Probabilistic Graphical Models Exercise Sheet No. 4

Due Date: December 14th, 10 am

Hand in: By e-mail to (jlange[at]mpi-inf.mpg.de). Your submission must include your source code files. Begin the subject of your e-mail with [pgm].

1 Submodularity

Points: 9

Recall from the previous exercise sheet the energy function

$$E_{h,\beta,\eta}(x,y) = h \sum_{i=1}^{N} x_i - \beta \sum_{i \sim j} x_i x_j - \eta \sum_{i=1}^{N} x_i y_i,$$
(1)

where $x, y \in \{-1, 1\}^N$ and $\beta, \eta \ge 0, h \in \mathbb{R}$.

a) Show that $E_{h,\beta,\eta}$ as a function of x is submodular for all values of y.

Let $E_{\theta}(x) = \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j)$ with $x_i \in \mathcal{X}_i$ be a pairwise energy function. Suppose $\mathcal{X}_i = \{0, 1\}$ for all $i \in V$.

b) Find a reparametrization θ^{φ} and some $\alpha_{ij} \in \mathbb{R}$ such that the pairwise potential θ_{ij}^{φ} can be written as

$$\theta_{ij}^{\varphi}(x_i, x_j) = \begin{cases} \alpha_{ij} & \text{if } x_i \neq x_j \\ 0 & \text{else.} \end{cases}$$

Now suppose $\mathcal{X}_i = \{1, \ldots, n\}$ for all $i \in V$. The definition of submodularity from the lecture is extended to multi-label energy functions by extending the definition of submodular potentials as follows. The pairwise potential θ_{ij} is called *submodular* if for all $x_i, x'_i \in \mathcal{X}_i$ with $x_i \leq x'_i$ and all $x_j, x'_j \in \mathcal{X}_j$ with $x_j \leq x'_j$ it holds that

$$\theta_{ij}(x'_i, x_j) + \theta_{ij}(x_i, x'_j) \ge \theta_{ij}(x_i, x_j) + \theta_{ij}(x'_i, x'_j).$$

$$\tag{2}$$

c) Prove that the pairwise potential θ_{ij} is submodular if and only if for all $x_i \in \mathcal{X}_i$ and all $x_j \in \mathcal{X}_j$ it holds that

$$\theta_{ij}(x_i, x_j) + \theta_{ij}(x_i + 1, x_j + 1) - \theta_{ij}(x_i + 1, x_j) - \theta_{ij}(x_i, x_j + 1) \le 0.$$

2 Sequential Tree-reweighted Message Passing

Points: 7

- a) Implement Sequential Tree-reweighted Message Passing (TRWS) to solve the MAP-inference problem from the previous exercise sheet.
- b) Reconstruct an image x by TRWS with primal rounding and subsequent application of ICM. Compare the energy and loss $L(x, x^{\text{GT}})$ to the MPLP solution from the previous exercise sheet.
- c) We define one outer iteration of MPLP as the update of all edges. Further, we define one outer iteration of TRWS as one total backward-forward pass. Compare the number of outer iterations of MPLP to the number of outer iterations of TRWS when solving the dual problem to a given accuracy.