

Body Models II

Gerard Pons-Moll and Bernt Schiele Max Planck Institut für Informatik January 08, 2018

Schedule

08.01.2018

15.01.2018

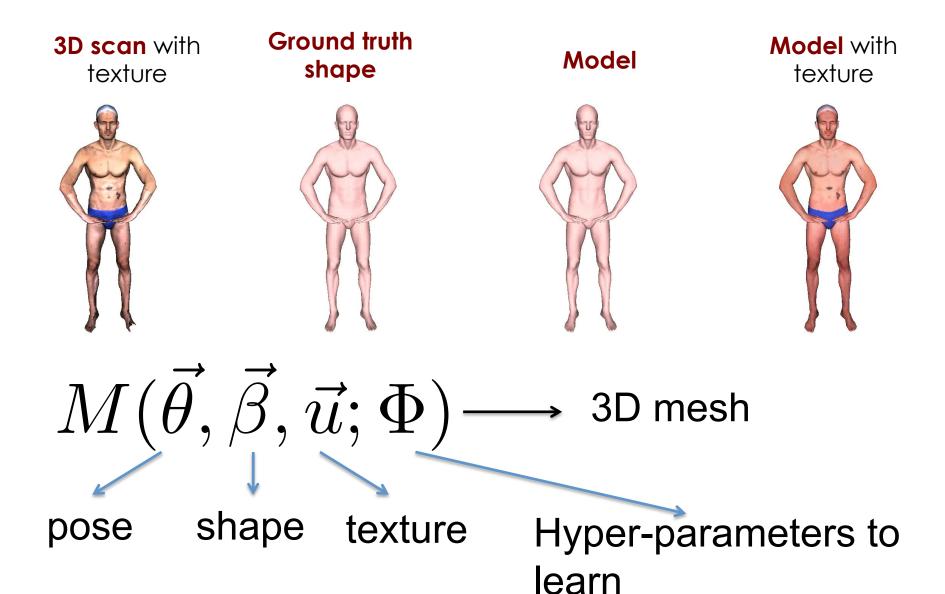
22.01.2018

29.01.2018

Intro - Probabilities Graphical Models Basics Factor Graphs & Sum Produc Max-Product and Body Pose Image Processing Sampling & Tracking Parameter Estimation Junction Tree and Causality Body Models 1 **Body Models 2** Body Models 3 Stereo & Graph Cut Optical Flow

Our research goal: Virtual humans

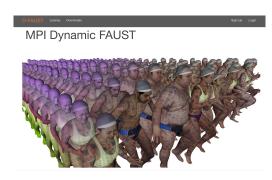
What is a virtual human model?



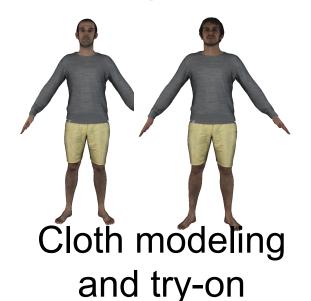
Applications

Tracking from depth

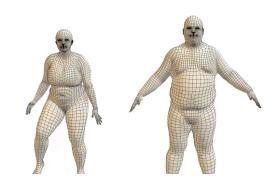
Virtual Reality



Registration

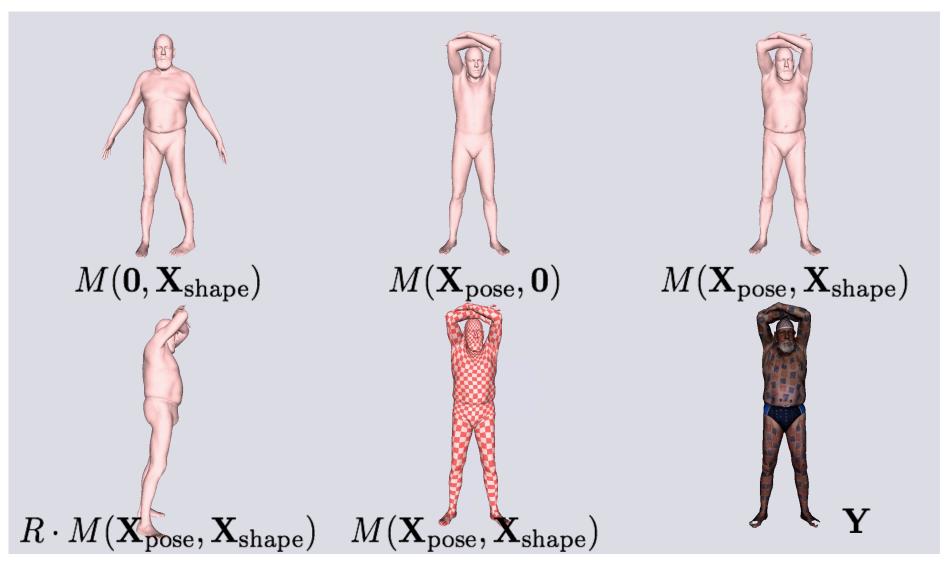


Tracking from images



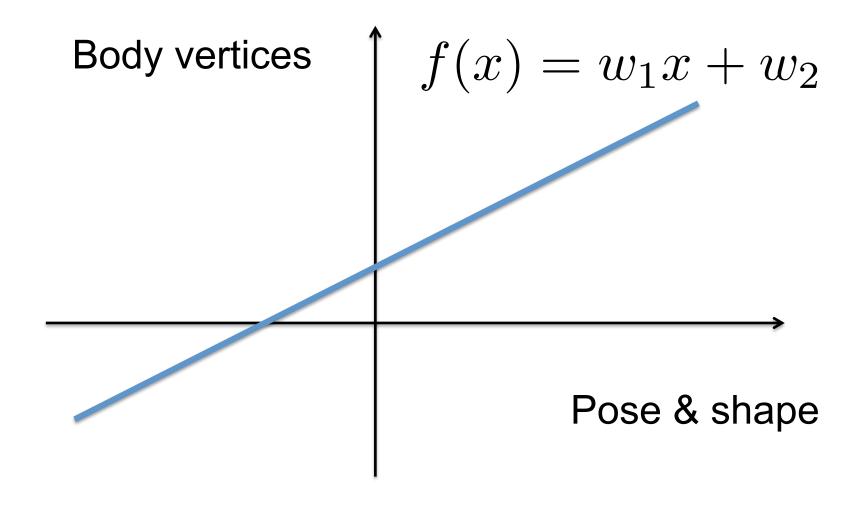
Animation

A Body Model is a function



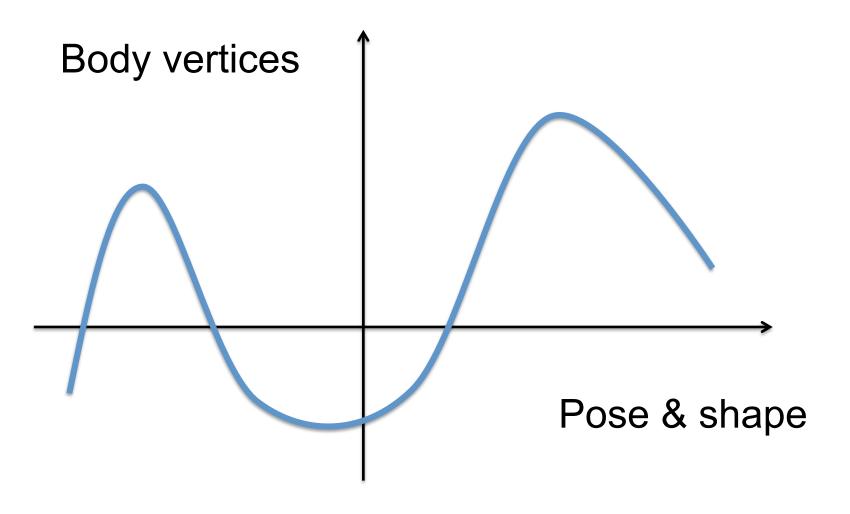
 $\mathbf{X} = \{\mathbf{X}_{\mathrm{pose}}, \mathbf{X}_{\mathrm{shape}}\}$

What kind of function?



Linear?

What kind of function?



Polynomial?

Given the function, what w?

$$f(x; \mathbf{w}) = w_1 x^3 + w_2 x^2 + w_1 x + w_0$$

$$f(x; \mathbf{w})$$

Input parameters

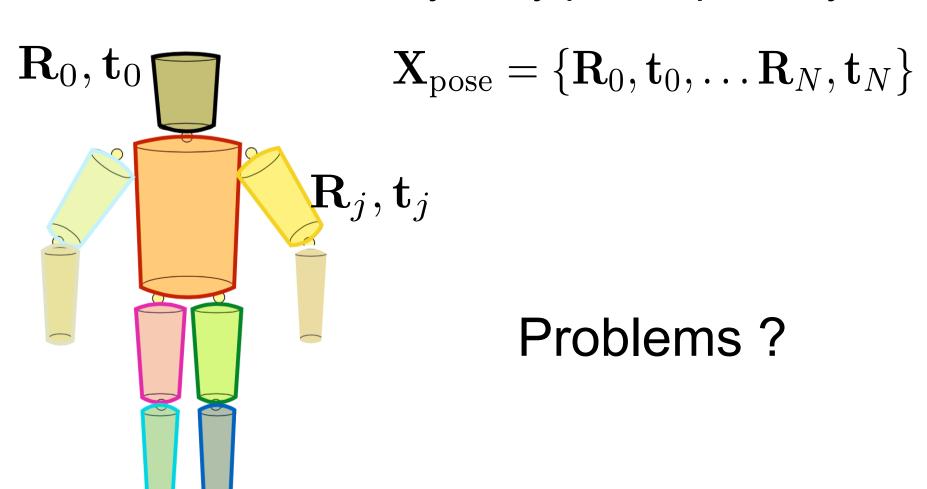
Hyper-parameters

And also why our input **X** is shape and pose ?

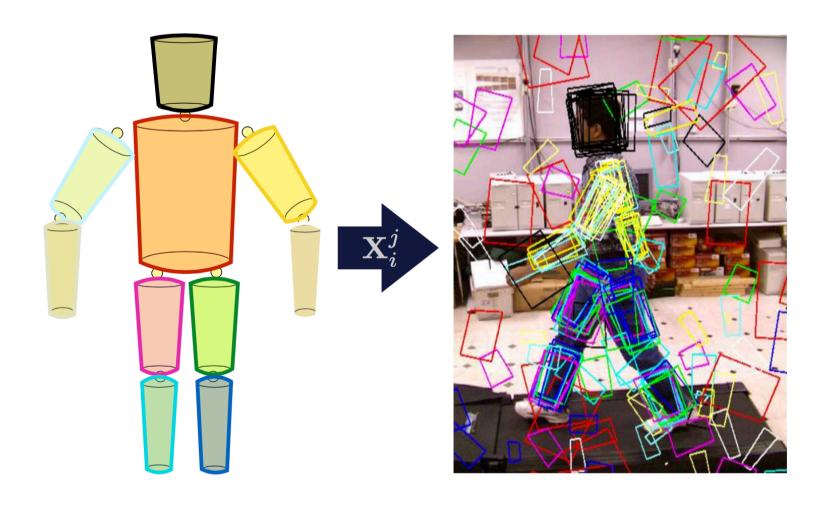
Notation: $\mathbf{X}_{\mathrm{pose}} = \vec{\theta}$ $\mathbf{X}_{\mathrm{shape}} = \vec{\beta}$

How do we parameterize pose?

Parameterize every body part separately?



How do we parameterize pose?



Articulated constraints not satisfied!

Rotation parameterization

Rotations are composed of 9 numbers

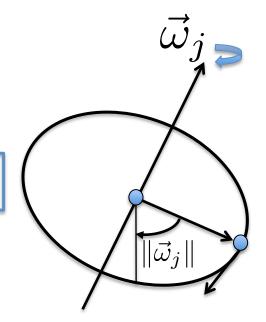
 6 additional constraints to ensure that the matrix is orthonormal

Suboptimal for optimization

Rotation with Exponential Maps

 $||\vec{\omega}_j||$: Angle of rotation

 $ec{\omega}_j$: scaled axis of rotation

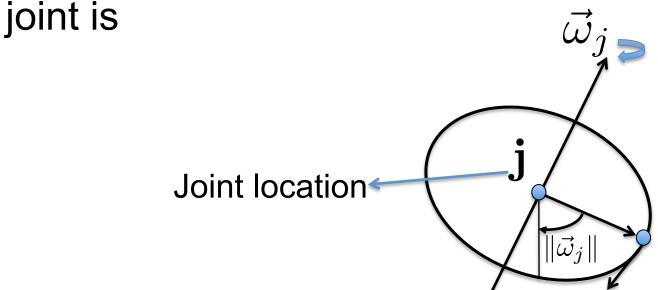


Rotation obtained with Rodrigues formula:

$$\mathbf{R} = e^{\widehat{\vec{\omega}}} = \mathcal{I} + \widehat{\bar{\omega}}_j \sin(\|\vec{\omega}_j\|) + \widehat{\bar{\omega}}^2 (1 - \cos(\|\vec{\omega}_j\|))$$

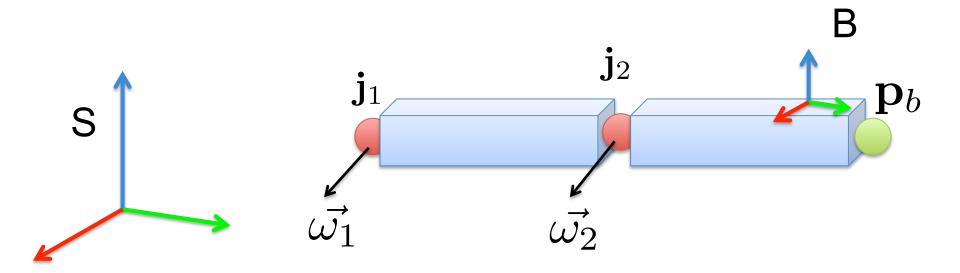
Joint Rigid Body Motion

The transformation associated with a rotational

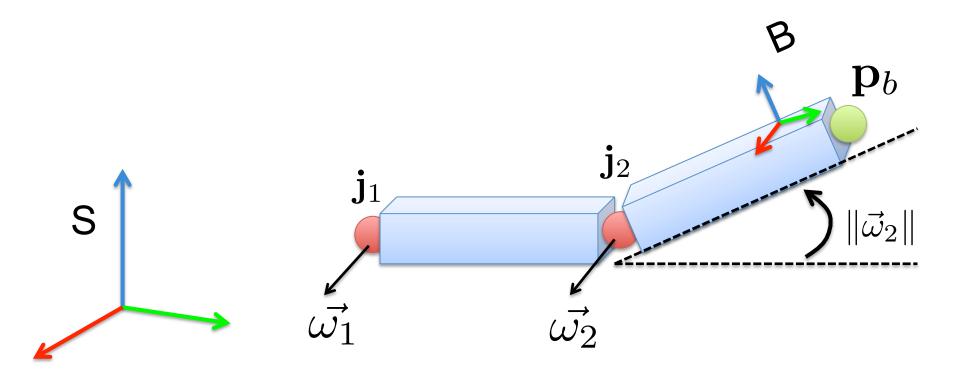


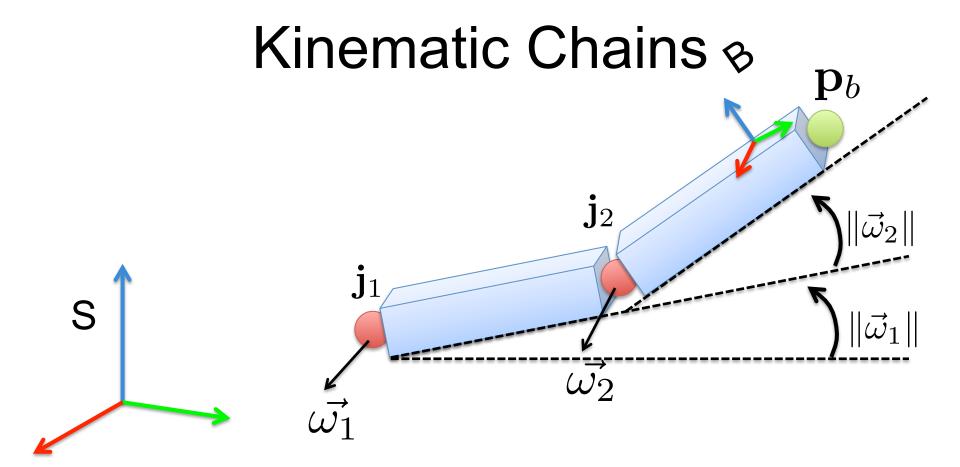
$$G(\vec{\omega},\mathbf{j}) = \begin{bmatrix} [e^{\vec{\omega}}]_{3\times 3} & \mathbf{j}_{3\times 1} \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix} \longrightarrow \begin{array}{l} \text{Rigid Body} \\ \text{Motion} \end{array}$$

Kinematic Chains



Kinematic Chains

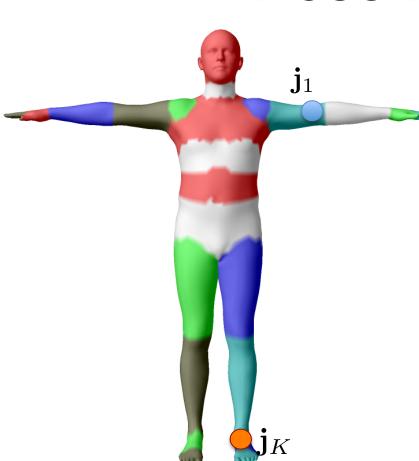




The coordinates of the point in the spatial frame are:

$$\bar{\mathbf{p}}_s = G(\vec{\omega_1}, \vec{\omega_2}, \mathbf{j}_1, \mathbf{j}_2) = G(\vec{\omega_1}, \mathbf{j}_1) G(\vec{\omega_2}, \mathbf{j}_2) \bar{\mathbf{p}}_b$$

Pose Parameters



Given a set of joint locations

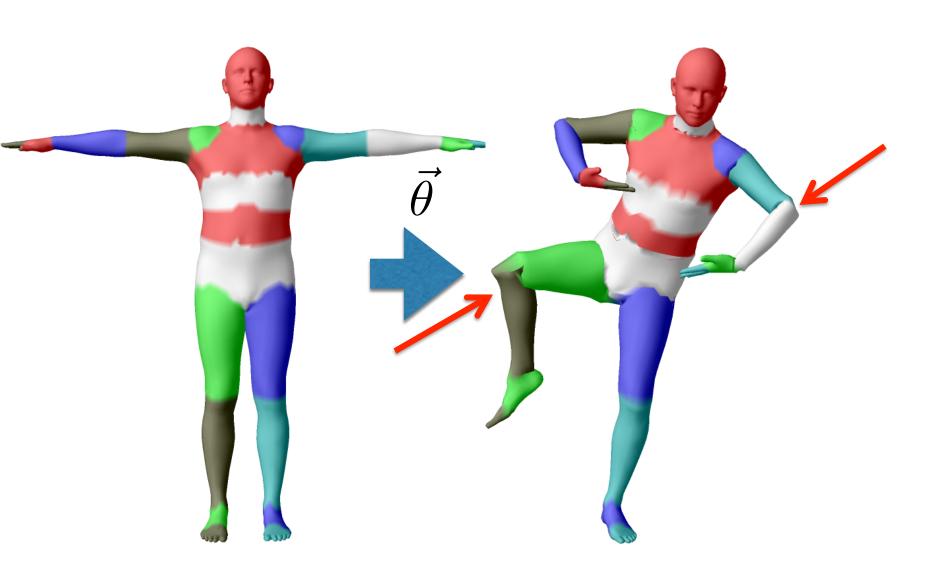
$$\mathbf{J} = (\mathbf{j}_1, \dots, \mathbf{j}_K)^T$$

The pose defined as the vector of concatenated part axis-angles

$$\vec{\theta} = (\vec{\omega}_1, \dots, \vec{\omega}_k)^T$$

Pons-Moll & Rosenhahn 2011 Model-based Pose Estimation. Looking at People.

Kinematic Chain Problems



Different poses

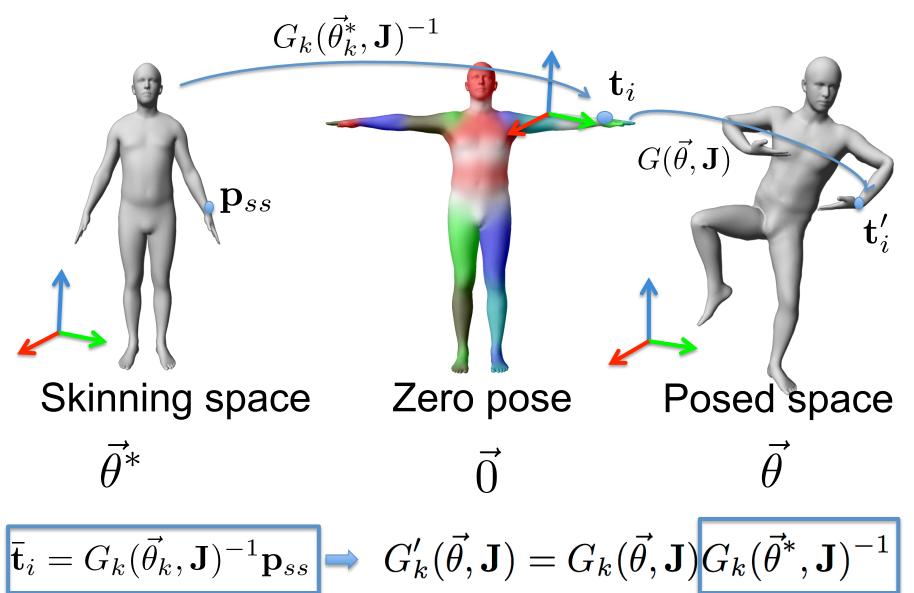
Different poses using no blendweights
 >>python visualize_ablated_smpl.py

Linear Blend Skinning

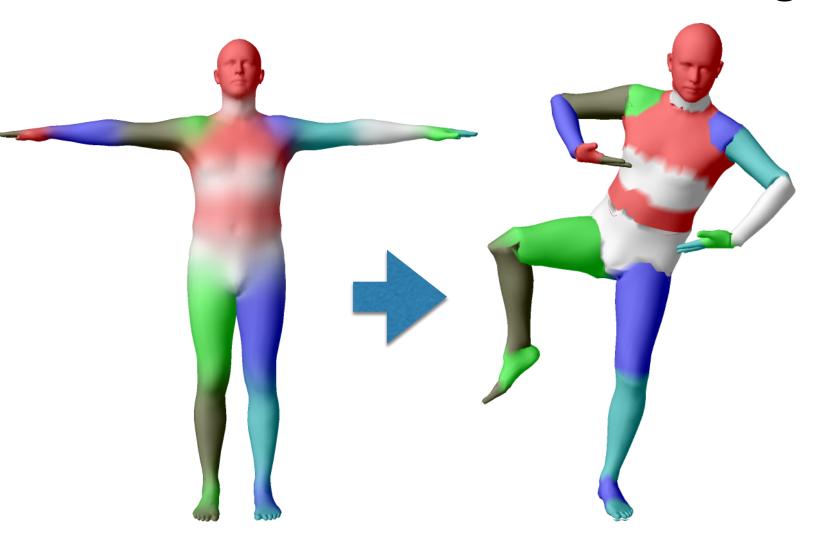


Points transformed as blended linear combination of joint transformation matrices

Binding Matrices



Linear Blend Skinning

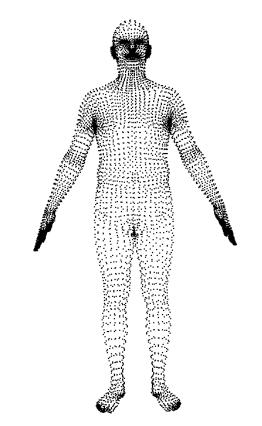


Different poses using BW

Different poses using no blendweights
 >>python visualize_ablated_smpl.py

Standard skinning produces vertices from...

- Rest pose vertices: $\mathbf{T} \in \mathbb{R}^{3N}$
- Joint locations: $\mathbf{J} \in \mathbb{R}^{3K}$
- Weights: $\mathcal{W} \in \mathbb{R}^{N imes K}$
- Pose parameters: $\vec{\theta} \in \mathbb{R}^{3K}$



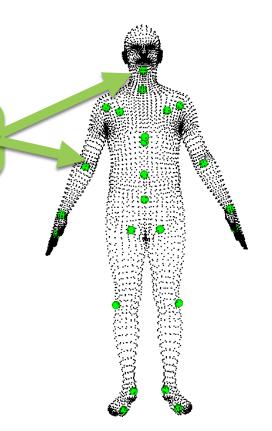
Standard skinning produces vertices from...

– Rest pose vertices: $\mathbf{T} \in \mathbb{R}^{3N}$

- Joint locations: $\mathbf{J} \in \mathbb{R}^{3K}$

– Weights: $\mathcal{W} \in \mathbb{R}^{N imes K}$

– Pose parameters: $\vec{\theta} \in \mathbb{R}^{3K}$



Standard skinning produces vertices from...

– Rest pose vertices: $\mathbf{T} \in \mathbb{R}^{3N}$

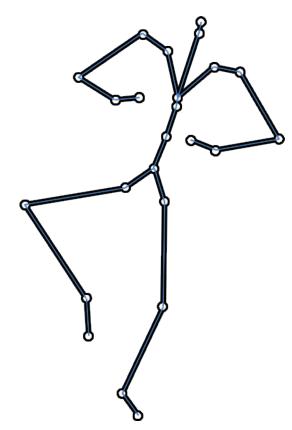
– Joint locations: $\mathbf{J} \in \mathbb{R}^{3K}$

– Weights: $\mathcal{W} \in \mathbb{R}^{N imes K}$

– Pose parameters: $\vec{\theta} \in \mathbb{R}^{3K}$

Standard skinning produces vertices from...

- Rest pose vertices: $\mathbf{T} \in \mathbb{R}^{3N}$
- Joint locations: $\mathbf{J} \in \mathbb{R}^{3K}$
- Weights: $\mathcal{W} \in \mathbb{R}^{N imes K}$
- Pose parameters: $\ \vec{ heta} \in \mathbb{R}^{3K}$

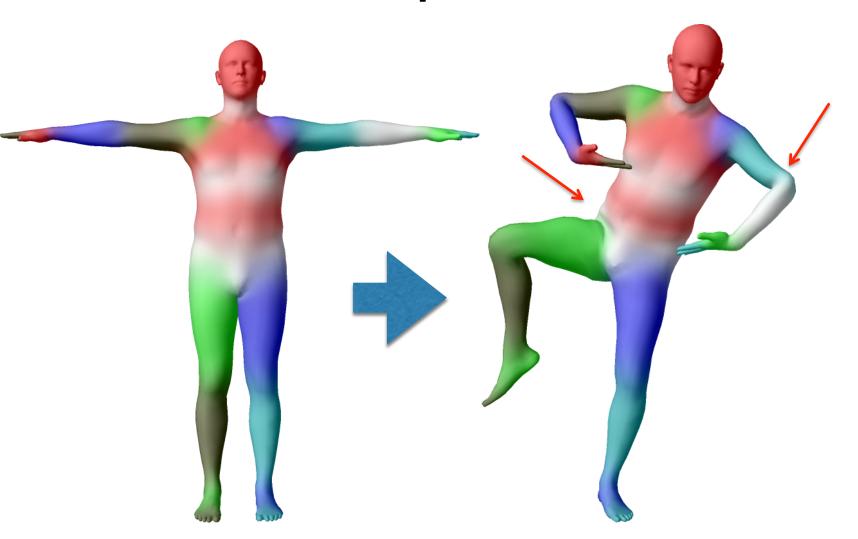


Skinning function

- Rest pose vertices: $\mathbf{T} \in \mathbb{R}^{3N}$
- Joint locations: $\mathbf{J} \in \mathbb{R}^{3K}$
- Weights: $\mathcal{W} \in \mathbb{R}^{N \times K}$ Pose parameters: $\vec{\theta} \in \mathbb{R}^{3K}$

 $W(\mathbf{T}, \mathbf{J}, \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$

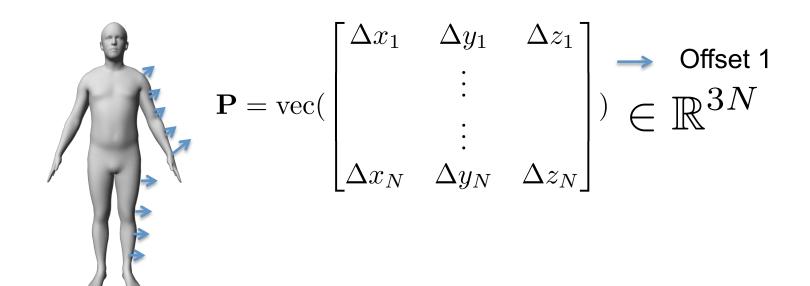
LBS problems



Solution: Blend Shapes

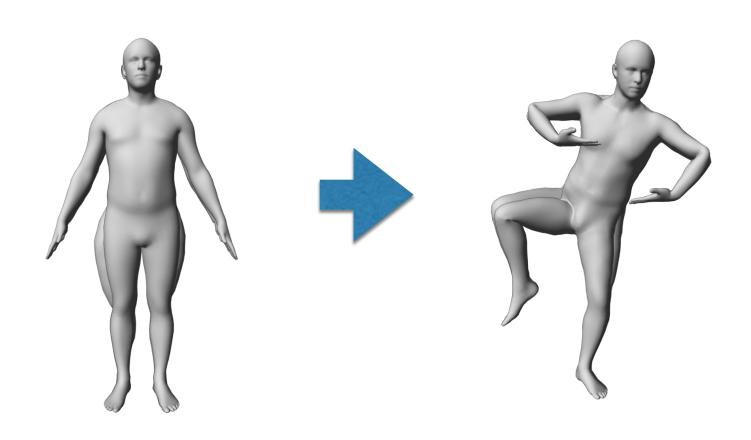
 A blend shape is a set of vertex displacements in a rest pose

Pose blend shapes: correct for LBS problems



Pose Blend Shapes

With blend shape correction



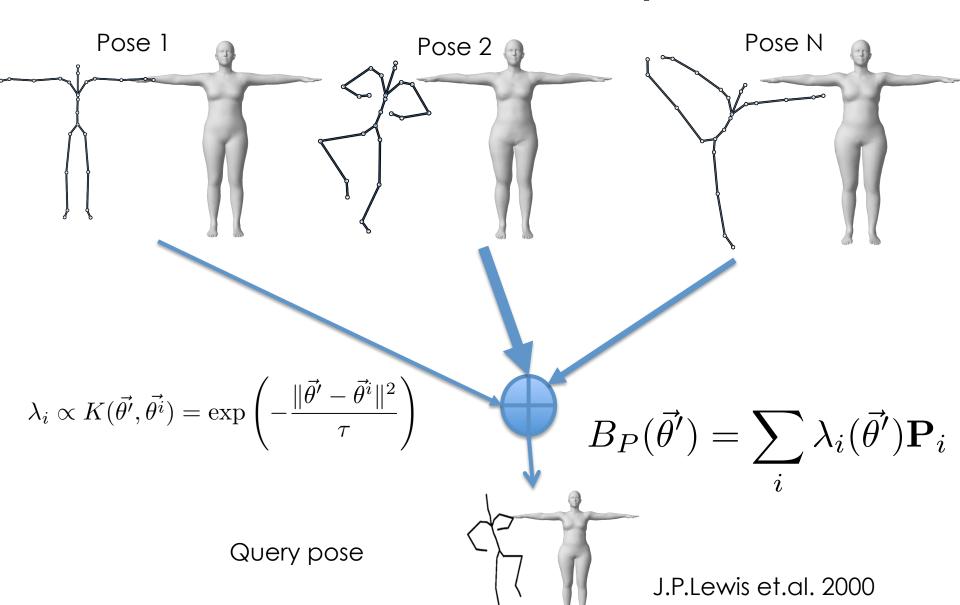
How to predict Blend Shapes?

Animators sculpt it manually!

Time consuming, does not scale

Can we leverage training data?

Scattered Data Interpolation



Problems Scattered Data Interpolation

 1) Computationally expensive (need to find closest poses in a database)

2) Does not extrapolate very well to novel poses

Problems

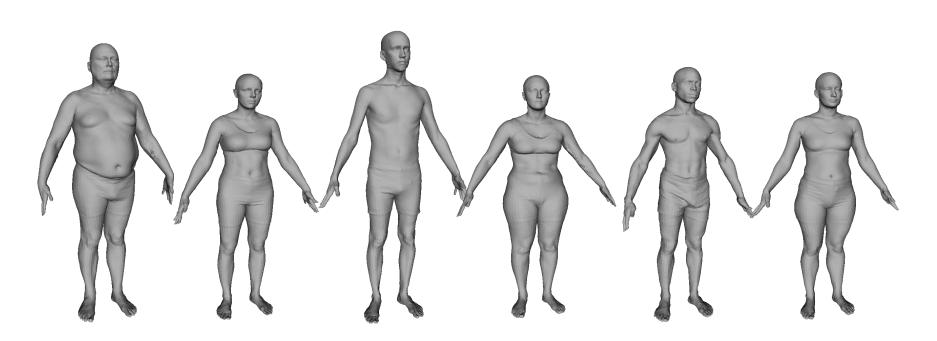
• If we don't use scattered data interpolation, how do we define pose blend shapes ? $B_P(\vec{\theta}')$

How to set the skinning parameters?

$$\mathbf{T} \in \mathbb{R}^{3N} \quad \mathbf{J} \in \mathbb{R}^{3K} \quad \mathcal{W} \in \mathbb{R}^{N \times K}$$

More Problems

How do we model shape identity variations?



SMPL

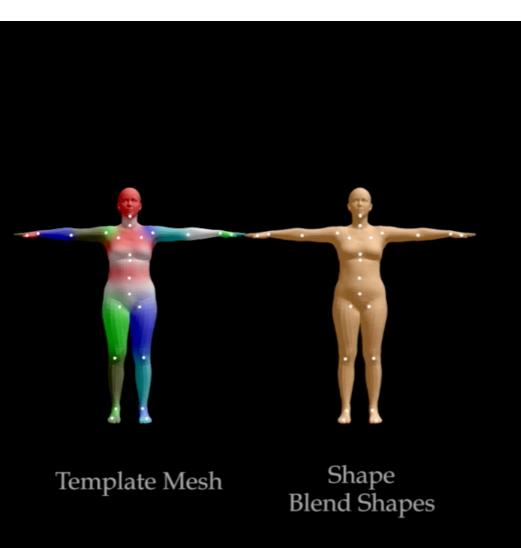
SMPL Model Results

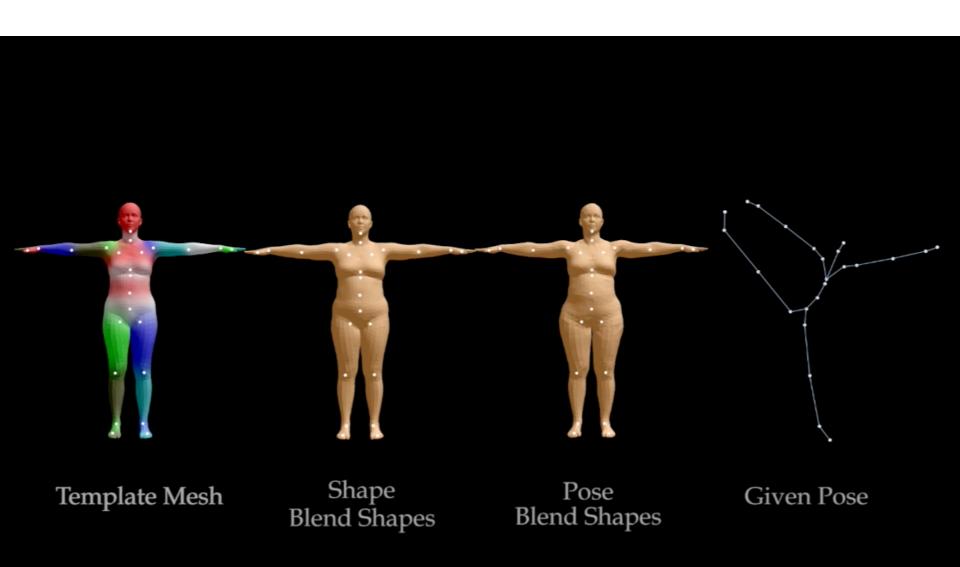
SMPL Philosophy

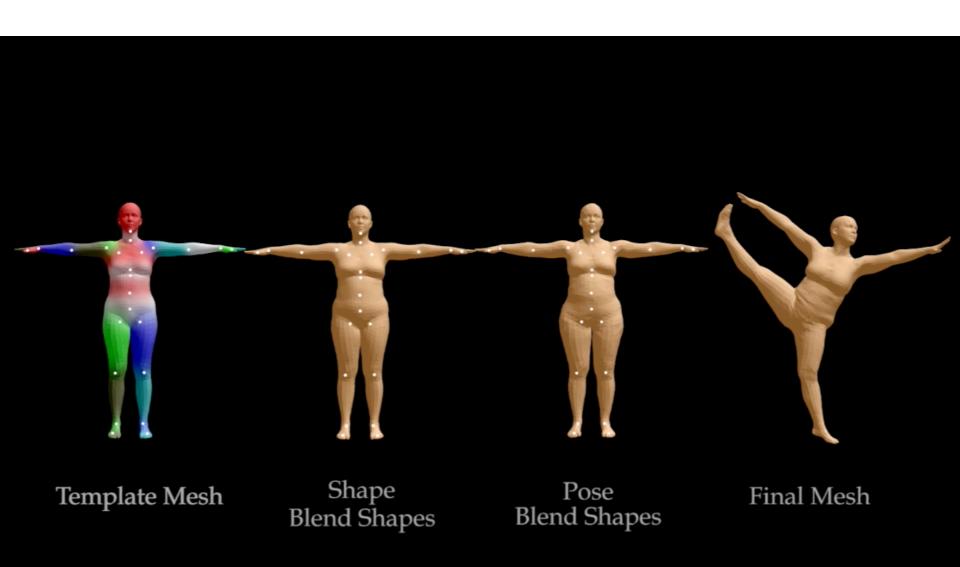
We aim for the simplest possible model while having state-of-the-art performance

- Makes training easier
- Enables compatibility

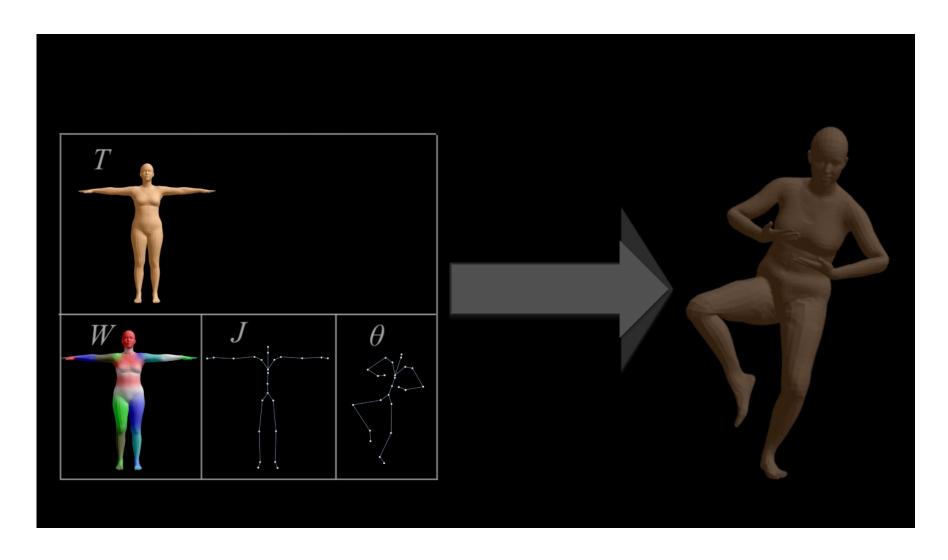
Template Mesh







Standard Skinning



Parameterized Skinning

Standard skinning
$$W(\mathbf{T}, \mathbf{J}, \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

SMPL model

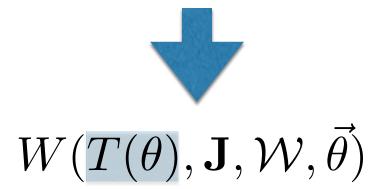
$$M(\vec{\theta}, \vec{\beta}) = W(\mathbf{T}_F(\vec{\beta}, \theta), \mathbf{J}(\vec{\beta}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

SMPL is skinning parameterized by pose and shape

SMPL: BS are a parametric function of pose

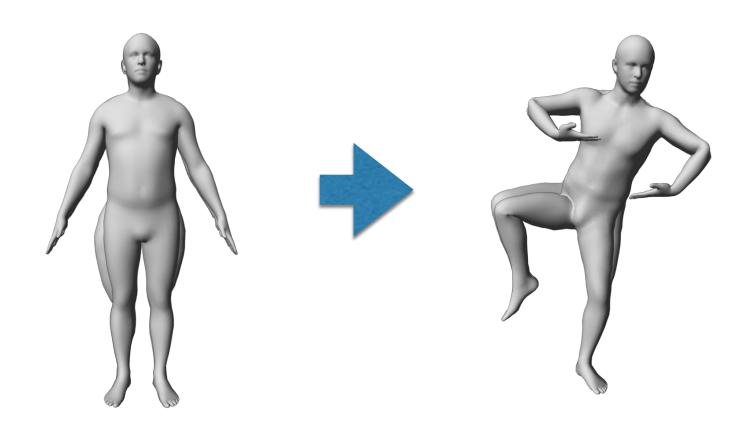
We parameterize the skinning equation by pose

$$W(\mathbf{T}, \mathbf{J}, \mathcal{W}, \vec{ heta})$$



Remember: Pose Blend Shapes

With blend shape correction



Parameterized Skinning

$$W(T(\theta), \mathbf{J}, \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

$$T(\vec{\theta}) = \mathbf{T} + B_P(\vec{\theta})$$

• Our rest vertices are linear in $f(\theta)$

$$B_P(ec{ heta}) = \sum_i^{|f(ec{ heta})|} f_i(ec{ heta}) \mathbf{P}_i$$
 Each is a blend shape

Parameterized Skinning

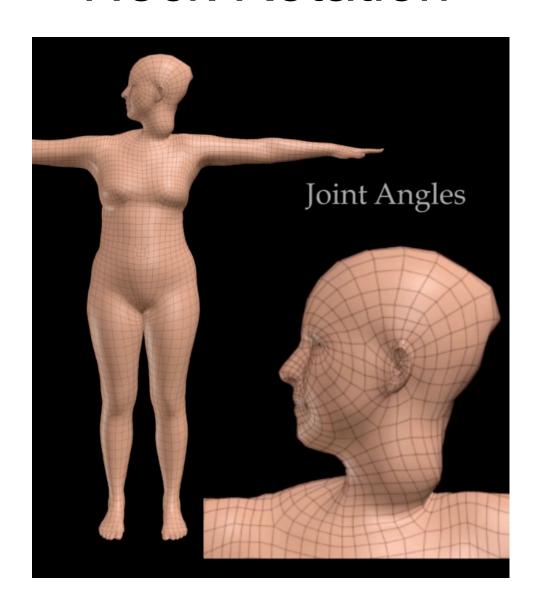
• What function $f(\vec{\theta})$?

$$B_P(\vec{\theta}) = \sum_{i}^{|f(\theta)|} f_i(\vec{\theta}) \mathbf{P}_i$$

Simplest possible:

$$f(\vec{\theta}) = \vec{\theta}$$

Neck Rotation



Parameterized Skinning

• What function $f(\vec{\theta})$?

$$B_P(\vec{\theta}) = \sum_{i}^{|f(\theta)|} f_i(\vec{\theta}) \mathbf{P}_i$$

- Idea: we consider $f(\vec{\theta})$ as the vectorized joint rotation matrices
- Blend shapes are linear in rotation matrix elements

Pose Blend Shapes

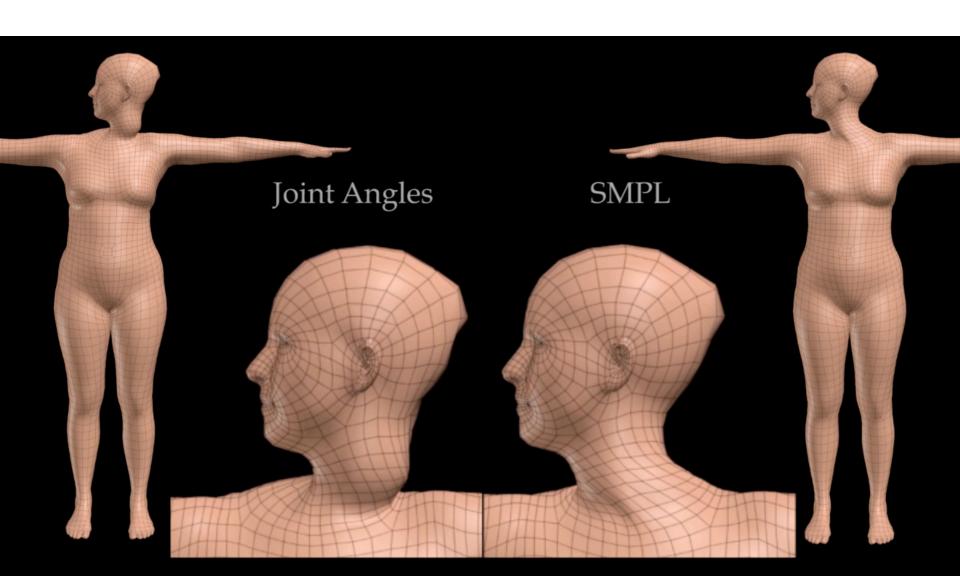
$$B_P(\vec{\theta}) = \sum_i^{|f(\theta)|} f_i(\vec{\theta}) \mathbf{P}_i$$

$$\vec{\theta} = (\vec{\omega}_1, \dots, \vec{\omega}_k)^T$$
 Not a minus
$$e^{\hat{\omega}_1} - \mathcal{I} \qquad e^{\hat{\omega}_K} - \mathcal{I}$$

$$f(\vec{\theta}) = [\bar{e}_{1,1}^{\hat{\omega}_1} \dots \bar{e}_{3,3}^{\hat{\omega}_1} \qquad \dots \qquad \bar{e}_{1,1}^{\hat{\omega}_K} \dots \bar{e}_{3,3}^{\hat{\omega}_K}]$$

9 elements of the rotation matrix-> We learn 9xK=207 blendshapes

Neck Rotation



Pose Blendshapes demo

>> python visualize_pose_blends.py

Joint Location Estimation

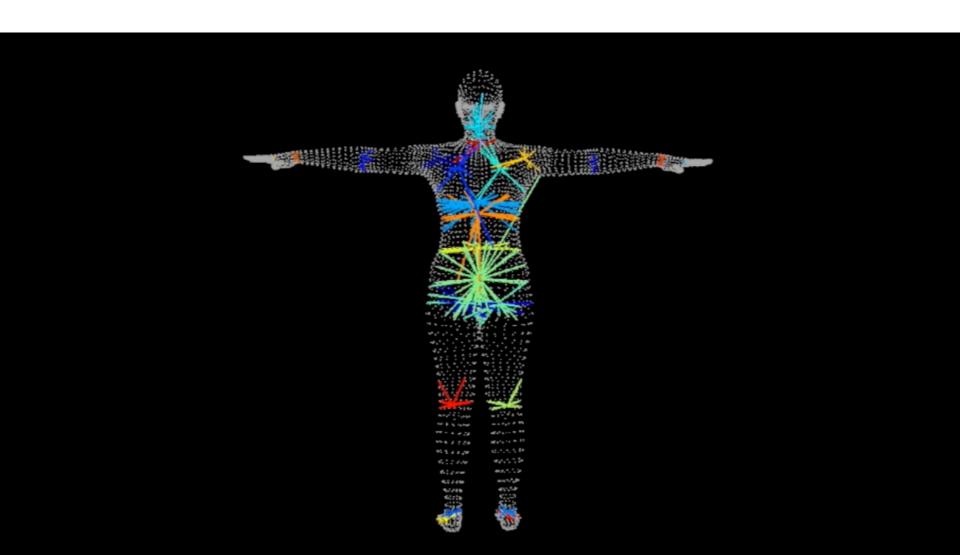
How to get the joints J for a new shape?
 What is the simplest way?

 Joints are considered linear in rest vertices (much like in Allen et al. '06)

$$\mathbf{J} = J(\mathbf{T}; \mathcal{J}) = \mathcal{J}\mathbf{T}$$

Joint regressor matrix

Joint Location Estimation



Adding a shape space

Problem: want a shape space with different identities

$$W(T(\vec{\theta}), J(\mathbf{T}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

$$T(\vec{\theta}) = \mathbf{T} + B_P(\vec{\theta})$$

$$\text{Contribution} \left\{ B_P(\vec{\theta}) = \sum_i^{|f(\vec{\theta})|} f_i(\vec{\theta}) \mathbf{P}_i \right.$$

Adding a shape space

Solution: add blend shapes linear with $\vec{\beta}$

$$W(T(\vec{\theta}, \vec{\beta}), J(\vec{\beta}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

$$T_P(\vec{\theta}, \vec{\beta}) = \mathbf{T} + B_P(\vec{\theta}) + B_S(\vec{\beta})$$

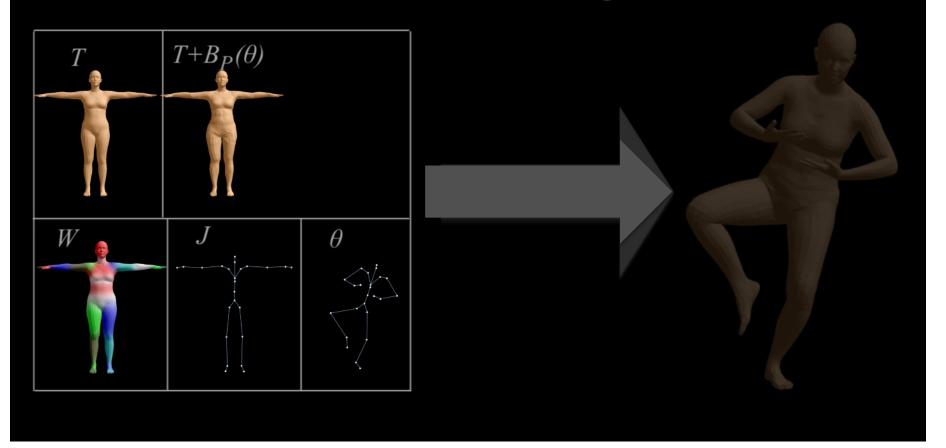
$$\text{Contribution} \left\{ B_P(\vec{\theta}) = \sum_i^{|f(\vec{\theta})|} f_i(\vec{\theta}) \mathbf{P}_i \right.$$
 Shape Blend shape matrix
$$Shape \text{Contribution} \left\{ B_S(\beta) = \sum_j^{|\beta|} \beta_j S_j \right. \rightarrow \mathcal{S} = \begin{bmatrix} \mathbf{S}_1 & \mathbf{S}_2 & \dots & \mathbf{S}_{N_{\text{subj}}} \end{bmatrix}$$

SMPL

Additive Model

$$ar{\mathbf{t}}_i' = \sum_{k=1}^K w_{k,i} G_k'(ec{ heta}, J(ec{eta})) (ar{\mathbf{t}}_i' + \mathbf{b}_{S,i}(ec{eta}) + \mathbf{b}_{P,i}(ec{ heta}))$$
Blendweights Vertices Shape-bs Pose-bs

SMPL Skinning



Parameterized Skinning

Standard skinning
$$W(\mathbf{T}, \mathbf{J}, \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

SMPL model

$$M(\vec{\theta}, \vec{\beta}) = W(\mathbf{T}_F(\vec{\beta}, \theta), \mathbf{J}(\vec{\beta}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

SMPL is skinning parameterized by pose and shape

SMPL

pose shape $M(\vec{\theta}, \vec{\beta}; \mathbf{T}, \mathcal{S}, \mathcal{P}, \mathcal{W}, \mathcal{J})$ Input Model parameters to be learned from data

- ${f T}$ Template (average shape)
- \mathcal{S} Shape blend shape matrix
- \mathcal{P} Pose blend shape matrix
- ${\cal W}$ Blendweights matrix
- \mathcal{J} Joint regressor matrix

Remember?

$$M(\vec{ heta}, eta; \mathbf{T}, \mathcal{S}, \mathcal{P}, \mathcal{W}, \mathcal{J})$$
 $f(x; \mathbf{w})$

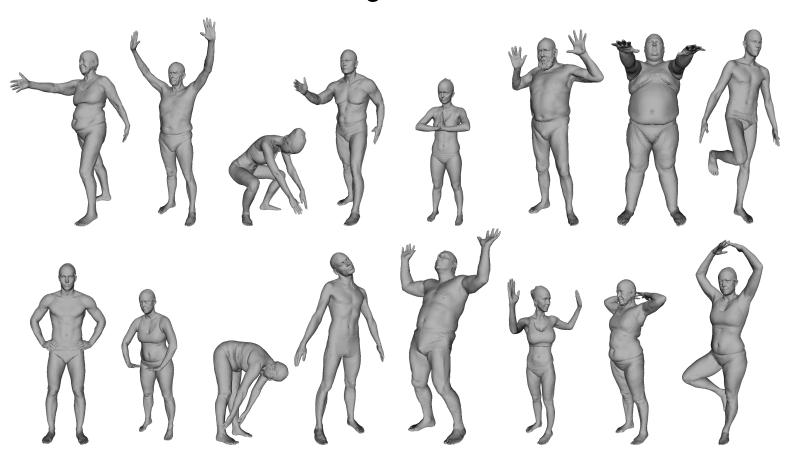
Input parameters

Hyper-parameters?

DATA

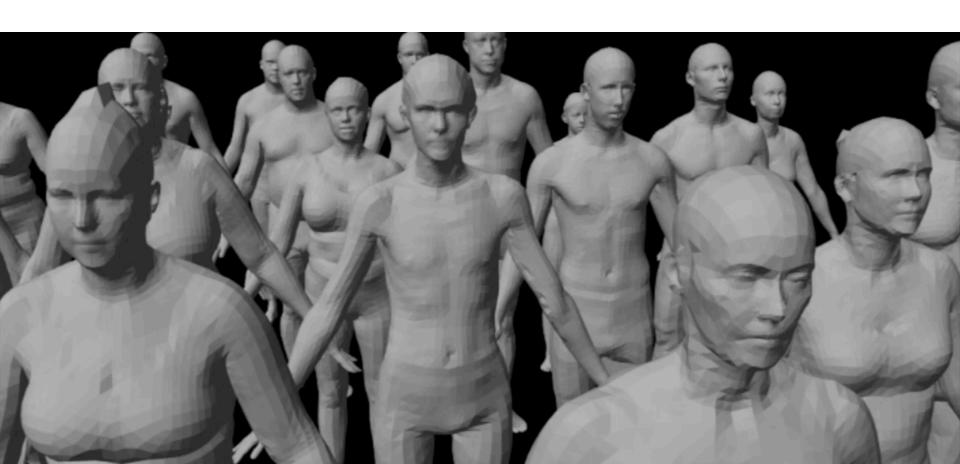
Model Training

Multipose database: 20 males, 24 females 1800 registrations



Model Training

Multishape database: PCA on ~2000 single-pose registrations per gender



Model Training

$$\mathbf{w} = \arg\min_{\mathbf{w}} \sum_{j} \|M(\vec{\theta}, \vec{\beta}; \mathbf{w}) - \|^2$$

Training

$$\arg\min_{\mathbf{T},\mathcal{S},\mathcal{P},\mathcal{W},\mathcal{J}}\sum_{j}\min_{\vec{\theta}_{j},\vec{\beta}_{j}}\|M(\vec{\theta}_{j},\vec{\beta}_{j};\mathbf{T},\mathcal{S},\mathcal{P},\mathcal{W},\mathcal{J})-\mathbf{V}_{j}\|^{2}$$

$$\downarrow$$

$$\mathsf{Model}$$
Registrations

Ideally one wants to find the model parameters that minimize a single objective measuring the distance between **model** and **registrations**

Gradient based optimization!

Training Details

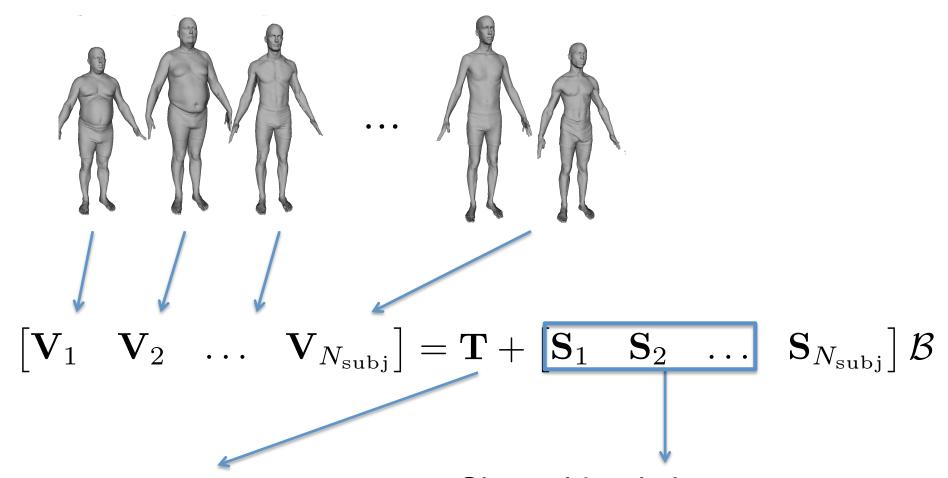
- $\mathcal{P}, \mathcal{W}, \mathcal{J}$ are trained from our **multipose** dataset
- \mathcal{P} regularized towards zero (ridge regression)
- $ullet \mathcal{W}$ regularized towards initialization
- J regularized towards predicting part boundary centers and is forced to be sparse
- T, S are trained from our **multishape** dataset

Number of Parameters Learned

For a model with 6890 vertices

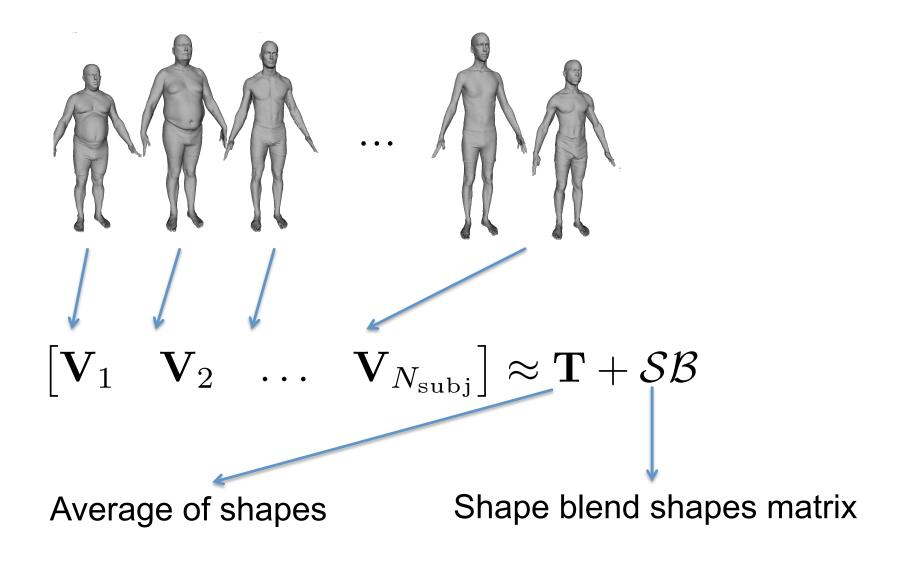
- \mathcal{P} 9x23x6890 = 4,278,690
- W 4x3x6890 = 82,680
- \mathcal{J} 3x6890x23x3 = 1,426,230
- •T, S 3x6890 + 3x6890x10blendshapes = 227,370

A total of 6.014.970 parameters are learned



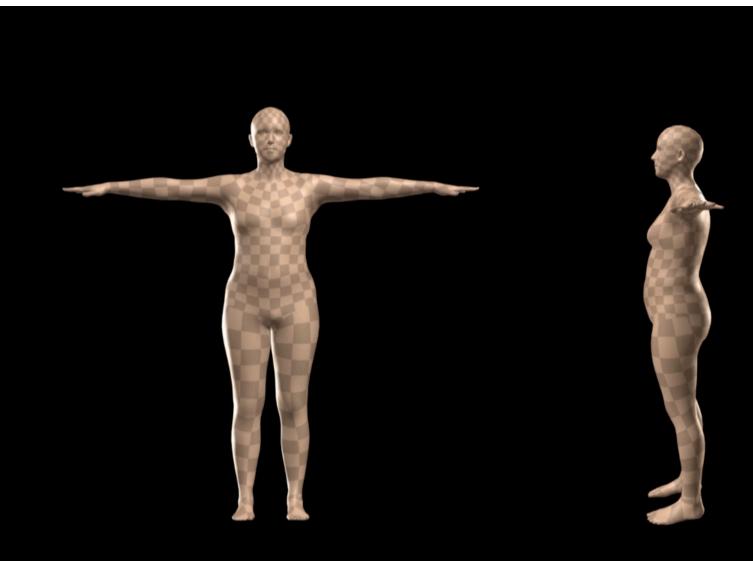
Average of shapes

Shape blend shapes are the first eigenvectors



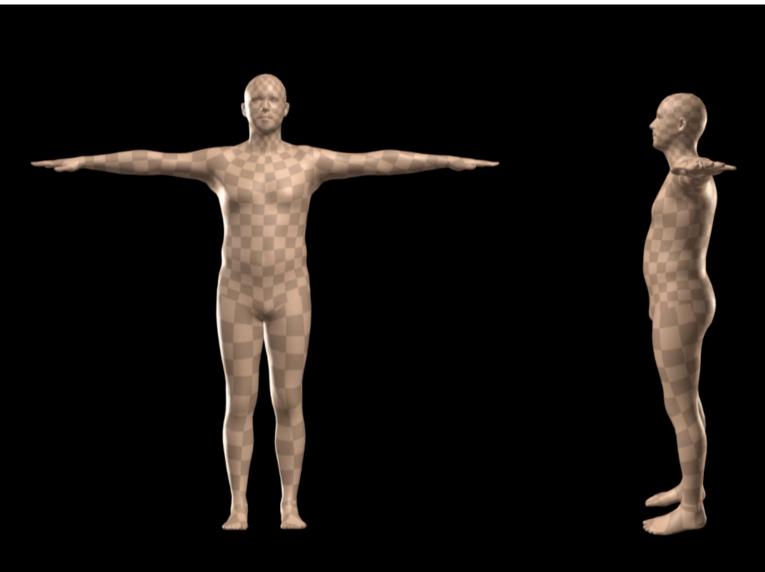
Before doing PCA all shapes have to be in the same pose (pose needs to be optimized)

Shape Blend Shapes- Female



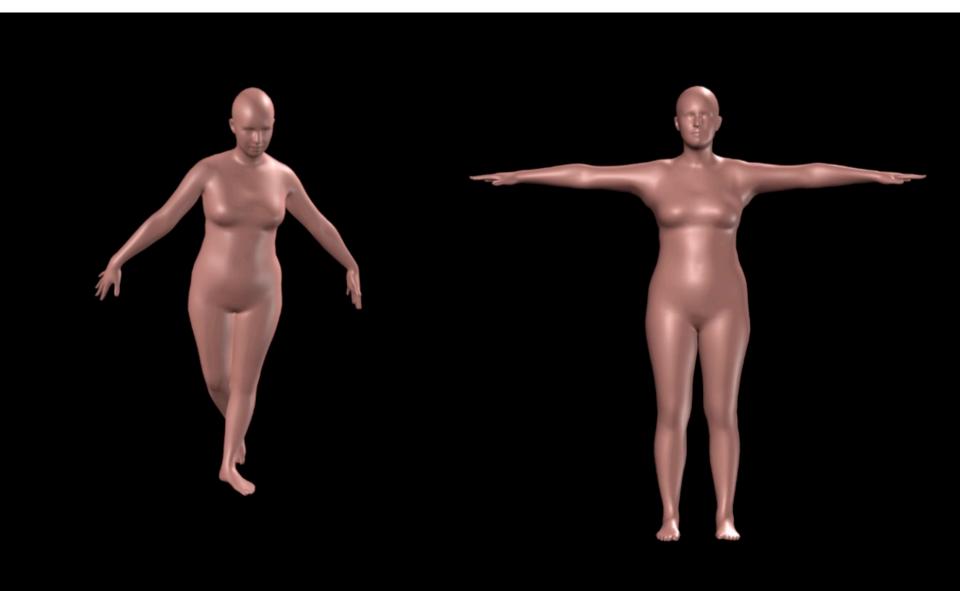
PC 1 varied between +/-3 std dev

Shape Blend Shapes- Male



PC 1 varied between +/-3 std dev

Pose Blendshapes

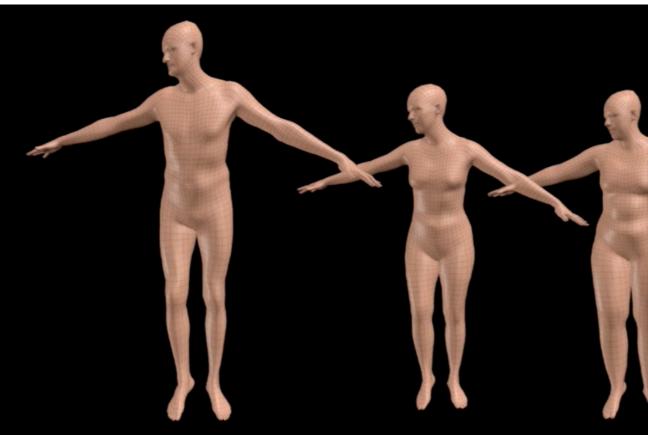


Conclusion

- Speed: fast run-time
- Fidelity: superior accuracy to Blend-SCAPE, trained on the same data
- Compatibility: works in Maya, other platforms soon
- Is publicly available for research purposes

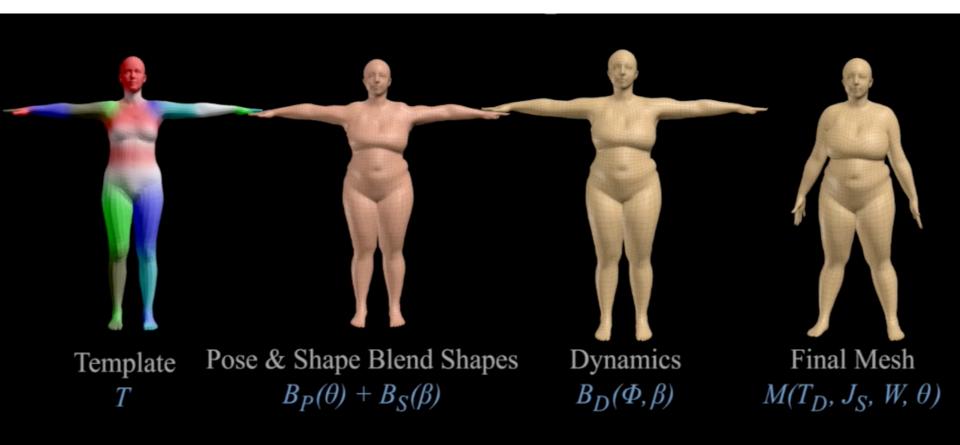
Download: http://smpl.is.tue.mpg.de

SMPL results

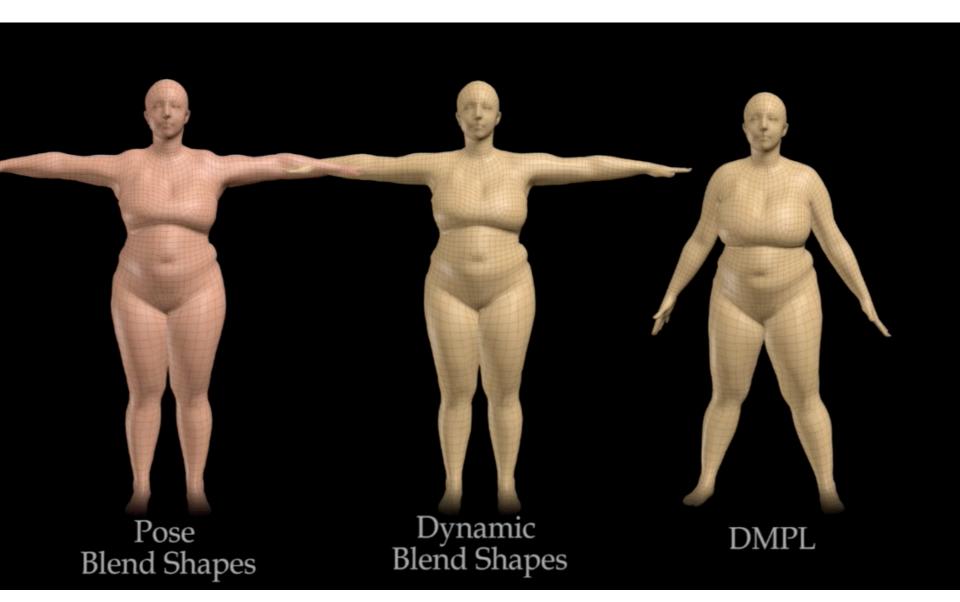


SMPL Model

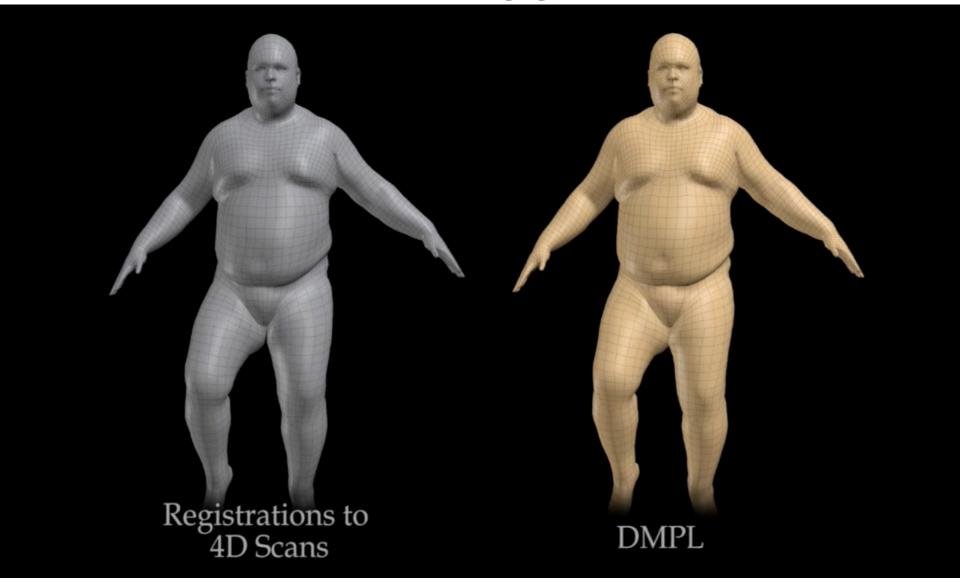
Model Decomposition



Dynamics of Soft Tissue



DMPL exaggeration



Applications 1

- Given a new registration, find the pose and shape. Correspondences are known.
- >> align_3Dpoints.py

Fitting SMPL to a scan/mesh

 Problem: Given a registration, find the model pose and shape.

$$ec{ heta}, ec{eta} = rg \min_{ec{ heta}, ec{eta}} \|M(ec{ heta}, ec{eta}) - \mathbf{V}\|^2$$
 Model Registration

Chumpy does it for you but you have to know what you are doing!!

 Chumpy minimizes the sum of squares of a vector valued error function

Optimization variables (vector)

$$e(\mathbf{x}) = \sum_{i} \mathbf{e}_{i}(\mathbf{x})^{2} = \mathbf{e}(\mathbf{x})^{T} \mathbf{e}(\mathbf{x})$$

Sum of squares (scalar)

Residuals (vector valued error function)

Jacobian of the vector valued error function:

$$J_{\mathbf{e}}(\mathbf{x}) = rac{d\mathbf{e}(\mathbf{x})}{d\mathbf{x}} = egin{bmatrix} rac{\partial \mathbf{e}_1}{\partial \mathbf{x}_1} & \dots & rac{\partial \mathbf{e}_1}{\partial \mathbf{x}_P} \\ & \ddots & \\ rac{\partial \mathbf{e}_N}{\partial \mathbf{x}_1} & \dots & rac{\partial \mathbf{e}_N}{\partial \mathbf{x}_P} \end{bmatrix} egin{bmatrix} \mathbf{Z} \\ rac{\partial \mathbf{e}_N}{\partial \mathbf{x}_P} \\ rac{\partial \mathbf{e}_N}{\partial \mathbf{x}_P} \\ \end{pmatrix}$$

P parameters

Gradient

$$\mathbf{g}(\mathbf{x}) = \frac{de}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial e}{\partial \mathbf{x}_1} \\ \vdots \\ \vdots \\ \frac{\partial e}{\partial \mathbf{x}_P} \end{bmatrix} = \mathbf{J}_{\mathbf{e}}^T(\mathbf{x})\mathbf{e}(\mathbf{x})$$

Gradient of sum of squares

Jacobian of vector valued error function

Who cares about the Jacobian?

- Gradient is just a direction not a step.
- To compute the step most optimizers need to approximate the Hessian which requires the Jacobian.
- Many optimizers exploit the structure of the Jacobian.
- Direct application of chain rule makes you compute Jacobians

If optimization takes too long, or breaks etc..

Ask yourself the following:

- Is my Jacobian too big?
- Is it too dense? (sparsity is exploited for speed).
- Is my Jacobian full rank? If Jacobian loses rank optimization can break. This is a typical case is when the error function does not depend on a particular variable x_i.

How do we use the model to solve computer vision problems?

Model the 3D world first, then explain image observations

 In the next lecture we will cover modeling appearance and fitting models to images