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Image Processing & Stereo

• Today we shift gears and look at another problem domain:  
Image processing 

• 4 applications of interest  
‣ Image denoising. 

‣ Image inpainting. 

‣ Super-resolution. 

‣ Stereo 

• Acknowledgement  
‣ Majority of Slides (adapted) from Stefan Roth @ TU Darmstadt
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Image Denoising

• Essentially all digital images exhibit image noise to some degree. 
‣ Even high quality images contain some noise. 

‣ Really noisy images may look like they are dominated by noise. 

• Image noise is both: 
‣ Visually disturbing for the human viewer. 

‣ Distracting for vision algorithms. 

• Image denoising aims at removing or reducing the amount of noise 
in the image.
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Image Noise

• Image noise is a very common phenomenon that can come from a 
variety of sources: 
‣ Shot noise or photon noise due to the stochastic nature of the photons arriving at 

the sensor. 
- cameras actually count photons! 

‣ Thermal noise (“fake” photon detections). 

‣ Processing noise within CMOS or CCD, or in camera electronics. 

‣ If we use “analog” film, there are physical particles of a finite size that cause noise 
in a digital scan.
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Shot Noise
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Simulated shot noise (Poisson process) From Wikipedia
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Thermal Noise or “Dark Noise”

6

62 minute exposure with no incident light

From Jeff Medkeff (photo.net)
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Bias Noise from Amplifiers
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High ISO exposure (3200)

From Jeff Medkeff (photo.net)
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Noise in Real Digital Photographs

• Combination of many different noise sources:
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From dcresource.com
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Film Grain

• If we make a digital scan of a film, we get noise from the small silver 
particles on the film strip:
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Das Testament des Dr. Mabuse, 1933
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How do we remove image noise?

• Classical techniques: 
‣ Linear filtering, e.g. Gauss filtering. 

‣ Median filtering 

‣ Wiener filtering 

‣ Etc. 

• Modern techniques: 
‣ PDE-based techniques 

‣ Wavelet techniques 

‣ MRF-based techniques (application of graphical models :) 

‣ Etc.
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• The simplest idea is to use a Gaussian filter:

Original
� = 0.5

Linear Filtering
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� = 1.0
� = 1.5

� = 2.0
� = 3.0

This removes the noise, but it blurs across edges!
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Median Filter

• Replace each pixel by the median of the pixel values in a window 
around it:
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Original
w = [3, 3]

w = [5, 5]
w = [7, 7]

Sharper edges, but still blurred...
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How do we improve on this?

• We need denoising techniques that better preserve boundaries in 
images and do not blur across them. 

• There is a whole host of modern denoising techniques: 
‣ We would need a whole semester to go through the important ones in detail. 

‣ So we will do the area of denoising some major injustice and restrict ourselves to 
what we can easily understand with what we have learned so far.
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• We formulate the problem of image denoising in a Bayesian fashion 
as a problem of probabilistic inference. 

• For that we model denoising using a suitable posterior distribution: 

• Idea: 
‣ derive a graphical model that models this posterior appropriately 

‣ use standard inference techniques (such as sum-product rule or max-product rule) 
to estimate the true image that we want to recover

Denoising as Probabilistic Inference

14

p(true image|noisy image) = p(T|N)
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• For this, we can apply Bayes’ rule and obtain:

normalization term (constant)posterior

image prior for all true imageslikelihood of noisy given true image 
(observation model)

p(T|N) =
p(N|T) · p(T)

p(N)

Modeling the Posterior

15
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Modeling the Likelihood

• The likelihood expresses a model of the observation: 
‣ Given the true, noise free image T, we assess how likely it is to observe a 

particular noisy image N. 

‣ If we wanted to model particular real noise phenomena, we could model the 
likelihood based on real physical properties of the world. 

‣ Here, we will simplify things and only use a simple, generic noise model. 

‣ Nevertheless, our formulation allows us to easily adapt the noise model without 
having to change everything...
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p(N|T)
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Modeling the Likelihood

• Simplification: assume that the noise at one pixel is independent of 
the others. 
 
 

‣ often reasonable assumption, for example since sites of a CCD sensor are 
relatively independent. 

• Then we will assume that the noise at each pixel is additive and 
Gaussian distributed: 
 

‣ The variance       controls the amount of noise.
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�2

p(N|T)

p(N|T) =
Y

i,j

p(Ni,j |Ti,j)

p(Ni,j |Ti,j) = N (Ni,j � Ti,j |0,�2)
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Gaussian Image Likelihood

• We can thus write the Gaussian image likelihood as: 

• While this may seem a bit hacky, it works well in many applications. 
‣ It is suboptimal when the noise is not really independent,  

such as in some high definition (HD) images. 

‣ It also is suboptimal when the noise is non-additive, or not really Gaussian,  
for example as with film grain noise.
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p(N|T)

p(N|T) =
Y

i,j

N (Ni,j � Ti,j |0,�2)
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Modeling the Prior

• How do we model the prior distribution of true images? 
• What does that even mean? 
‣ We want the prior to describe how probable it is (a-priori) to have a particular true 

image among the set of all possible images.
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probable
improbable

p(T)
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Natural Images

• What distinguishes “natural” images from “fake” ones? 
‣ We can take a large database of natural images and study them.
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Simple Observation

• Nearby pixels often have similar intensity:  
 
 
 
 
 
 
 
 
 
 

• But sometimes there are large intensity changes.
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Statistics of Natural Images

• Compute the image derivative of all images in an image database 
and plot a histogram:
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Statistics of Natural Images

• Compute the image derivative of all images in an image database 
and plot a histogram:
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• Sharp peak at zero: Neighboring pixels most often 
have identical intensities. 

• Heavy tails: Sometimes, there are strong intensity 
differences due to discontinuities in the image.
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Modeling the prior

• The prior models our a-priori assumption about images 
‣ here we want to model the statistics of natural images 

‣ more specifically the local neighborhood statistics of each pixel: 
- nearby pixels have often similar intensity 

- but in the presence of boundaries the intensity difference can be large 

‣ let’s formulate this as a graphical model...

24

p(T)
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Modeling Compatibilities

• Pixel grid:

25

Let’s assume that we want 
to model how compatible 

or consistent a pixel is with 
its 4 nearest neighbors.
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Modeling Compatibilities

• Pixel grid (as nodes of a graph):
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Denote this by drawing 
a line (edge) between 

two pixels (nodes).
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Modeling Compatibilities

• Pixel grid (as nodes of a graph):
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We do this for all pixels.
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product over all the pixels

compatibility of 
vertical neighbors

compatibility of 
horizontal neighbors

Markov Random Fields

• This is an undirected graphical model, or  
more specifically a Markov random field. 
‣ Each edge (in this particular graph) corresponds  

to a term in the (image) prior that models how  
compatible two neighboring pixels are in  
terms of their intensities:
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p(T) =
�

i,j

fH(Ti,j , Ti+1,j) · fV (Ti,j , Ti,j+1)
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Modeling the Potentials

• What remains is to model the potentials  
(or compatibility functions), e.g.: 

• Gaussian distributions are inappropriate: 
‣ They do not match the statistics of natural images well. 

‣ They would lead to blurred discontinuities. 

• We need discontinuity-preserving potentials: 
‣ One possibility: Student-t distribution.
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fH(Ti,j , Ti+1,j)
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MRF Model of the (complete) Posterior
• We can now put the likelihood and the prior together in a single 

MRF model:
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pixels of the true image 
(hidden)

pixels of the noisy image 
(observed)

Ti,j

Ni,j

Edges representing 
the likelihood

Edges representing 
the prior
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Denoising as Probabilistic Inference

• Probabilistic inference generally means one of three things 
‣ computing the maximum of the posterior distribution - here  

that is computing the state that is the most probable given our observations 
(maximum a-posteriori (MAP) estimation)  

‣ computing expectations over the posterior distribution, such as the mean of the 
posterior 

‣ computing marginal distributions 

• Visualization of the difference between  
those cases: 
‣ assume we have the following posterior distribution:  

in particular - the posterior may be multi-modal
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p(T|N)

−4 −2 0 2 4
0

0.05

0.1

0.15

Maximum (MAP estimate)

Mean



Graphical Models and Their Applications - November 2o, 2o17

Probabilistic Inference

• Methods that can be used for MAP estimation 
‣ continuous optimization methods  

‣ graph-based methods (graph cuts) 

‣ belief propagation: in particular max-product algorithm 
- however: we have a graph with cycles (=loopy) ! 

- no convergence / correctness guarantees ! 

- in practice “loopy belief propagation” obtains good results 

• Method that can be used for expectations and marginal distributions 
‣ belief propagation: in particular sum-product algorithm 

- same notes as above - we have a cyclic graph - loopy belief propagation !
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Denoising as Inference - Continuous Optimization

• The most straightforward idea for maximizing the posterior is to 
apply well-known continuous optimization techniques. 

• Especially gradient techniques have found widespread use, e.g.: 
‣ Simple gradient ascent, also called hill-climbing. 

‣ Conjugate gradient methods. 

‣ And many more. 

• Since the posterior may be multi-modal, this will give us a local 
optimum and not necessarily the global optimum.
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• Iteratively maximize a function          : 
‣ Initialize somewhere: 

‣ Compute the derivative: 

‣ Take a step in the direction 
of the derivative: 
 
 
 

‣ Repeat...

step size

Gradient Ascent

34
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• We can do the same in multiple dimensions:  
 
 
 

• Issues: 
‣ How to initialize? 

- bad initialization with result  
in “wrong” local optimum 

‣ How to choose the 
step size    ? 
- the wrong one can lead to 

instabilities or slow convergence.

gradient

Gradient Ascent
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• We want to maximize the posterior:  

• equivalently we can maximize the log-posterior: 
‣ numerically much more stable and often more convenient 

• for gradient ascent we need the partial derivatives w.r.t. to a 
particular pixel 

• in the following we look at the two derivatives separately 
‣ first - the image prior and 

‣ second - the likelihood.

Image Denoising with Continuous Optimization

36

p(T|N) � p(N|T)p(T)

�

�Tk,l
{log p(T|N)} =

�

�Tk,l
{log p(N|T)}+ �

�Tk,l
{log p(T)}

log p(T|N) = log p(N|T) + log p(T) + const.

Tk,l
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Image Denoising with Continuous Optimization

• Let us first look at the log-prior:

37

log p(T) = log

2
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Gradient of the Log-Prior

• Calculate the partial derivative w.r.t. a particular pixel        : 
 
 
 
 

• Only the 4 terms from the 4 neighbors remain:
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Gradient of the Log-Prior

• Almost there... simply apply the chain rule:  
 
 

• last thing: calculate derivative of the compatibility function  
(or potential function)
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Gradient of the Log-Likelihood

• Let us now look at the log-likelihood 

• the partial derivative of the log-likelihood is thus simply:
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Probabilistic Inference

• Methods that can be used for MAP estimation 
‣ continuous optimization methods  

‣ graph-based methods (graph cuts) 

‣ belief propagation: in particular max-product algorithm 
- however: we have a graph with cycles (=loopy) ! 

- no convergence / correctness guarantee ! 

- in practice “loopy belief propagation” obtains good results 

• Method that can be used for expectations and marginal distributions 
‣ belief propagation: in particular sum-product algorithm 

- same notes as above - we have a cyclic graph - loopy belief propagation !
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Loopy Belief Propagation

• Empirical Observation: [Murphy,Weiss,Jordan@uai’99] 
‣ even for graphs with cycles: simply apply belief propagation (BP)... 

‣ observation: BP often gives good results even for graphs with cycles  
(if it converges) 

‣ issues 
- may not converge ! 

- cycling error - old information is mistaken as new 
- convergence error - unlike in a tree, neighbors need not be independent.  

Loopy BP treats them as if they were 

‣ not really well understood under which conditions BP works well for cyclic 
graphs...
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Loopy Belief Propagation

• Loopy BP for Image Denoising: [Lan,Roth,Huttenlocher,Black@eccv’06] 
‣ different update schemes: synchronous, random, ... 

‣ synchronous message updates: all messages are updated simultaneously 

‣ checkerboard-like update: alternate updates between neighbors  

‣ best results (image denoising) with random updates: at each step, messages are 
updated with fixed probability 

• Some Results from the above paper:

43

original 
image

noisy 
image

result from image denoising with loopy BP  
with different potentials (left: Student t-distribution)
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Denoising Results

44

original image noisy image, 
σ=20 

PSNR 22.49dB 
SSIM 0.528

denoised using 
gradient ascent  

PSNR 27.60dB 
SSIM 0.810
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Denoising Results

45

original image noisy image, 
σ=20 

PSNR 22.49dB 
SSIM 0.528

denoised using 
gradient ascent  

PSNR 27.60dB 
SSIM 0.810

• Very sharp discontinuities. No blurring across 
boundaries. 

• Noise is removed quite well nonetheless.
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Denoising Results

46

original image noisy image, 
σ=20 

PSNR 22.49dB 
SSIM 0.528

denoised using 
gradient ascent  

PSNR 27.60dB 
SSIM 0.810

• Because the noisy image is based on synthetic noise, 
we can measure the performance: 

• PSNR: Peak signal-to-noise ratio 
• SSIM [Wang et al., 04]: Perceptual similarity 

• Gives an estimate of how humans would assess the 
quality of the image.

PSNR = 20 log10

✓
MAXIp
MSE

◆



Graphical Models and Their Applications - November 2o, 2o17

Is this the end of the story?

• No, natural images have many complex properties that we have not 
modeled. 
‣ For example, they have complex structural properties that are not modeled with a 

simple MRF based on a 4-connected grid. 

‣ Natural images have scale-invariant statistics, our model does not. 

‣ Responses to random linear filters are heavy-tailed. 

‣ Etc.
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Image Processing & Stereo

• Today we shift gears and look at another problem domain:  
Image processing 

• 4 applications of interest  
‣ Image denoising. 

‣ Image inpainting. 

‣ Super-resolution. 

‣ Stereo 

• Acknowledgement  
‣ Majority of Slides (adapted) from Stefan Roth @ TU Darmstadt

48



Graphical Models and Their Applications - November 2o, 2o17

Image Inpainting

• In image inpainting the goal in to fill in a “missing” part of an image: 
‣ Restoration of old photographs, e.g. scratch removal...

49

user-supplied maskold photograph

[Bertalmio et al., 2000]
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Image Inpainting

• There are many different ways to do inpainting: 
‣ PDEs: [Bertalmio et al, 2000], ... 

‣ Exemplar-based: [Criminisi et al., 2003], ... 

‣ And many more. 

• But, we can also apply what we already know: 
‣ We model the problem in a Bayesian fashion, where we regard the inpainted 

image as the true image. We are given the corrupted image with missing pixels.  
 

‣ Then we apply probabilistic inference...

50

p(true image|corrupted image) = p(T|C)
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Image Inpainting

• We apply Bayes’ rule:  
 
 

‣ I know this may be boring, but this general approach really is this versatile... 

• Modeling the prior: 
‣ Important observation: This is the very same prior that we use for denoising! 

- We can re-use the prior model from denoising here. 

‣ Once we have a good probabilistic model of images,  
we can use it in many applications !

51

p(T|C) =
p(C|T) · p(T)

p(C)
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Inpainting Likelihood

• Again, we assume independence of the pixels: 

• Desiderata: 
‣ We want to keep all known pixels fixed. 

‣ For all unknown pixels all intensities should be equally likely. 

• Simple likelihood model:

52

p(C|T) =
�

i,j

p(Cij |Tij)

p(Cij |Tij) =
�

const, Cij is corrupted
�(Tij � Cij), Cij is not corrupted
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MRF Model of the Posterior

• The posterior for inpainting has the same graphical model structure 
as the one for denoising. 

• Nonetheless, the potentials  
representing the likelihood  
are different.
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Inpainting Results

54

“Corrupted” image 
(artificially corrupted for 

benchmarking)

Inpainted image obtained 
using gradient ascent
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Other Inpainting Results

55

From [Bertalmio et al., 2000]
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Image Super-Resolution

• In super-resolution, the goal is to increase the resolution of an 
image, while making the high-resolution image seem  
sharp and natural. 

• Many applications: 
‣ Resizing of old, low-res digital imagery. 

‣ Improving resolution of images from cheap cameras. 

‣ Up-conversion of standard definition TV and movie footage to high-definition 
(720p or 1080p).

56

64x64 
original 
image 128x128 super-resolved image 

(bicubic interpolation)

From [Tappen 
et al., 2003]
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Image Super-Resolution

• The story parallels what we have seen before. 
• There are many special purpose super-resolution techniques: 
‣ The simplest ones are bilinear and bicubic interpolation. 

‣ Example-based methods. 

‣ Etc. 

• But once again, we can formulate the problem in a Bayesian way 
and super-resolve images using probabilistic inference:

57

p(high res. image|low res. image) = p(H|L)
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Image Super-Resolution

• Yet again apply Bayes rule: 

‣ this should be getting really boring by now... 

• Modeling the prior of high-resolution images: 
‣ again we can use the prior model that we already have! 

• Modeling the likelihood: 
‣ The likelihood has to model how the low-resolution pixels correspond to the high-

resolution pixels. 

‣ For simplicity, assume a fixed zooming factor of 2x.

58

p(H|L) =
p(L|H) · p(H)

p(L)
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Super-Resolution Likelihood

• If we have a zoom factor of 2x, there is a 2x2 patch of high-
resolution pixels that corresponds to a single low-resolution pixel. 

• Again assume conditional independence of the low-resolution pixels 
given the high-resolution image. 

• We can thus write the likelihood as: 

• We may for example assume that a low-resolution pixel is the 
average of the 4 high-resolution pixels plus a small amount of 
Gaussian noise:
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Super-resolution Results

• Gradient ascent does not work well here, because the likelihood is 
more complex than for denoising or inpainting. 

• But belief propagation can be made to work (with some tricks...):

60

From [Tappen et al., 2003]

original

bicubic interpolationMRF + BP
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Super-resolution Results

• Gradient ascent does not work very well here, because the 
likelihood is more complex than in denoising or inpainting. 

• But belief propagation can be made to work (with some tricks...):
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From [Tappen et al., 2003]

original

bicubic interpolationMRF + BP
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Super-resolution Results

• Gradient ascent does not work very well here, because the 
likelihood is more complex than in denoising or inpainting. 

• But belief propagation can be made to work (with some tricks...):
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Summary

• Many image processing problems can be formulated as problems of 
probabilistic inference. 
‣ This is only one of many different ways of approaching these problems! 

• Advantages: 
‣ Unified approach to many different problems, in which important components 

(prior) may be re-used. 

‣ Is is relatively easy to understand what the various parts do. 

‣ Good application performance, despite generality. 

• Disadvantages: 
‣ Computationally often expensive. 

‣ Special purpose techniques often have somewhat better application performance.
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