Probabilistic Graphical Models and Their Applications

Bjoern Andres and Bernt Schiele

Max Planck Institute for Informatics

slides adapted from Peter Gehler

January 4, 2017
Today's topics

- Sampling
 - Barber Sections 27.1, 27.2, 27.3, 27.4
What to infer?

- **Mean**
 \[
 \mathbb{E}_{p(x)}[x] = \sum_{x \in \mathcal{X}} xp(x)
 \]

- **Mode (most likely state)**
 \[
 x^* = \arg\max_{x \in \mathcal{X}} p(x)
 \]

- **Conditional Distributions**
 \[
 p(x_i, x_j \mid x_k, x_l) \quad \text{or} \quad p(x_i \mid x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)
 \]

- **Max-Marginals**
 \[
 x^*_i = \arg\max_{x_i \in \mathcal{X}_i} p(x_i) = \arg\max_{x_i \in \mathcal{X}_i} \sum_{j \neq i} p(x_1, \ldots, x_n)
 \]
Inference in General Graphs – Approximate Inference
Approximate Inference?

- Approximate Inference comes into play whenever exact inference is not tractable.
 - E.g. the model is not tree structured
- What would we like to approximate?
 - E.g. posterior distribution \(p(z \mid x) \)
 - Expectations
 - continuous: integrals may be intractable
 - discrete: sum over exponentially many states \(\Rightarrow \) infeasible
- Conceptually there are two approaches
 - Deterministic Approximation
 - Numerical Sampling (e.g. Markov Chain Monte Carlo)
Two approaches

1. Deterministic Approximation
 - Approximate the quantity of interest
 - Solve the approximation analytically
 - Results depends on the quality of the approximation

2. Numerical Sampling
 - Take the quantity of interest
 - Use random samples to approximate it
 - Results depends on the quality and amount of random samples

- The correct answer to the wrong question, or
 the wrong answer to the correct question?
- Only sampling allows to get the *golden standard*
Different methods

- For trees: one algorithm only (efficient)
- In general graphs: difficult, therefore many algorithms have been proposed
- **Sampling**
 - Markov Chain Monte Carlo
 - Gibbs Sampling
 - ...
- **Deterministic Approximate Inference**
 - Variational Bounds
 - Loopy Belief Propagation
 - Mean field
 - Junction Tree
 - Expectation Propagation
Approximate Inference: Sampling
Motivation: Sampling

- Draw random samples from some distribution $p(x)$
 - discrete or continuous
 - univariate or multi-variate
- For example Gaussian, Poisson, Uniform, Dirichlet, ...
 - All of the above already available in Matlab
- More general: what about sampling from some joint distribution $p(x)$
 - e.g. defined by a graphical model?
 - e.g. a distribution over body parts, we want to find likely body poses
 - e.g. a distribution over images, we want to look at likely images.
Example: Expectation

We want to evaluate

\[\mathbb{E}[f] = \int f(x)p(x) \, dx \quad \text{or} \quad \mathbb{E}[f] = \sum_{x \in \mathcal{X}} f(x)p(x) \]

Sampling idea:

- draw \(L \) independent samples \(x^1, x^2, \ldots, x^L \) from \(p(\cdot) \): \(x^l \sim p(\cdot) \)
- replace the integral/sum with the finite set of samples

\[\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(x^l) \]

as long as \(x^l \sim p(\cdot) \) then

\[\mathbb{E}[\hat{f}] = \mathbb{E}[f] \]
So how to sample? A Simple case
Just to get an idea of what’s going on
Pre-Requisite

- Assume we can draw a value uniformly at random from the unit interval $[0, 1]$
- How? Pseudo-Random number generators
Univariate Sampling – discrete example

- Target distribution with $K = 3$ states

$$p(x) = \begin{cases}
0.6 & x = 1 \\
0.1 & x = 2 \\
0.3 & x = 3
\end{cases}$$

(1)
Slightly more formal:

- Consider we want to sample from a univariate discrete distribution p
 - one-dimensional
 - K states
- So we have $p(x = k) = p_k$
- Calculate the cumulant
 \[c_i = \sum_{j \leq i} p_j \]
 \[(2) \]
- Draw $u \sim [0, 1]$
- Find that i for which $c_{i-1} < u \leq c_i$
- Return state i as sample from p
Extension to continuous variable is clear

- Compute the cumulant

\[C(y) = \int_{-\infty}^{y} p(x) \, dx \] \hspace{1cm} (3)

- Then sample \(u \sim [0, 1] \)
- Compute \(x = C^{-1}(u) \)
- So sampling is possible if we can compute the integral
 - e.g. Gaussian distribution
Univariate Sampling Example: Gaussian

- 1-dimensional Gaussian pdf (probability density function) \(p(x|\mu, \sigma^2) \) and the corresponding cumulative distribution:

\[
F_{\mu,\sigma^2}(x) = \int_{-\infty}^{x} p(z|\mu, \sigma^2) dz
\]

- to draw a sample from a Gaussian, we invert the cumulative distribution function

\[
u \sim \text{uniform}(0, 1) \Rightarrow x = F_{\mu,\sigma^2}^{-1}(u) \sim p(x|\mu, \sigma^2)
\]
Univariate Sampling

- assume pdf (probability density function) $p(x)$ and the corresponding cumulative distribution:

$$F(x) = \int_{-\infty}^{x} p(z) \, dz$$

- to draw a sample from this pdf, we invert the cumulative distribution function

$$u \sim \text{uniform}(0, 1) \Rightarrow x = F^{-1}(u) \sim p(x)$$

![Graph showing the cumulative distribution function $F(x)$ and the probability density function $p(x)$ with a uniform distribution u.]
Overview: Sampling Methods

- Rejection Sampling
- Ancestral Sampling
- Importance Sampling
- Gibbs Sampling
- Markov Chain Monte Carlo methods
- Metropolis-Hastings
- Hybrid Monte Carlo

- Do I need to know them all?
- Yes! Sampling is an “art”, most efficient technique depends on model structure
Rejection Sampling
Rejection Sampling

- Suppose we want to sample from \(p(x) \) (but that is difficult)
- Furthermore assume we can evaluate \(p(x) \) up to a constant (think of Markov Networks)

\[
p(x) = \frac{1}{Z} \tilde{p}(x) = \frac{1}{Z} \prod_c \phi_c(x_c) \tag{4}
\]

- Instead sample from a proposal distribution \(q(x) \)
- Choose \(q \) such that we can easily sample and a \(k \) exists such that

\[
kq(x) \geq \tilde{p}(x) \quad \forall x \tag{5}
\]
Rejection Sampling

- Sample two random variables:
 1. $z_0 \sim q(x)$
 2. $u_0 \sim [0, kq(z_0)]$ uniform
- reject sample z_0 if $u_0 > \tilde{p}(z_0)$
Probability of acceptance

- Sample z drawn from q and accepted with probability $\tilde{p}(z)/kq(z)$
- So (overall) acceptance probability

$$p(\text{accept}) = \int \frac{\tilde{p}(z)}{kq(z)} q(z) dz = \frac{1}{k} \int \tilde{p}(z) dz$$ \hfill (6)

- So the lower k: the better (more acceptance)
 - subject to constraint $kq(z) \geq \tilde{p}(z)$
Efficiency of Rejection Sampling: Example

- Depends on k
- If $q(x) = p(x)$ and $k = 1$ then $p(\text{accept}) = 1$
- But $k > 1$ is typical
- For the easiest case of factorizing distribution $p(x) = \prod_{i=1}^{D} p(x_i)$ we have

$$p(\text{accept} \mid x) = \prod_{i=1}^{D} p(\text{accept} \mid x_i) = O(\gamma^D) \quad (7)$$

where $0 \leq \gamma \leq 1$ typical value for $p(\text{accept} \mid x_i)$
- Thus rejection sampling is usually impractical in high dimensions
Efficiency of Rejection Sampling

Example:

- assume $p(x)$ is Gaussian with covariance matrix: $\sigma_p^2 I$
- assume $q(x)$ is Gaussian with covariance matrix: $\sigma_q^2 I$
- clearly: $\sigma_q^2 \geq \sigma_p^2$
- in D dimensions: $k = \left(\frac{\sigma_q}{\sigma_p} \right)^D$

assume:

- σ_q is 1% larger than σ_p, $D = 1000$
- then $k = 1.01^{1000} \geq 20000$
- and $p(\text{accept}) \leq \frac{1}{20000}$

therefore: often impractical to find good proposal distribution $q(x)$ for high dimensions
Multivariate Sampling

- Multivariate: more than one dimension
- Idea: translate multivariate case into a univariate case:
 - Enumerate all joint states \((x_1, x_2, \ldots, x_n)\) (assume discrete), i.e. give them each a unique \(i\) from 1 to the total (exponential) number of states
- Now we have to sample from univariate distributions again
- Problem: Exponential growth of states (with \(n\))
Multivariate Sampling

- Another idea, use Bayes rule
 \[p(x_1, x_2) = p(x_2 \mid x_1)p(x_1) \] \hspace{1cm} (8)
- Now first sample \(x_1 \), then \(x_2 \) both of which are univariate
- Now we have a one dimensional distribution again
- Problem: Need to know the conditional distributions
Ancestral Sampling
Ancestral Sampling

- For Belief Networks (remember)
 \[p(x) = \prod_i p(x_i | \text{pa}(x_i)) \]
- So the sampling algorithm should be clear
 \[p(a, t, e, x, l, s, b, d) = p(a)p(s)p(t|a)p(l|s)p(b|s)p(e|t, l)p(x|e)p(d|e, b) \]
- **Forward sampling**: from parents to children
- sampling from each distribution \((p(a), p(t | a), \ldots)\)
 may be (in itself / as a subproblem) difficult
Perfect Sampling

- Each instance drawn using forward sampling is independent!
- This is called perfect sampling
- In contrast to MCMC methods, where samples are dependent
- Remark: there is also a perfect sampling technique for MCMC, but that is applicable only to some special cases [Propp & Wilson, 1996]
Problem of Ancestral Sampling

- **Problem: Evidence!**
 - when a subset of the variables is observed
- **Example**, we have the following distribution
 \[p(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3 \mid x_1, x_2) \]
- and have observed \(x_3 \).
- We want to sample from
 \[p(x_1, x_2, \mid x_3) = \frac{p(x_1)p(x_2)p(x_3 \mid x_1, x_2)}{\sum_{x_1, x_2} p(x_1)p(x_2)p(x_3 \mid x_1, x_2)} \] (9)

- Observing \(x_3 \) makes \(x_1, x_2 \) dependent
- Sample and discard inconsistent ones (in-efficient)
Importance Sampling
Approximate Inference – Sampling

Importance Sampling

Approach:

- approximate expectation directly
 (but does not enable to draw samples from $p(z)$ directly)
- setting: $p(z)$ can be evaluated (up to a normalization constant)
- goal:

 \[
 \mathbb{E}[f] = \int f(z)p(z)dz
 \]

Naïve method: grid-sampling

- discretize z-space into a uniform grid
- evaluate the integrand as a sum of the form:

 \[
 \mathbb{E}[f] \simeq \sum_{l=1}^{L} f(z^l)p(z^l)
 \]

- but: number of terms grows exponentially with number of dimensions
Importance Sampling

Idea:

- use a proposal distribution $q(z)$ from which it is easy to draw samples
- express expectation in the form of a finite sum over samples $\{z^l\}$ drawn from $q(z)$:

$$
\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz
\approx \frac{1}{L}\sum_{l=1}^{L} \frac{p(z^l)}{q(z^l)} f(z^l)
$$

- with importance weights: $r^l = \frac{p(z^l)}{q(z^l)}$
Importance Sampling

Typical setting:

- $p(z)$ can be only evaluated up to a normalization constant (unknown):
 $$p(z) = \frac{\tilde{p}(z)}{Z_p}$$
- $q(z)$ can be also treated in a similar way:
 $$q(z) = \frac{\tilde{q}(z)}{Z_q}$$
- then:
 $$\mathbb{E}[f] = \int f(z)p(z)dz = \frac{Z_q}{Z_p} \int f(z) \frac{\tilde{p}(z)}{\tilde{q}(z)} q(z)dz$$
 $$\approx \frac{Z_q}{Z_p} \frac{1}{L} \sum_{l=1}^{L} \tilde{r}^l f(z^l)$$
 with: $$\tilde{r}^l = \frac{\tilde{p}(z^l)}{\tilde{q}(z^l)}$$
Importance Sampling

Ratio of normalization constants can be evaluated:

\[
\frac{Z_p}{Z_q} = \frac{1}{Z_q} \int \tilde{p}(z)dz = \int \frac{\tilde{p}(z)}{\tilde{q}(z)} q(z)dz \approx \frac{1}{L} \sum_{l=1}^{L} \tilde{r}^l
\]

verbs

\[\mathbb{E}[f] \approx \frac{Z_q}{Z_p} \frac{1}{L} \sum_{l=1}^{L} \tilde{r}^l f(z^l) = \sum_{l=1}^{L} w^l f(z^l) \]

verbs

\[w^l = \frac{\tilde{r}^l}{\sum_m \tilde{r}^m} = \frac{\tilde{p}(z^l)}{\tilde{q}(z^l)} \frac{\tilde{p}(z^l)}{\tilde{q}(z^l)} \]

verbs
Importance Sampling

Observations:

- success of importance sampling depends crucially on how well the sampling distribution $q(z)$ matches the desired distribution $p(z)$
- often, $p(z)f(z)$ is strongly varying and has significant proportion of its mass concentrated over small regions of z-space
- as a result weights \tilde{r}^l may be dominated by a few weights having large values
- practical issues: if none of the samples falls in the regions where $p(z)f(z)$ are large . . .
 - the results may be arbitrarily wrong
 - and no diagnostic indication!
 (because there is no large variance in \tilde{r}^l then)
Gibbs Sampling
Gibbs Sampling

- Sample from this distribution $p(x)$
- Idea: Sample sequence x^0, x^1, x^2, \ldots by updating one variable at a time
- Eg. update x_4 by conditioning on the set of shaded variables Markov blanket

$$p(x_4 \mid x_1, x_2, x_3, x_5, x_6) = p(x_4 \mid x_3, x_5, x_6)$$
Gibbs Sampling: General Recipe

- Update x_i

$$p(x_i \mid x\backslash_i) = \frac{1}{Z} p(x_i \mid pa(x_i)) \prod_{j \in \text{ch}(i)} p(x_j \mid pa(x_j)) \quad (10)$$

- and the normalisation constant is

$$Z = \sum_{x_i} p(x_i \mid pa(x_i)) \prod_{j \in \text{ch}(i)} p(x_j \mid pa(x_j)) \quad (11)$$
Gibbs Sampling: Remarks

- Think of Gibbs sampling as

\[x^{l+1} \sim q(\cdot \mid x^l) \]

(12)

- Problem: States are highly dependent \((x^1, x^2, \ldots)\)
- Need a long time to run Gibbs sampling to forget the initial state, this is called burn in phase
- Dealing with evidence is easy: simply clamp the variables to the values.
- Widely adopted technique for approximate inference (BUGS package www.mrc-bsu.cam.ac.uk/bugs)
Gibbs Sampling: Remarks

- In this example the samples stay in the lower left quadrant
- Some technical requirements to Gibbs sampling
- The Markov Chain $q(x^{l+1} \mid x^l)$ needs to be able to traverse the entire state-space (no matter where we start)
 - This property is called irreducible
 - Then $p(x)$ is the stationary distribution of $q(x' \mid x)$
Gibbs sampling is more efficient if states are not correlated
 - Left: Almost isotropic Gaussian
 - Right: correlated Gaussian

The Markov chain has a higher mixing coefficient
 - i.e. it converges faster to the stationary distribution
Markov Chain Monte Carlo (MCMC)
Markov Chain Monte Carlo (MCMC)

- Sample from a multi-variate distribution

\[p(x) = \frac{1}{Z} p^*(x) \]

with \(Z \) intractable to calculate

- Idea: Sample from some \(q(x^{l+1} | x^l) \) with a stationary distribution

\[q_\infty(x') = \int_x q(x' | x) q_\infty(x) \]

- Given \(p(x) \) find \(q(x' | x) \) such that \(q_\infty(x) = p(x) \)

- Gibbs sampling is one instance (that is why it is working)
Metropolis sampling

- Special case of MCMC method (proposal distribution) with the following proposal distribution
 - symmetric: $q(x' \mid x) = q(x \mid x')$
- Sample x' and accept with probability

$$A(x', x) = \min \left(1, \frac{p^*(x')}{p^*(x)} \right) \in [0, 1]$$ \tag{15}

- If new state x' is more probable always accept
- If new state is less probable accept with $\frac{p^*(x')}{p^*(x)}$
Example: 2D Gaussian

- 150 proposal steps, 43 are rejected (red)
Metropolis-Hastings sampling (1953)

- Slightly more general MCMC method when the proposal distribution is not symmetric
- Sample x' and accept with probability

$$A(x', x) = \min \left(1, \frac{\tilde{q}(x' \mid x)p^*(x')}{\tilde{q}(x' \mid x)p^*(x)} \right)$$ (16)

- Note: when the proposal distribution is symmetric, Metropolis-Hastings reduces to standard Metropolis sampling
Is this sampling from the correct distribution?

- In the following we show that Metropolis-Hastings samples from the desired distribution $p(x)$
- Consider the following transition

$$
q(x' \mid x) = \tilde{q}(x' \mid x)f(x', x) + \delta(x, x') \left(1 - \int_{x''} \tilde{q}(x'' \mid x)f(x'', x) \right)
$$

with proposal distribution \tilde{q}
- This is a distribution

$$
\int_{x'} q(x' \mid x) = \int_{x'} \tilde{q}(x' \mid x)f(x', x) + \left(1 - \int_{x''} \tilde{q}(x'' \mid x)f(x'', x) \right) = 1
$$

- Now find $f(x', x)$ such that stationary distribution is $p(x)$.
We want \(f(x', x) \) such that

\[
p(x') = \int_x q(x' \mid x)p(x)
\]

using:

\[
q(x' \mid x) = \tilde{q}(x' \mid x)f(x', x) + \delta(x, x') \left(1 - \int_{x''} \tilde{q}(x'' \mid x)f(x'', x) \right)
\]

we get:

\[
p(x') = \int_x \tilde{q}(x' \mid x)f(x', x)p(x)
\]

\[
+ p(x') \left(1 - \int_{x''} \tilde{q}(x'' \mid x')f(x'', x') \right)
\]

In order for this to hold we need to require

\[
\int_x \tilde{q}(x' \mid x)f(x', x)p(x) = \int_{x''} \tilde{q}(x'' \mid x')f(x'', x')p(x')
\]
Continuing...

- This holds for the Metropolis-Hastings acceptance rule

\[
A(x', x) = f(x', x) = \min \left(1, \frac{\tilde{q}(x' | x) p^*(x')}{\tilde{q}(x' | x) p^*(x)} \right)
\]

\[
= \min \left(1, \frac{\tilde{q}(x' | x) p(x')}{\tilde{q}(x' | x) p(x)} \right)
\]

- we need to require (from previous slide):

\[
\int_x \tilde{q}(x' | x) f(x', x) p(x) = \int_{x''} \tilde{q}(x'' | x') f(x'', x') p(x')
\]

- which is satisfied because of the (detailed balance) property:

\[
f(x', x) \tilde{q}(x' | x) p(x) = \min(\tilde{q}(x' | x) p(x), \tilde{q}(x | x') p(x'))
\]

\[
= \min(\tilde{q}(x | x') p(x'), \tilde{q}(x' | x) p(x))
\]

\[
= f(x, x') \tilde{q}(x' | x)p(x')
\]
A common proposal distribution is given by

\[\tilde{q}(x' \mid x) = \mathcal{N}(x' \mid x, \sigma^2 I) \]

which is symmetric \(\tilde{q}(x' \mid x) = \tilde{q}(x \mid x') \)
Example: multi-modal distribution

- \tilde{q} needs to bridge the gap (be irreducible)
Sampling

- Much much more to learn about sampling
- Widely used: Gibbs Sampling, Metropolis Hastings
- Usually requires experience and careful adaption to your specific problem