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Image Processing & Stereo

e Today we shift gears and look at another problem domain:
Image processing

e 4 applications of interest
» Image denoising.
» Image inpainting.
» Super-resolution.
» Stereo

* Acknowledgement
» Majority of Slides (adapted) from Stefan Roth @ TU Darmstadt
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Image Denoising

e Essentially all digital images exhibit image noise to some degree.

» Even high quality images contain some noise.
» Really noisy images may look like they are dominated by noise.

* Image noise is both:
» Visually disturbing for the human viewer.
» Distracting for vision algorithms.

* |mage denoising aims at removing or reducing the amount of noise
in the image.
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Image Noise

e |mage noise is a very common phenomenon that can come from a
variety of sources:

» Shot noise or photon noise due to the stochastic nature of the photons arriving at
the sensor.

- cameras actually count photons!
» Thermal noise (“fake” photon detections).
» Processing noise within CMOS or CCD, or in camera electronics.

» If we use “analog” film, there are physical particles of a finite size that cause noise
in a digital scan.
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Shot Noise
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Simulated shot noise (Poisson process) From Wikipedia
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Thermal Noise or “Dark Noise”

62 minute exposure with no incident light

From Jeff Medkeff (photo.net)
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Bias Noise from Amplifiers

High ISO exposure (3200)

From Jeff Medkeff (photo.net)
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Noise in Real Digital Photographs

e Combination of many different noise sources:

From dcresource.com
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Film Grain

e |f we make a digital scan of a film, we get noise from the small silver
particles on the film strip:

The Criterion Collect
Das Testament des Dr. Mabuse, 1933

informatik
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How do we remove image noise?

e C(Classical techniques:
» Linear filtering, e.g. Gauss filtering.
» Median filtering

»  Wiener filtering
» Etc.

* Modern techniques:
» PDE-based techniques
» Wavelet techniques

» MRF-based techniques (application of graphical models :)
» Etc.
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Linear Filtering

e The simplest idea is to use a Gaussian filter:

o= 3.0
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Median Filter

e Replace each pixel by the median of the pixel values in a window
around it:
{ Q4 }

W St Saling®

w = [7,7]
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How do we improve on this?

e \We need denoising techniques that better preserve boundaries in
Images and do not blur across them.

e There is a whole host of modern denoising techniques:

» We would need a whole semester to go through the important ones in detail.

» So we will do the area of denoising some maijor injustice and restrict ourselves to
what we can easily understand with what we have learned so far.
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Denoising as Probabilistic Inference

e \We formulate the problem of image denoising in a Bayesian fashion
as a problem of probabilistic inference.

* For that we model denoising using a suitable posterior distribution:

p(true image|noisy image) = p(T|N)

* |dea:
» derive a graphical model that models this posterior appropriately

» use standard inference techniques (such as sum-product rule or max-product rule)
to estimate the true image that we want to recover
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Modeling the Posterior

 For this, we can apply Bayes' rule and obtain:

likelihood of noisy given true image image prior for all true images

(observation model) ™\ j
N|T) - p(T
i) = LR D

(N)
/ N

posterior normalization term (constant)
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Modeling the Likelihood p(N|T)

e The likelihood expresses a model of the observation:

» Given the true, noise free image T, we assess how likely it is to observe a
particular noisy image N.

» If we wanted to model particular real noise phenomena, we could model the
likelihood based on real physical properties of the world.

» Here, we will simplify things and only use a simple, generic noise model.

» Nevertheless, our formulation allows us to easily adapt the noise model without
having to change everything...
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Modeling the Likelihood p(N|T)

e Simplification: assume that the noise at one pixel is independent of
the others.

p(N|T) = Hp N ;|T; ;)

» often reasonable assumption, for example since sites of a CCD sensor are
relatively independent.

* Then we will assume that the noise at each pixel is additive and
Gaussian distributed:

p(N; ;|T; ;) = N(N; ; — T; ;]0,07)

. 2 :
» The variance 0 controls the amount of noise.
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Gaussian Image Likelihood p(N|T)

e \We can thus write the Gaussian image likelihood as:
N‘T HN 1,7 i,j|0702)

* While this may seem a bit hacky, it works well in many applications.
» It is suboptimal when the noise is not really independent,
such as in some high definition (HD) images.

» It also is suboptimal when the noise is non-additive, or not really Gaussian,
for example as with film grain noise.
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Modeling the Prior p(T)

e How do we model the prior distribution of true images?
e What does that even mean?

» We want the prior to describe how probabile it is (a-priori) to have a particular true
image among the set of all possible images.

probable / "

Improbable
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Natural Images

e What distinguishes “natural” images from “fake” ones?

» We can take a large database of natural images and study them.
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Simple Observation

 Nearby pixels often have similar intensity:

 But sometimes there are large intensity changes.

il p | | porplanckinsiet Graphical Models and Their Applications - November 20, 2017 21



Statistics of Natural Images

e Compute the image derivative of all images in an image database
and plot a histogram:

10 - - - 10°
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—200 -100 0 100 200 —200 -100 0 100 200
x-derivative y-derivative
empirical histogram - - - - fit with a Gaussian
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Statistics of Natural Images

e Compute the image derivative of all images in an image database
and plot a histogram:

' ' N\
* Sharp peak at zero: Neighboring pixels most often
have identical intensities.
* Heavy tails: Sometimes, there are strong intensity
\ differences due to discontinuities in the image. )
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Modeling the prior »(T)

e The prior models our a-priori assumption about images

» here we want to model the statistics of natural images
» more specifically the local neighborhood statistics of each pixel:
- nearby pixels have often similar intensity

- but in the presence of boundaries the intensity difference can be large

» let’s formulate this as a graphical model...
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Modeling Compatibilities

e Pixel grid:

Let's assume that we want
to model how compatible
or consistent a pixel is with
its 4 nearest neighbors.
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Modeling Compatibilities

e Pixel grid (as nodes of a graph):

Denote this by drawing
a line (edge) between
two pixels (nodes).
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Modeling Compatibilities

e Pixel grid (as nodes of a graph):

We do this for all pixels.
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Markov Random Fields

e This is an undirected graphical model, or
more specifically a Markov random field.

» Each edge (in this particular graph) corresponds
to a term in the (image) prior that models how
compatible two neighboring pixels are in
terms of their intensities:

compatibility of
vertical neighbors

/

(0 e ) it A 00 )

compatibility of
horizontal neighbors

p(T) =

\product over all the pixels
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Modeling the Potentials

e What remains is to model the potentials
(or compatibility functions), e.g.:

fu(Tij, Tiy1,j)

e (Gaussian distributions are inappropriate:
» They do not match the statistics of natural images well.

» They would lead to blurred discontinuities.

* We need discontinuity-preserving potentials:
» One possibility: Student-t distribution.

1 )
fu(Tijs Tiga,5) = (1 + 55Ty - Tz‘+1,j)2> 1

o)

200 300

b b
O’..

2300 -200 -100 0

log-density
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MRF Model of the (complete) Posterior

* We can now put the likelihood and the prior together in a single
MRF model:

‘ T. . pixels of the true image
¢ (hidden)

@ 1V, ; pixels of the noisy image
(observed)

Edges representing
the likelihood

""""" Edges representing
: the prior

i.31T5.5) HfH i Liv15) - Jv(Tigs Tij+1)




Denoising as Probabilistic Inference

e Probabilistic inference generally means one of three things

» computing the maximum of the posterior distribution - here p(T|N)
that is computing the state that is the most probable given our observations
(maximum a-posteriori (MAP) estimation)

» computing expectations over the posterior distribution, such as the mean of the
posterior

» computing marginal distributions

e Visualization of the difference between
those cases: 0.15

» assume we have the following posterior distribution:
in particular - the posterior may be multi-modal

Maximum (MAP estimate)

Mean
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Probabilistic Inference

e Methods that can be used for MAP estimation

» continuous optimization methods

» graph-based methods (graph cuts)

» belief propagation: in particular max-product algorithm
- however: we have a graph with cycles (=loopy) !
- no convergence / correctness guarantees !

- in practice “loopy belief propagation” obtains good results

* Method that can be used for expectations and marginal distributions

» belief propagation: in particular sum-product algorithm

- same notes as above - we have a cyclic graph - loopy belief propagation !
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Denoising as Inference - Continuous Optimization

e The most straightforward idea for maximizing the posterior is to
apply well-known continuous optimization techniques.

e Especially gradient techniques have found widespread use, e.q.:
» Simple gradient ascent, also called hill-climbing.
» Conjugate gradient methods.
» And many more.

e Since the posterior may be multi-modal, this will give us a local
optimum and not necessarily the global optimum.
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Gradient Ascent

e Iteratively maximize a function f(x) :
» Initialize somewhere: Qj(o)
»  Compute the derivative: _f(x) — f’(x)

» Take a step in the direction
of the derivative:

2D 2O g #(0O)
f 0.1

step size

oast

» Repeat... 0.05

I (ORI M (O )
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Gradient Ascent

e \We can do the same in multiple dimensions:

(M) (M) 4 £ (x()
I

gradient
* Issues: 045k
» How to initialize?
- bad initialization with result 0.1
in “wrong” local optimum '
» How to choose the
step size 1) ? 0.05
- the wrong one can lead to L
instabilities or slow convergence. 0 .
~0.05
-4 -2 0 2 i}
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Image Denoising with Continuous Optimization

e \We want to maximize the posterior:

p(T|N) o< p(N|T)p(T)

equivalently we can maximize the log-posterior:

» numerically much more stable and often more convenient

log p(T|N) = log p(N|T) + log p(T) + const.

for gradient ascent we need the partial derivatives w.r.t. to a
pa({gticular pixel 1} 5

ITh, {log p(T|N)} = oTh {log p(N|T)} + 5T {log p(T)}

in the following we look at the two derivatives separately
» first - the image prior and

» second - the likelihood.
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Image Denoising with Continuous Optimization

e Let us first look at the log-prior:

logp(T) = log —HfH igs Lit,5) - fv(Ti g, Ti i)

> log fu(Tij, Tita,5) +log fv (155, T;j+1) + const
i,
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Gradient of the Log-Prior

e (Calculate the partial derivative w.r.t. a particular pixel T}, ; :

s,
0Tk log p(T) = 3Tkz Zlog fu (T, Tiy1,5) +log fv (15,4, T; j4+1) + const

0
— Ej I T i T I T; i, T;

* Only the 4 terms from the 4 neighbors remain:
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Gradient of the Log-Prior

e Almost there... simply apply the chain rule:

5
%, 51— JH (Tt Tht1,0)
log fa(Tk 1, Thy1,1) = ’
0Tk 8 f1 (Tt Ti1) for(Te1s Tht1)

e last thing: calculate derivative of the compatibility function
(or potential function)

9, %, 1 e
Ty, T = 14+ —(Th; — Tir1.)°
3Tk,sz( kol Tht1,0) ( T 5 5 (Tt kt1,5) )
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Gradient of the Log-Likelihood

e Letus now look at the log-likelihood

log p(N|T) =log | | [ p(NVi ;1T5.5)
_i,j -
= ZIOgP(Ni,j\Tz‘,j)
5]
— Zlog./\/'(Ni,j — Ti,j|0, 0'2)
]

e the partial derivative of the log-likelihood is thus simply:

o o
log n(N|T) =
oT og p(N|T) T

log {N(Nk,l — T%.10, (72>}
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Probabilistic Inference

e Methods that can be used for MAP estimation

» continuous optimization methods

» graph-based methods (graph cuts)

» belief propagation: in particular max-product algorithm
- however: we have a graph with cycles (=loopy) !
- no convergence / correctness guarantee !

- in practice “loopy belief propagation” obtains good results

* Method that can be used for expectations and marginal distributions

» belief propagation: in particular sum-product algorithm

- same notes as above - we have a cyclic graph - loopy belief propagation !
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Loopy Belief Propagation

e Empirical Observation: [Murphy,Weiss,Jordan@uai’99]
» even for graphs with cycles: simply apply belief propagation (BP)...

» observation: BP often gives good results even for graphs with cycles
(if it converges)

» issues
- may not converge !

- cycling error - old information is mistaken as new

- convergence error - unlike in a tree, neighbors need not be independent.
Loopy BP treats them as if they were

» not really well understood under which conditions BP works well for cyclic
graphs...
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Loopy Belief Propagation

e Loopy BP for Image Denoising: [Lan,Roth,Huttenlocher,Black@eccv’06]
» different update schemes: synchronous, random, ...
» synchronous message updates: all messages are updated simultaneously
» checkerboard-like update: alternate updates between neighbors

» best results (image denoising) with random updates: at each step, messages are
updated with fixed probability

e Some Results from the above paper:

original noisy result from image denoising with loopy BP
with different potentials (left: Student t-distribution)
PR, T R T R T
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Denoising Results

0l B -
1 |‘§ r i
"'y ] | | . i

|

'‘Naneen

' ‘ P
| — |
original image noisy image, denoised using
0=20 gradient ascent
PSNR 22.49dB PSNR 27.60dB
SSIM 0.528 SSIM 0.810
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Denoising Results

HERRER

|

* Very sharp discontinuities. No blurring across
boundaries.

* Noise is removed quite well nonetheless.
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Denoising Results

— R bas
* Because the noisy image is based on synthetic noise,
we can measure the performance:
* PSNR: Peak signal-to-noise ratio psNR = 201og;, (
* SSIM [Wang et al., 04]: Perceptual similarity

MAX]>
vVMSE

* (Gives an estimate of how humans would assess the
quality of the image.

. J
original image noisy image, denoised using
0=20 gradient ascent
PSNR 22.49dB PSNR 27.60dB

SSIM 0.528 SSIM 0.810
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Is this the end of the story?

e No, natural images have many complex properties that we have not
modeled.

» For example, they have complex structural properties that are not modeled with a
simple MRF based on a 4-connected grid.

» Natural images have scale-invariant statistics, our model does not.
» Responses to random linear filters are heavy-tailed.
» Etc.

=200 -100 0 100 200 -200 -100 0 100 200

Derivative histogram on 4 Histograms of random
spatial scales (zero-mean) linear filters
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Image Processing & Stereo

e Today we shift gears and look at another problem domain:
Image processing

e 4 applications of interest
» Image denoising.
» Image inpainting.
» Super-resolution.
» Stereo

* Acknowledgement
» Majority of Slides (adapted) from Stefan Roth @ TU Darmstadt
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Image Inpainting

e |nimage inpainting the goal in to fill in a “missing” part of an image:

» Restoration of old photographs, e.g. scratch removal...

!
:(
> b

\

R AT J
old photograph user-supplied mask

[Bertalmio et al., 2000]
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Image Inpainting

e There are many different ways to do inpainting:

» PDEs: [Bertalmio et al, 2000], ...
» Exemplar-based: [Criminisi et al., 2003], ...
» And many more.

 But, we can also apply what we already know:

» We model the problem in a Bayesian fashion, where we regard the inpainted
image as the true image. We are given the corrupted image with missing pixels.

p(true image|corrupted image) = p(T|C)

» Then we apply probabilistic inference...
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Image Inpainting

e \We apply Bayes' rule:

p(C|T) - p(T)
p(C)

» | know this may be boring, but this general approach really is this versatile...

p(T|C) =

* Modeling the prior:
» Important observation: This is the very same prior that we use for denoising!
- We can re-use the prior model from denoising here.

» Once we have a good probabilistic model of images,
we can use it in many applications !
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Inpainting Likelihood

e Again, we assume independence of the pixels:
p(C|T) = Hp i71T35)

* Desiderata:

» We want to keep all known pixels fixed.

» For all unknown pixels all intensities should be equally likely.
e Simple likelihood model:

p(Cif| ;) = const, C’Z-.j is corrupted
0(T;; — Cyj), Cjj is not corrupted
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MRF Model of the Posterior

e The posterior for inpainting has the same graphical model structure
as the one for denoising.

e Nonetheless, the potentials

representing the likelihood
are different. | : : : W
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Inpainting Results

“Corrupted” image Inpainted image obtained

(artificially corrupted for using gradient ascent
benchmarking)
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Other Inpainting Results

From [Bertalmio et al., 2000]
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Image Super-Resolution

e In super-resolution, the goal is to increase the resolution of an
Image, while making the high-resolution image seem
sharp and natural.

From [Tappen
et al., 2003]

original
image 128x128 super-resolved image
(bicubic interpolation)

* Many applications:
» Resizing of old, low-res digital imagery.
» Improving resolution of images from cheap cameras.

» Up-conversion of standard definition TV and movie footage to high-definition
(720p or 1080p).
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Image Super-Resolution

e The story parallels what we have seen before.
e There are many special purpose super-resolution techniques:

» The simplest ones are bilinear and bicubic interpolation.
» Example-based methods.
» Etc.

* But once again, we can formulate the problem in a Bayesian way
and super-resolve images using probabilistic inference:

p(high res. image|low res. image) = p(H|L)
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Image Super-Resolution

e Yet again apply Bayes rule:

p(LH) - p(H)
p(L)
» this should be getting really boring by now...

p(H|L) =

e Modeling the prior of high-resolution images:

» again we can use the prior model that we already have!

e Modeling the likelihood:

» The likelihood has to model how the low-resolution pixels correspond to the high-
resolution pixels.

» For simplicity, assume a fixed zooming factor of 2x.
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Super-Resolution Likelihood

e |f we have a zoom factor of 2x, there is a 2x2 patch of high-
resolution pixels that corresponds to a single low-resolution pixel.

* Again assume conditional independence of the low-resolution pixels
given the high-resolution image.

e \We can thus write the likelihood as:

p(LIH) = HP(Li,j\szj, Hait1.25, Hai 241, Hait1,2j+1)
¥,J
e \We may for example assume that a low-resolution pixel is the
average of the 4 high-resolution pixels plus a small amount of
Gaussian noise:

1
p(Li,j|H2i,2j7 Hoit1,25, Hai 2541, H2i+1,2j+1> =N (Lz’,j — Z(H2i,2j + Hojq11,25 + Hojoj41 + H2z'—|—1,2j+1); 0, 02)
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Super-resolution Results

e Gradient ascent does not work well here, because the likelihood is
more complex than for denoising or inpainting.

e But belief propagation can be made to work (with some tricks...):

-

bicubic intepolation

From [Tappen et al., 2003]
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Super-resolution Results

e Gradient ascent does not work very well here, because the
likelihood is more complex than in denoising or inpainting.

 But belief propagation can be made to work (with some tricks...):

original

MRF + BP bicubic interpolation

From [Tappen et al., 2003]
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Super-resolution Results

e Gradient ascent does not work very well here, because the
likelihood is more complex than in denoising or inpainting.

 But belief propagation can be made to work (with some tricks...):

Aa Bb Cec
Dd Ee Ff
Gg Hh Ii
Jj Kk L1

original

Aa Bb Cc Aa Bb Ce

Dd Ee FI Dd Ee KT

Gz Hh i Gg Hh i

Jj Kk 14 Ji Kk L)
MRF + BP bicubic interpolation

From [Tappen et al., 2003]

I l l I max planck institut
informatik

Graphical Models and Their Applications - November 20, 2017 62



Summary

e Many image processing problems can be formulated as problems of
probabilistic inference.

» This is only one of many different ways of approaching these problems!

* Advantages:

» Unified approach to many different problems, in which important components
(prior) may be re-used.

» Isis relatively easy to understand what the various parts do.
» Good application performance, despite generality.

* Disadvantages:
» Computationally often expensive.
» Special purpose techniques often have somewhat better application performance.
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