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1. Introduction and Problem Description

We address the problem of single person pose estimation from 2D images. Our method is based on the
paper "Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation"
Tompson et al. [2014]. A part detector (a Convolutional Neural Network) is used to generate likelihood
map or suggestions regarding the positions of body parts. Afterwards, these suggestions are refined by
the use of a spatial model (which is implemented as a subnetwork inspired by a Markov random field) to
enforce kinematic constraints between body parts. The main contribution of Tompson et al. [2014] is
that the part detector and the spatial model can be trained jointly.
We performed all experiments on Frames Labeled In Cinema (FLIC) dataset introduced in Sapp and
Taskar [2013], which consists of 3987 training images, 1016 testing images of 720x480 resolution. Each
image was annotated with the coordinates of the following joints: left/right wrist, left/right elbow,
left/right shoulder, left/right hip, left/right eye, and nose. In our experiments, we used all joints except
left/right eyes, since we were not interested in such precise localization, and decided that the position of
a nose is enough.
Our own contribution goes as follows:

1. We reproduced the results of Tompson et al. [2014], considerably improving the part detector
(without changing its architecture).

2. We show how to train the model jointly from the beginning, opposed to the proposed 3-staged
approach to train the part detector and the spatial model separately and only then do joint training.

3. We show how to train the joint model much faster: 10 hours instead of 60 hours described in
Tompson et al. [2014].

4. Unlike Tompson et al. [2014], we explain and show what kind of spatial relations the spatial model
has learned.

2. Approach

Architecture of the Part Detector

The authors proposed to use a Convolutional Neural Network (CNN) for a detector of joints positions.
They describe a series of architectures, but we will focus only on the last one, which was implemented
used in the paper (see Fig. 1).

Figure 1: CNN architecture. Source: Tompson et al. [2014].

First of all, they propose a fully-convolutional approach. As input they use multiple images of different
resolutions that aim to capture the spatial context of a different size. These images are processed by a
series of 5x5 convolutional and max pooling layers. Then the feature maps from different resolutions are
added up, followed by 2 large 9x9 convolutions. The final layer with 90x60xK feature maps (where K is
the number of joints) is our predicted heat maps. We use then softmax and cross-entropy loss on top of
them together with the ground truth heat maps, which we form by placing a small 3x3 binomial kernel
on the actual joint position.
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Note, that the input resolution 320x240 is not justified at all in the paper, and it is not clear how one
can arrive at 98x68 or 90x60 feature maps after 2 max pooling layers. We consider this as a mistake,
and instead use what makes more sense to us: processing of the full resolution 720x480 images, but the
first convolution is applied with stride=2, making all dimensions of feature maps comparable in size with
what proposed in the paper.
The described part detector already gives good results (see first two images on Fig. 2), however, there
are also some mistakes that potentially can be ruled out by applying a spatial model. For example, in
the third image of Fig. 2 there are many false detections of hips (pink color), which clearly do not meet
kinematic constraints w.r.t. nose and shoulders that are often detected with very high accuracy.

Figure 2: The examples from our part detector (without spatial model). We will use the following color scheme
throughout the report: red - nose, green - shoulders, blue - elbows, yellow - wrists, pink - hips.

Architecture of the Spatial Model

So our goal is to get rid of such false positives that clearly do not meet kinematic constraints. Traditionally,
for such purposes a probabilistic graphical model was used. One of the most popular choices is tree-
structured graphical models (Andriluka et al. [2009], Pishchulin et al. [2013b], Pishchulin et al. [2013a]).
The inference is exact in these models and also efficient due to gaussian pairwise priors which are most
often used. Some approaches combined exact inference with a hierarchical structure of a graphical
model (Tian et al. [2012]). Another approaches relied on approximate inference with a loopy graphical
model (Lan and Huttenlocher [2005], Karlinsky and Ullman [2012]), that allowed establishing connections
between symmetrical parts.
An important novelty of Tompson et al. [2014] is that the spatial model can be modeled as a fully
connected graphical model with parameters that can be trained jointly with the part detector. Thus the
graphical model can be learned from the data, and there is no need to design it for a specific task and
dataset, which is a clear advantage. They propose to calculate the marginal likelihood of joint location
p̄A as:

p̄A = 1
Z

∏
v∈V

(pA|v ∗ pv + bv→A)

where pv is the likelihood map obtained by the part detector, pA|v is the conditional prior that is learned
with backpropagation, V is the set of all joints except A, bv→A is a bias or background probability for the
message v → A, Z is the partition function, and * denotes convolution. The authors claim that it can be
seen as a single round of sum-product belief propagation in a loopy fully-connected graphical model. So
this approach provides only an approximate inference in a graphical model, however, the authors claim
that it is still sufficiently accurate in order to capture the main kinematic constraints of the human body.
The final expression includes energies instead of probabilities and they evaluate it in the log-space because
it considerably simplifies taking derivatives w.r.t. parameters:

p̄A = 1
Z
exp

(∑
v∈V

log
(
s(eA|v) ∗ s(ev) + s(bv→A)

))

where ev is the likelihood energy obtained by the part detector, eA|v is the conditional energy parameter
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matrix between two joints (learned with backpropagation), and s(x) = 1
β log(1 + exp(βx) (we used β = 5).

Note that authors use ReLU instead of second softplus, but do not motivate their choice. We found that
using softplus everywhere leads to a similar performance, especially given that softplus can be seen as a
differentiable approximation of ReLU, so we decided to keep it consistent and use softplus everywhere.
Its main goal is to maintain energies strictly positive, which softplus does. Also note that the partition
function Z is skipped in the paper. However, we evaluate it, since cross-entropy loss is well-motivated
only if we have probabilities. So the final objective of the spatial model is to minimize cross-entropy loss
between marginal probabilities of joints and target heat maps.
On Fig. 3 we can see a few examples of how our spatial model trained jointly with the part detector
performs compared to the part detector only.

Figure 3: Left column: part detector. Right column: part detector and spatial model.

On the 1st example we can see that there is a detection of hip of backward facing person. However, this
hip does not have any other body parts in its vicinity, so it is ruled out by the spatial model. On the 2nd
example there are a few joint detections of the person standing on the right, and also a minor detection
of a wrist on the left (small yellow cloud). All of them are ruled out by the spatial model. Note, that
there are still some mistakes, but rigorous model evaluation in Section 3 reveals that we indeed get a
significant improvement by applying the spatial model.

Our Improvements

1. We train the model 6 times faster by using Batch Normalization (Ioffe and Szegedy [2015]), inserted
after each activation function (as recommended by Mishkin et al. [2017]), and cross-entropy loss
instead of the squared loss. Apart from faster training we also achieved better test loss and test
detection rate.

2. We use an auxiliary classifier on heat maps generated by the part detector. This approach is inspired
by Girshick [2015] and Wei et al. [2016]. The idea is to make both the part detector and the spatial
model to output reasonable heat maps, not only the spatial model. We found this to improve the
results.

3. We used Adam from Kingma and Ba [2014] in order to perform joint training for both part detector
and spatial model with a single set of optimizer’s hyperparameters. We tried to use SGD with
Momentum as suggested in Tompson et al. [2014], but the spatial model requires completely different
learning rate and potentially different momentum coefficient. Thus we decided to stick to Adam,
which is known to work very well for different functions with the default parameters. Finally, we
trained the joint model for 60 epochs with the initial learning rate divided by 2, 5, and 10 after

3



70%, 80%, and 90% epochs.
4. As was mentioned above, we use the whole input images without any special preprocessing. Since

the initial image resolution (720x480) is quite big, we apply the first convolution with stride 2. In
this way we don’t discard any information from the dataset (as opposed to 320x240 crop mentioned
in the diagram of the CNN, but not explained further in the text).

5. We use more advanced data augmentation scheme including horizontal mirroring (with probability
50%), random change of contrast and brightness, random rotation (from -10◦ to +10◦), and random
cropping.

6. We applied the weight decay only to convolutional filters in the part detector, but not to the spatial
model. Because we observed that the highest absolute values of pairwise potentials and biases are
quite moderate, and biasing the potentials towards zero is not well motivated.

7. We excluded self-connections like face→face from the spatial model, which did not make much sense
to use and which did not contribute to the final performance.

Combining all details mentioned above we improved the final results compared to Tompson et al. [2014].
We also did not observe any benefit in terms of the test detection rate using three-staged training
procedure described in the paper. Thus we adopt joint end-to-end training of both the part detector and
the spatial model from the very beginning. All results shown in Section 3 correspond to this approach.
Finally, we provide more examples of our model’s joint detections in the appendix (see Fig. 8 and Fig. 9).

Reproducibility Challenge

The paper Tompson et al. [2014] was extremely hard to reproduce. Here are a few reasons why:

• The original code of the model was not published.
• The hyperparameters and random initialization scheme are not mentioned. Since originally they

had 3 stages of training, we assume that such procedure may need 3 sets of hyperparameters. Most
importantly, we were curious about the learning rates and the number of epochs to train the models
on each stage.

• We had to adopt the multi-scale evaluation procedure from Jain et al. [2013]. This alone gives
around +6% detection rate for wrists. We are quite sure that it was used in Tompson et al. [2014],
however there are no mentions of this procedure. Without this we could not match the performance
of their part detector.

• Jain et al. [2013] also mentions quite complicated preprocessing of FLIC training images, which
includes manual annotation of the bounding box of the head, and which aims to crop the images in
a way that all humans are on the same scale. We tried to apply a procedure similar to this, but it
did not lead to successful results. We still think that there was some preprocessing step that could
potentially lead to even better results than in our implementation.

• For evaluation and training they flipped left and right joints of backward facing people. We found
this only by inspecting their evaluation code available at https://cims.nyu.edu/~tompson/data/
flic_lsp_predictions.zip.

• They do not show the detection rate for all joints, but only for wrist and elbow. They chose to
show left wrist/elbow, simply because they give better results than right wrist/elbow, and they did
not mention this. However, we observed quite a significant gap between left and right wrists with
single-scale evaluation scheme. However, with multi-scale evaluation, the difference is minor.

This explains why we could not find any implementation of this paper on the internet. Therefore
our TensorFlow implementation https://github.com/max-andr/joint-cnn-mrf is the first one, which
hopefully can be useful for some research or didactic purposes.
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3. Results

Evaluation

We used the same evaluation metric as Tompson et al. [2014], which was first proposed in Sapp and
Taskar [2013]:

acci(r) = 100
N
·
N∑
t=1

1
(

100 · ||yt′i − yti ||2
||ytlhip − ytrsho||2

)
where i is the particular joint, r is the detection radius, N is the test size, yt′i is the predicted coordinates
of the joint i of the test example t, yti is the true coordinates of the joint i of the test example t. We will
refer to this metric as detection rate or simply accuracy. Its main idea is to measure the joint localization
inside some radius expressed in pixels normalized by the torso size.
The evaluation of our model is presented on Fig. 4 and the results from the original paper are on Fig. 5.

Figure 4: The accuracy of our model without (left) and with spatial model (right).

Figure 5: The accuracy of the original model. Note, that they did not provide results for hips in their files.
Source: Tompson et al. [2014], https://cims.nyu.edu/~tompson/data/flic_lsp_predictions.zip.

Let’s consider radius of 10 normalized pixels for the analysis. We can observe that our part detector gives
+6% accuracy for the left wrist (Fig. 4, plot 1) compared to the original part detector (Fig. 5, plot 1).
After applying the spatial model, our model (Fig. 4, plot 2) has the same accuracy for the left wrist
and left shoulder (compared to Fig. 5, plot 2). However, our model has 3% better accuracy for
left elbow and for the nose.
Interestingly, if we consider the accuracy with low radius, our model has much better accuracy for the
nose, while the original model has much better accuracy for left shoulder. In our opinion, the choice of
the loss function and the way one models probabilities (element-wise sigmoid or softmax over a heat map)
has the crucial role here.
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Analysis of Spatial Model

We note that the original paper completely skipped the part what their spatial model actually learned.
However, the most interesting question is what kind of parameters for pairwise potentials were learned
with backpropagation. We show them on Fig. 6. Please, note that we show pre-softplus values, but after
softplus values are obviously similar except negative values.

initial enose|torso enose|torso after 60 epochs btorso→nose after 60 epochs

initial ersho|torso ersho|torso after 60 epochs btorso→rsho after 60 epochs

initial erelb|torso erelb|torso after 60 epochs btorso→relb after 60 epochs

Figure 6: Visualization of parameters corresponding to potentials learned in our spatial model. First col.:
initialized parameters based on empirical histogram of joint displacements. Second col.: parameters after 60

epochs. Third col.: pairwise biases after 60 epochs.
White color denotes high values of parameteres, and dark denotes low values.

We show only potentials of joints conditioned on the torso (Fig. 6) because this leads to more distinct
patterns. In contrast, elhip|rwri has almost uniform distribution, which means that this connection in a
graphical model is redundant.
We can notice that for nose and right shoulder we have a much more concentrated picture than for right
elbow since there is less ambiguity on where this part can appear relative to the center of the torso. Also
note the circular patterns, especially on erelb|torso, which are there because of the usage of rotated images
(from -10◦ to 10◦) in data augmentation. We can also observe that during training all pairwise parameters
have changed a lot comparing to the initialization (first column). The borders have grey frames because
these values were not actually trained since border values represent energies for very high displacements
of locations between two joints, which are not encountered in the training dataset. So they stayed zeros
as they were initialized in the beginning.
The interpretation of bias terms is rather unclear. Authors claim that their purpose is to correct false
negatives produced by the part detector. We cannot confirm this idea by observing from Fig. 6.

4. Conclusions

The approach proposed in this paper is conceptually interesting since it allows to perform a joint training
of a convolutional neural network and a graphical model, which is implemented as a separate subnetwork
that uses the output of the CNN. We further simplified the proposed training procedure to a single stage
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of joint training and showed how to make the training 6 times faster. However, the graphical model in
the paper has one disadvantage: it is not scale-invariant, which explains a strong need for multi-scale
evaluation.
This approach has led to the state-of-the-art performance as for 2014. Although the most important
advance of the paper is actually the part detector that operates on images of different resolution, which is
even without the graphical model part achieved state-of-the-art results. The graphical model part has
obviously increased the margin even further.
However, it seems that very recent advances in CNNs allow to completely skip a graphical model part of
the pipeline in human pose estimation task. In other words, CNN itself can learn the main kinematic
constraints, given that it has big enough receptive field and enough data. Wei et al. [2016] shows the
importance of the receptive field size (see Fig. 7) and significantly outperforms the results of Tompson
et al. [2014] without any graphical model.

Figure 7: Importance of receptive field size. Source: Wei et al. [2016]

This also means that using novel CNN architectures like VGG (Simonyan and Zisserman [2014]) or
ResNets (He et al. [2016]) as a part detector can improve the performance considerably (e.g. see the
results of Pishchulin et al. [2016], Insafutdinov et al. [2016], but note that their GraphCut approach leads
to significant improvements only for a multi-person pose estimation task). This can be explained by the
huge receptive fields of these extremely deep networks, so they do not even require a graphical model on
top of them since they already can learn relations between the body parts. However, graphical models
seem to play an important role in other tasks, especially when the training data is scarce.
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Appendix

Here are more examples of our final model (Fig. 8) without any hand selection. Note, that softmax may
be not very suitable for multi-person human pose estimation as was mentioned in Pishchulin et al. [2016],
because in that case, we may need to assign very high probabilities (≈ 1) to the same joints of different
people. However, in FLIC dataset only one person is annotated on each image, so for this particular
dataset softmax is a reasonable choice.

Figure 8: More examples from our model (part detector + spatial model together)



And also we show in Fig. 9 how the model improves its performance over training (3, 20, 40 and 60
epochs respectively). Note, that even after 3 iterations nose and shoulders are almost perfectly localized,
which reveals the fact that not all joints are equally hard to detect.

Joints detection after 3 epochs Joints detection after 20 epochs

Joints detection after 40 epochs Joints detection after 60 epochs

Figure 9: Improvement of our model over training (part detector + spatial model together)
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