
into a semi-definite program (Arora et al (2004)).

Minimization of nonconvex relaxations based on nonlinear
eigenproblems (H., Bühler, 2010, H., Setzer, 2011) yields much better
cuts than standard spectral clustering in practice

Conclusion: The graph cuts picture is only a part of the story of spectral
clustering.
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Spectral Clustering - Variant II

Spectral Clustering - Variant II (recursive bipartitioning)
Chooose graph Laplacian and the number of clusters k.

initialize: current paritition V .

do build on each element of the current partition the graph Laplacian,

1 compute the second eigenvector on each partition,
2 compute the optimal threshold for dividing each partition,
3 choose the cut which minimizes the total balanced cut criterion.

while number of elements in the partition is less than k

Discussion:

Advantage: uses original criterion to split - no k-means,

Disadvantage: the embedding integrates global information about
the data =⇒ problem if first split is not optimal.
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Motivation II - Markov random walks on graphs

Markov random walk for an undirected, weighted graph:
stochastic matrix: P = D−1W .
stationary distribution: πi = di

vol(V ) .

Proposition (Meila, Shi)

Let G be connected. Let X0 ∼ π be the random walk started in the
stationary distribution and C be a subset of V . Then the normalized cut
can be written as

NCut(C ,C ) =
[
P(X1 ∈ C | X0 ∈ C ) + P(X1 ∈ C | X0 ∈ C )

]
.

Interpretation:
=⇒ find a partitioning such that the random walk stays as long as possible
in each cluster.
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Motivation III - Perturbation theory

Perfect clusters = disconnected graph

multiplicity of the eigenvalue, λ = 0, of the graph Laplacians is equal
to the number K of connected components of the graph.

the K eigenvectors for λ = 0 are constant on the connected
component and zero elsewhere.

Perturbation of the weight matrix - make the graph connected

W̃ = W + edges such that graph is connected.

only small change for the weight matrix,
=⇒ first K eigenvalues should still be very small, =⇒ first K
eigenvectors should be only very little perturbed

each cluster is mapped to a single point (in the embedding).

=⇒ rigorous statements using perturbation theory of symmetric matrices.
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Practical issues

DemoSpectralClustering:
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Practical issues II

For sparse graphs (k-NN graphs) the first few eigenvectors can be
efficiently computed using the power or Lanczos method ⇒
spectral clustering can be done for millions of points.

Spectral Clustering used for image segmentation (Shi and Malik),

Check the spectrum of the graph Laplacian. Never cut the spectrum
where two eigenvalues are close. Always cut at a gap. This can also
be formally justified by the stability of eigenvectors and eigenvalues
under perturbations.

Spectral clustering is quite stable against high-dimensional noise.

Use the normalized graph Laplacian.
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