Due Date: November 2nd, 10 am
Hand in: At beginning of tutorial OR at office 629 (Jan-Hendrik) OR by e-mail to (jlange[at]mpi-inf.mpg.de). Begin the subject of your e-mail with [pgm].
Please do not forget to put your name on the submission.

1 MAP-Inference on chain graphs
Points: 4
Let $X_i = \{0, 1, 2\}$ for $1 \leq i \leq 5$ and consider the probability distribution $p_{\theta}(x)$ on $X = X_1 \times \ldots \times X_5$ that is parameterized on a chain graph as follows

<table>
<thead>
<tr>
<th>x_i</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_1(x_1)$</td>
<td>-1</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>$\theta_2(x_2)$</td>
<td>-1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$\theta_3(x_3)$</td>
<td>2</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>$\theta_4(x_4)$</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$\theta_5(x_5)$</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

$\theta_{i,i+1}(x_i,x_{i+1}) = \begin{cases} -1 & \text{if } x_i = x_{i+1} \\ 1 & \text{else.} \end{cases}$

Find $\arg\max_{x \in X} p_{\theta}(x)$ by dynamic programming.

2 Probabilities
Points: 8
Let Ω be a sample space and $p: \Omega \rightarrow [0, 1]$ a probability distribution. We extend the definition of p to the power set $\mathcal{P}(\Omega)$ via $p(E) = \sum_{x \in E} p(x)$ for any event $E \subset \Omega$.

1. For any two events E_1 and E_2, prove that

\[p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2). \] \hspace{1cm} (1)

2. (Bayes’ law) Given the Kolmogorov definition for conditional probabilities

\[p(A \mid B) = \frac{p(A \cap B)}{p(B)}, \] \hspace{1cm} (2)
derive Bayes’ law:
\[p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}. \]
(3)

3. (Law of total probability) Let \(E_1, \ldots, E_n \) be mutually disjoint events from the sample space \(\Omega \) such that \(\Omega = \bigcup_{i=1}^{n} E_i. \) Then for any event \(B \) from the same space \(\Omega \) show that
\[p(B) = \sum_{i=1}^{n} p(B \cap E_i) = \sum_{i=1}^{n} p(B \mid E_i)p(E_i). \]
(4)

4. (Linearity of expectation) For any finite collection of discrete random variables \(X_1, \ldots, X_n \) with finite expectations \(\mathbb{E}[X_i] = \sum_x x \cdot p[X_i = x], \) show that
\[\mathbb{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i]. \]
(5)

5. Let \(X, Y, Z \) be three disjoint subsets of random variables. We say \(X \) and \(Y \) are conditionally independent given \(Z \) if and only if
\[p_{X,Y\mid Z}(x,y \mid z) = p_{X\mid Z}(x \mid z)p_{Y\mid Z}(y \mid z) \]
(6)
Show that \(X \) and \(Y \) are conditionally independent given \(Z \) if and only if the joint distribution for the three subsets of random variables factors in the following form:
\[p_{X,Y,Z}(x,y,z) = h(x,z)g(y,z) \]
(7)
(Be careful to prove both directions!)

3 Complexity analysis

Points: 6

Consider the three random variables \(X, Y, Z \) all of which are binary.

- How many variable assignments to \(x, y, z \) (states) do you need in general to fully specify the joint distribution \(p(x,y,z) \)?
- How many states are needed if the distribution factorizes in \(p(x,y,z) = p(x \mid y)p(y \mid z)p(z) \)?
- How many states do you need if the variables are not binary but can take values in \(\{1, 2, \ldots, N\} \)? Consider both previous cases.
- How many states do you need to specify a distribution over all 8-bit gray-scale images of size \(k \times \ell \) pixels? There are random variables \(x_1, x_2, \ldots, x_{k\ell} \) with \(x_i \in \{0, \ldots, 255\} \) for \(i = 1, \ldots, k\ell \).
- Suppose the previous distribution is a Gibbs distribution with energy function \(E(x) = \sum_i f_i(x_i) + \sum_{i \sim j} f_{i,j}(x_i, x_j) \) where \(i \sim j \) means that pixels \(i \) and \(j \) are adjacent. How many states do you need now?